Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Photosynth Res ; 157(2-3): 133-146, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37382782

RESUMEN

The JIP test, based on fast chlorophyll fluorescence (ChlF) kinetics and derived parameters, is a dependable tool for studying photosynthetic efficiency under varying environmental conditions. We extracted additional information from the whole OJIP and the normalized variable fluorescence (Vt) transient curve using first and second-order derivatives to visualize and localize points of landmark events. To account for light-induced variations in the fluorescence transient, we present a time-adjusted JIP test approach in which the derivatives of the transient curve are used to determine the exact timing of the J and I steps instead of fixed time points. We compared the traditional JIP test method with the time-adjusted method in analyