Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Bioessays ; 44(8): e2200046, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35719031

RESUMEN

Bacteria use trans-translation to rescue stalled ribosomes and target incomplete proteins for proteolysis. Despite similarities between tRNAs and transfer-messenger RNA (tmRNA), the key molecule for trans-translation, new structural and biochemical data show important differences between translation and trans-translation at most steps of the pathways. tmRNA and its binding partner, SmpB, bind in the A site of the ribosome but do not trigger the same movements of nucleotides in the rRNA that are required for codon recognition by tRNA. tmRNA-SmpB moves from the A site to the P site of the ribosome without subunit rotation to generate hybrid states, and moves from the P site to a site outside the ribosome instead of to the E site. During catalysis, transpeptidation to tmRNA appears to require the ribosomal protein bL27, which is dispensable for translation, suggesting that this protein may be conserved in bacteria due to trans-translation. These differences provide insights into the fundamental nature of trans-translation, and provide targets for new antibiotics that may have decrease cross-reactivity with eukaryotic ribosomes.


Asunto(s)
Antibacterianos , Proteínas de Unión al ARN , Antibacterianos/metabolismo , Antibacterianos/farmacología , Biosíntesis de Proteínas , ARN de Transferencia/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribosomas/metabolismo
2.
Proteomics ; 23(18): e2200474, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37496314

RESUMEN

trans-Translation is the most effective ribosome rescue system known in bacteria. While it is essential in some bacteria, Bacillus subtilis possesses two additional alternative ribosome rescue mechanisms that require the proteins BrfA or RqcH. To investigate the physiology of trans-translation deficiency in the model organism B. subtilis, we compared the proteomes of B. subtilis 168 and a ΔssrA mutant in the mid-log phase using gel-free label-free quantitative proteomics. In chemically defined medium, the growth rate of the ssrA deletion mutant was 20% lower than that of B. subtilis 168. An 35 S-methionine incorporation assay demonstrated that protein synthesis rates were also lower in the ΔssrA strain. Alternative rescue factors were not detected. Among the 34 proteins overrepresented in the mutant strain were eight chemotaxis proteins. Indeed, both on LB agar and minimal medium the ΔssrA strain showed an altered motility and chemotaxis phenotype. Despite the lower growth rate, in the mutant proteome ribosomal proteins were more abundant while proteins related to amino acid biosynthesis were less abundant than in the parental strain. This overrepresentation of ribosomal proteins coupled with a lower protein synthesis rate and down-regulation of precursor supply reflects the slow ribosome recycling in the trans-translation-deficient mutant.


Asunto(s)
Bacillus subtilis , Proteínas Bacterianas , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteómica , Biosíntesis de Proteínas , Proteínas Ribosómicas/metabolismo , Proteoma/metabolismo
3.
Artículo en Inglés | MEDLINE | ID: mdl-33046497

RESUMEN

New antibiotics are urgently needed to address the mounting resistance challenge. In early drug discovery, one of the bottlenecks is the elucidation of targets and mechanisms. To accelerate antibiotic research, we provide a proteomic approach for the rapid classification of compounds into those with precedented and unprecedented modes of action. We established a proteomic response library of Bacillus subtilis covering 91 antibiotics and comparator compounds, and a mathematical approach was developed to aid data analysis. Comparison of proteomic responses (CoPR) allows the rapid identification of antibiotics with dual mechanisms of action as shown for atypical tetracyclines. It also aids in generating hypotheses on mechanisms of action as presented for salvarsan (arsphenamine) and the antirheumatic agent auranofin, which is under consideration for repurposing. Proteomic profiling also provides insights into the impact of antibiotics on bacterial physiology through analysis of marker proteins indicative of the impairment of cellular processes and structures. As demonstrated for trans-translation, a promising target not yet exploited clinically, proteomic profiling supports chemical biology approaches to investigating bacterial physiology.


Asunto(s)
Antibacterianos , Proteómica , Antibacterianos/farmacología , Bacillus subtilis , Proteínas Bacterianas/genética , Tetraciclinas
4.
PLoS Biol ; 15(3): e2001318, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28323818

RESUMEN

Science plays an important role in most aspects of society, and scientists face ethical decisions as a routine part of their work, but science education frequently omits or segregates content related to ethics and broader impacts of science. Undergraduate research experiences have the potential to bridge traditional divides in education and provide a holistic view of science. In practice, these experiences can be inconsistent and may not provide the optimal learning environment. We developed a course that combines seminar and independent research elements to support student learning during undergraduate research, makes ethical and societal impacts of science clear by relating them to the students' own research projects, and develops students' ethical decision-making skills. Here, we describe the course and provide resources for developing a similar course.


Asunto(s)
Curriculum , Ética en Investigación/educación , Universidades
5.
Artículo en Inglés | MEDLINE | ID: mdl-30917982

RESUMEN

Staphylococcus aureus is a leading cause of infection in the United States, and due to the rapid development of resistance, new antibiotics are constantly needed. trans-Translation is a particularly promising antibiotic target because it is conserved in many bacterial species, is critical for bacterial survival, and is unique among prokaryotes. We have investigated the potential of KKL-40, a small-molecule inhibitor of trans-translation, and find that it inhibits both methicillin-susceptible and methicillin-resistant strains of S. aureus KKL-40 is also effective against Gram-positive pathogens, including a vancomycin-resistant strain of Enterococcus faecalis, Bacillus subtilis, and Streptococcus pyogenes, although its performance with Gram-negative pathogens is mixed. KKL-40 synergistically interacts with the human antimicrobial peptide LL-37, a member of the cathelicidin family, to inhibit S. aureus but not other antibiotics tested, including daptomycin, kanamycin, or erythromycin. KKL-40 is not cytotoxic to HeLa cells at concentrations that are 100-fold higher than the effective MIC. We also find that S. aureus develops minimal resistance to KKL-40 even after multiday passage at sublethal concentrations. Therefore, trans-translation inhibitors could be a particularly promising drug target against S. aureus, not only because of their ability to inhibit bacterial growth but also because of their potential to simultaneously render S. aureus more susceptible to host antimicrobial peptides.


Asunto(s)
Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/efectos de los fármacos , Línea Celular Tumoral , Sinergismo Farmacológico , Células HeLa , Humanos , Resistencia a la Meticilina/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Infecciones Estafilocócicas/microbiología , Catelicidinas
6.
Nanomedicine ; 17: 391-400, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30399437

RESUMEN

We report the design, synthesis and efficacy of a new class of gel-like nano-carrier, or 'nanogel', prepared via templated electrostatic assembly of anionic hyaluronic acid (HA) polysaccharides with the cationic peptide amphiphile poly-L-lysine (PLL). Small molecules and proteins present during nanogel assembly become directly encapsulated within the carrier and are precisely released by tuning the nanogel HA:PLL ratio to control particle swelling. Remarkably, nanogels exhibit versatile and complimentary mechanisms of cargo delivery depending on the biologic context. For example, in mammalian cells, nanogels are rapidly internalized and escape the endosome to both deliver membrane-impermeable protein cargo into the cytoplasm and improve chemotherapeutic potency in drug resistant cancer cells. In bacteria, nanogels permeabilize microbial membranes to sensitize bacterial pathogens to the action of a loaded antibiotic. Thus, peptide nanogels represent a versatile, readily scalable and bio-responsive carrier capable of augmenting and enhancing the utility of a broad range of biomolecular cargoes.


Asunto(s)
Portadores de Fármacos/química , Geles/química , Ácido Hialurónico/química , Polilisina/química , Células A549 , Portadores de Fármacos/metabolismo , Sistemas de Liberación de Medicamentos , Geles/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ácido Hialurónico/metabolismo , Nanoestructuras/química , Nanotecnología , Polilisina/metabolismo
7.
PLoS Genet ; 12(3): e1005964, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27029019

RESUMEN

Bacteria use trans-translation and the alternative rescue factors ArfA (P36675) and ArfB (Q9A8Y3) to hydrolyze peptidyl-tRNA on ribosomes that stall near the 3' end of an mRNA during protein synthesis. The eukaryotic protein ICT1 (Q14197) is homologous to ArfB. In vitro ribosome rescue assays of human ICT1 and Caulobacter crescentus ArfB showed that these proteins have the same activity and substrate specificity. Both ArfB and ICT1 hydrolyze peptidyl-tRNA on nonstop ribosomes or ribosomes stalled with ≤6 nucleotides extending past the A site, but are unable to hydrolyze peptidyl-tRNA when the mRNA extends ≥14 nucleotides past the A site. ICT1 provided sufficient ribosome rescue activity to support viability in C. crescentus cells that lacked both trans-translation and ArfB. Likewise, expression of ArfB protected human cells from death when ICT1 was silenced with siRNA. These data indicate that ArfB and ICT1 are functionally interchangeable, and demonstrate that ICT1 is a ribosome rescue factor. Because ICT1 is essential in human cells, these results suggest that ribosome rescue activity in mitochondria is required in humans.


Asunto(s)
Mitocondrias/genética , Biosíntesis de Proteínas/genética , Proteínas/genética , Ribosomas/genética , Caulobacter crescentus/genética , Células HEK293 , Humanos , Mitocondrias/metabolismo , Proteínas/metabolismo , ARN Mensajero/genética , Aminoacil-ARN de Transferencia/genética , Proteínas de Unión al ARN/genética , Proteínas Ribosómicas , Ribosomas/metabolismo , Xilosa/metabolismo
8.
Artículo en Inglés | MEDLINE | ID: mdl-28760903

RESUMEN

Bacillus anthracis, the causative agent of anthrax, remains a significant threat to humans, including potential use in bioterrorism and biowarfare. The capacity to engineer strains with increased pathogenicity coupled with the ease of disseminating lethal doses of B. anthracis spores makes it necessary to identify chemical agents that target and kill spores. Here, we demonstrate that a tetrazole-based trans-translation inhibitor, KKL-55, is bactericidal against vegetative cells of B. anthracis in culture. Using a fluorescent analog, we show that this class of compounds colocalizes with developing endospores and bind purified spores in vitro KKL-55 was effective against spores at concentrations close to its MIC for vegetative cells. Spore germination was inhibited at 1.2× MIC, and spores were killed at 2× MIC. In contrast, ciprofloxacin killed germinants at concentrations close to its MIC but did not prevent germination even at 32× MIC. Because toxins are released by germinants, macrophages infected by B. anthracis spores are killed early in the germination process. At ≥2× MIC, KKL-55 protected macrophages from death after infection with B. anthracis spores. Ciprofloxacin required concentrations of ≥8× MIC to exhibit a similar effect. Taken together, these data indicate that KKL-55 and related tetrazoles are good lead candidates for therapeutics targeting B. anthracis spores and suggest that there is an early requirement for trans-translation in germinating spores.


Asunto(s)
Carbunco/prevención & control , Antibacterianos/farmacología , Bacillus anthracis/efectos de los fármacos , Benzamidas/farmacología , Inhibidores de la Síntesis de la Proteína/farmacología , Esporas Bacterianas/efectos de los fármacos , Tetrazoles/farmacología , Animales , Línea Celular , Ciprofloxacina/farmacología , Macrófagos/microbiología , Ratones , Pruebas de Sensibilidad Microbiana , Células RAW 264.7
9.
Antimicrob Agents Chemother ; 60(6): 3276-82, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26953190

RESUMEN

Bacteria require at least one pathway to rescue ribosomes stalled at the ends of mRNAs. The primary pathway for ribosome rescue is trans-translation, which is conserved in >99% of sequenced bacterial genomes. Some species also have backup systems, such as ArfA or ArfB, which can rescue ribosomes in the absence of sufficient trans-translation activity. Small-molecule inhibitors of ribosome rescue have broad-spectrum antimicrobial activity against bacteria grown in liquid culture. These compounds were tested against the tier 1 select agent Francisella tularensis to determine if they can limit bacterial proliferation during infection of eukaryotic cells. The inhibitors KKL-10 and KKL-40 exhibited exceptional antimicrobial activity against both attenuated and fully virulent strains of F. tularensis in vitro and during ex vivo infection. Addition of KKL-10 or KKL-40 to macrophages or liver cells at any time after infection by F. tularensis prevented further bacterial proliferation. When macrophages were stimulated with the proinflammatory cytokine gamma interferon before being infected by F. tularensis, addition of KKL-10 or KKL-40 reduced intracellular bacteria by >99%, indicating that the combination of cytokine-induced stress and a nonfunctional ribosome rescue pathway is fatal to F. tularensis Neither KKL-10 nor KKL-40 was cytotoxic to eukaryotic cells in culture. These results demonstrate that ribosome rescue is required for F. tularensis growth at all stages of its infection cycle and suggest that KKL-10 and KKL-40 are good lead compounds for antibiotic development.


Asunto(s)
Antibacterianos/farmacología , Francisella tularensis/efectos de los fármacos , Oxadiazoles/farmacología , Ribosomas/efectos de los fármacos , Animales , Supervivencia Celular/efectos de los fármacos , Interferón gamma/farmacología , Hígado/microbiología , Macrófagos/microbiología , Ratones , Pruebas de Sensibilidad Microbiana , Células RAW 264.7 , Virulencia/efectos de los fármacos
10.
Proc Natl Acad Sci U S A ; 110(25): 10282-7, 2013 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-23733947

RESUMEN

The trans-translation pathway for protein tagging and ribosome release plays a critical role for viability and virulence in a wide range of pathogens but is not found in animals. To explore the use of trans-translation as a target for antibiotic development, a high-throughput screen and secondary screening assays were used to identify small molecule inhibitors of the pathway. Compounds that inhibited protein tagging and proteolysis of tagged proteins were recovered from the screen. One of the most active compounds, KKL-35, inhibited the trans-translation tagging reaction with an IC50 = 0.9 µM. KKL-35 and other compounds identified in the screen exhibited broad-spectrum antibiotic activity, validating trans-translation as a target for drug development. This unique target could play a key role in combating strains of pathogenic bacteria that are resistant to existing antibiotics.


Asunto(s)
Antibacterianos/biosíntesis , Escherichia coli/genética , Biosíntesis de Proteínas/fisiología , ARN Bacteriano/genética , Bibliotecas de Moléculas Pequeñas , Antibacterianos/farmacología , Bioensayo , Codón de Terminación/genética , Diseño de Fármacos , Farmacorresistencia Bacteriana/genética , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Biblioteca de Genes , Humanos , Luciferasas/genética , Conformación de Ácido Nucleico , ARN Bacteriano/química , ARN Bacteriano/metabolismo , Ribosomas/genética
11.
J Bacteriol ; 196(12): 2123-30, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24706739

RESUMEN

Problems during gene expression can result in a ribosome that has translated to the 3' end of an mRNA without terminating at a stop codon, forming a nonstop translation complex. The nonstop translation complex contains a ribosome with the mRNA and peptidyl-tRNA engaged, but because there is no codon in the A site, the ribosome cannot elongate or terminate the nascent chain. Recent work has illuminated the importance of resolving these nonstop complexes in bacteria. Transfer-messenger RNA (tmRNA)-SmpB specifically recognizes and resolves nonstop translation complexes in a reaction known as trans-translation. trans-Translation releases the ribosome and promotes degradation of the incomplete nascent polypeptide and problematic mRNA. tmRNA and SmpB have been found in all bacteria and are essential in some species. However, other bacteria can live without trans-translation because they have one of the alternative release factors, ArfA or ArfB. ArfA recruits RF2 to nonstop translation complexes to promote hydrolysis of the peptidyl-tRNAs. ArfB recognizes nonstop translation complexes in a manner similar to tmRNA-SmpB recognition and directly hydrolyzes the peptidyl-tRNAs to release the stalled ribosomes. Genetic studies indicate that most or all species require at least one mechanism to resolve nonstop translation complexes. Consistent with such a requirement, small molecules that inhibit resolution of nonstop translation complexes have broad-spectrum antibacterial activity. These results suggest that resolving nonstop translation complexes is a matter of life or death for bacteria.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Terminación de la Cadena Péptídica Traduccional/fisiología , Proteínas Bacterianas/genética , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Mensajero
12.
Antimicrob Agents Chemother ; 58(9): 5500-9, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25001303

RESUMEN

Noncoding small RNAs (sRNAs) act in conjunction with the RNA chaperone Hfq to regulate gene expression in bacteria. Because Hfq is required for virulence in several bacterial pathogens, the Hfq-sRNA system is an attractive target for antibiotic development. A reporter strain in which the expression of yellow fluorescent protein (YFP) is controlled by Hfq-sRNA was engineered to identify inhibitors of this system. A reporter that is targeted by Hfq in conjunction with the RybB sRNA was used in a genetic screen to identify inhibitors from a library of cyclic peptides produced in Escherichia coli using split-intein circular ligation of peptides and proteins (SICLOPPS), an intein-based technology. One cyclic peptide identified in this screen, RI20, inhibited Hfq-mediated repression of gene expression in conjunction with both RybB and an unrelated sRNA, MicF. Gel mobility shift assays showed that RI20 inhibited binding of Hfq to RybB and MicF with similar Ki values. These data suggest that RI20 inhibits Hfq activity by blocking interactions with sRNAs and provide a paradigm for inhibiting virulence genes in Gram-negative pathogens.


Asunto(s)
Proteínas de Escherichia coli/genética , Proteína de Factor 1 del Huésped/genética , ARN Pequeño no Traducido/genética , Bioensayo/métodos , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica/genética , Unión Proteica/genética , ARN Bacteriano/genética , Transducción de Señal/genética , Virulencia/genética
13.
Proc Natl Acad Sci U S A ; 107(12): 5599-604, 2010 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-20212131

RESUMEN

Protein localization mechanisms dictate the functional and structural specialization of cells. Of the four polar surface organelles featured by the dimorphic bacterium Caulobacter crescentus, the stalk, a cylindrical extension of all cell envelope layers, is the least well characterized at the molecular level. Here we apply a powerful experimental scheme that integrates genetics with high-throughput localization to discover StpX, an uncharacterized bitopic membrane protein that modulates stalk elongation and is sequestered to the stalk. In stalkless mutants StpX is dispersed. Two populations of StpX were discernible within the stalk with different mobilities: an immobile one near the stalk base and a mobile one near the stalk tip. Molecular anatomy provides evidence that (i) the StpX transmembrane domain enables access to the stalk organelle, (ii) the N-terminal periplasmic domain mediates retention in the stalk, and (iii) the C-terminal cytoplasmic domain enhances diffusion within the stalk. Moreover, the accumulation of StpX and an N-terminally truncated isoform is differentially coordinated with the cell cycle. Thus, at the submicron scale the localization and the mobility of a protein are precisely regulated in space and time and are important for the correct organization of a subcellular compartment or organelle such as the stalk.


Asunto(s)
Proteínas Bacterianas/metabolismo , Caulobacter crescentus/metabolismo , Extensiones de la Superficie Celular/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Caulobacter crescentus/genética , Caulobacter crescentus/ultraestructura , Ciclo Celular , Extensiones de la Superficie Celular/genética , Extensiones de la Superficie Celular/ultraestructura , Genes Bacterianos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Microscopía Fluorescente , Mutación , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
14.
mBio ; 14(5): e0146123, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37681945

RESUMEN

IMPORTANCE: Elongation factor thermo-unstable (EF-Tu) is a universally conserved translation factor that mediates productive interactions between tRNAs and the ribosome. In bacteria, EF-Tu also delivers transfer-messenger RNA (tmRNA)-SmpB to the ribosome during trans-translation. We report the first small molecule, KKL-55, that specifically inhibits EF-Tu activity in trans-translation without affecting its activity in normal translation. KKL-55 has broad-spectrum antibiotic activity, suggesting that compounds targeted to the tmRNA-binding interface of EF-Tu could be developed into new antibiotics to treat drug-resistant infections.


Asunto(s)
Factor Tu de Elongación Peptídica , Factores de Elongación de Péptidos , Factor Tu de Elongación Peptídica/genética , Factores de Elongación de Péptidos/genética , Antibacterianos/farmacología , Proteínas de Unión al ARN/genética , Biosíntesis de Proteínas , ARN Bacteriano/genética , ARN de Transferencia/metabolismo
15.
Antimicrob Agents Chemother ; 56(4): 1854-61, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22252821

RESUMEN

The ClpXP protease is a critical bacterial intracellular protease that regulates protein turnover in many bacterial species. Here we identified a pharmacological inhibitor of the ClpXP protease, F2, and evaluated its action in Bacillus anthracis and Staphylococcus aureus. We found that F2 exhibited synergistic antimicrobial activity with cathelicidin antimicrobial peptides and antibiotics that target the cell well and/or cell membrane, such as penicillin and daptomycin, in B. anthracis and drug-resistant strains of S. aureus. ClpXP inhibition represents a novel therapeutic strategy to simultaneously sensitize pathogenic bacteria to host defenses and pharmaceutical antibiotics.


Asunto(s)
Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Bacterias/efectos de los fármacos , Endopeptidasa Clp/antagonistas & inhibidores , Proteínas de Escherichia coli/antagonistas & inhibidores , Inhibidores de Proteasas/farmacología , Secuencia de Aminoácidos , Bacillus anthracis/efectos de los fármacos , Bacillus anthracis/genética , Membrana Celular/metabolismo , Farmacorresistencia Bacteriana , Sinergismo Farmacológico , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Datos de Secuencia Molecular , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo , Tetrazoles/farmacología , Catelicidinas
16.
Proc Natl Acad Sci U S A ; 106(38): 16405-9, 2009 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-19805312

RESUMEN

Eukaryotes and bacteria regulate the activity of some proteins by localizing them to discrete subcellular structures, and eukaryotes localize some RNAs for the same purpose. To explore whether bacteria also spatially regulate RNAs, the localization of tmRNA was determined using fluorescence in situ hybridization. tmRNA is a small regulatory RNA that is ubiquitous in bacteria and that interacts with translating ribosomes in a reaction known as trans-translation. In Caulobacter crescentus, tmRNA was localized in a cell-cycle-dependent manner. In G(1)-phase cells, tmRNA was found in regularly spaced foci indicative of a helix-like structure. After initiation of DNA replication, most of the tmRNA was degraded, and the remaining molecules were spread throughout the cytoplasm. Immunofluorescence assays showed that SmpB, a protein that binds tightly to tmRNA, was colocalized with tmRNA in the helix-like pattern. RNase R, the nuclease that degrades tmRNA, was localized in a helix-like pattern that was separate from the SmpB-tmRNA complex. These results suggest a model in which tmRNA-SmpB is localized to sequester tmRNA from RNase R, and localization might also regulate tmRNA-SmpB interactions with ribosomes.


Asunto(s)
Proteínas Bacterianas/genética , Caulobacter crescentus/genética , ARN Bacteriano/genética , Proteínas de Unión al ARN/genética , Proteínas Bacterianas/metabolismo , Northern Blotting , Caulobacter crescentus/citología , Caulobacter crescentus/metabolismo , División Celular/genética , Electroporación/métodos , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Hibridación Fluorescente in Situ , Microscopía Fluorescente , Plásmidos/genética , Unión Proteica , ARN Bacteriano/metabolismo , Proteínas de Unión al ARN/metabolismo , Succinimidas
17.
Curr Biol ; 32(10): R469-R472, 2022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35609545

RESUMEN

When ribosomes collide while translating the same mRNA, a MutS-like protein can pry apart the leading ribosome and a nuclease can cut the mRNA between the collided ribosomes to initiate ribosome rescue and recycling.


Asunto(s)
Biosíntesis de Proteínas , Ribosomas , Humanos , Proteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribosomas/genética , Ribosomas/metabolismo
18.
Adv Exp Med Biol ; 722: 231-8, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21915793

RESUMEN

The bacterial RNA network includes most of the same components found in eukaryotes, and many of the interactions that under lie transcription, RNA processing and stability, translation, and protein secretion are conserved. The major difference is that all of these functions take place in a single cellular compartment. In spite of the absence of membrane-bound organelles, or in some cases because of it, key components of the RNA network are localized to specific subcellular spaces or structures to ensure proper processing and regulation. This chapter focuses on what is known about subcellular localization of the bacterial RNA network and what insights localization provides to regulation of the RNA infrastructure of the cell.


Asunto(s)
Membrana Celular/metabolismo , Citoplasma/metabolismo , Procesamiento Postranscripcional del ARN , ARN Bacteriano/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteína de Factor 1 del Huésped/metabolismo , Modelos Biológicos , Factor Tu de Elongación Peptídica/metabolismo , Unión Proteica , ARN Bacteriano/clasificación , ARN Bacteriano/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribonucleasa P/metabolismo
19.
Nat Biomed Eng ; 5(5): 467-480, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33390588

RESUMEN

Precision antimicrobials aim to kill pathogens without damaging commensal bacteria in the host, and thereby cure disease without antibiotic-associated dysbiosis. Here we report the de novo design of a synthetic host defence peptide that targets a specific pathogen by mimicking key molecular features of the pathogen's channel-forming membrane proteins. By exploiting physical and structural vulnerabilities within the pathogen's cellular envelope, we designed a peptide sequence that undergoes instructed tryptophan-zippered assembly within the mycolic acid-rich outer membrane of Mycobacterium tuberculosis to specifically kill the pathogen without collateral toxicity towards lung commensal bacteria or host tissue. These mycomembrane-templated assemblies elicit rapid mycobactericidal activity and enhance the potency of antibiotics by improving their otherwise poor diffusion across the rigid M. tuberculosis envelope with respect to agents that exploit transmembrane protein channels for antimycobacterial activity. This biomimetic strategy may aid the design of other narrow-spectrum antimicrobial peptides.


Asunto(s)
Antibacterianos/farmacología , Proteínas de la Membrana/genética , Mycobacterium tuberculosis/efectos de los fármacos , Péptidos/farmacología , Membrana Externa Bacteriana/efectos de los fármacos , Proteínas Bacterianas/genética , Humanos , Pulmón/efectos de los fármacos , Pulmón/microbiología , Imitación Molecular , Péptidos/genética
20.
Nat Commun ; 12(1): 1799, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33741965

RESUMEN

Bacterial ribosome rescue pathways that remove ribosomes stalled on mRNAs during translation have been proposed as novel antibiotic targets because they are essential in bacteria and are not conserved in humans. We previously reported the discovery of a family of acylaminooxadiazoles that selectively inhibit trans-translation, the main ribosome rescue pathway in bacteria. Here, we report optimization of the pharmacokinetic and antibiotic properties of the acylaminooxadiazoles, producing MBX-4132, which clears multiple-drug resistant Neisseria gonorrhoeae infection in mice after a single oral dose. Single particle cryogenic-EM studies of non-stop ribosomes show that acylaminooxadiazoles bind to a unique site near the peptidyl-transfer center and significantly alter the conformation of ribosomal protein bL27, suggesting a novel mechanism for specific inhibition of trans-translation by these molecules. These results show that trans-translation is a viable therapeutic target and reveal a new conformation within the bacterial ribosome that may be critical for ribosome rescue pathways.


Asunto(s)
Neisseria gonorrhoeae/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína/farmacología , Ribosomas/efectos de los fármacos , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión/genética , Células CACO-2 , Femenino , Gonorrea/microbiología , Gonorrea/prevención & control , Humanos , Ratones , Neisseria gonorrhoeae/genética , Biosíntesis de Proteínas/genética , Inhibidores de la Síntesis de la Proteína/química , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/genética , Ribosomas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA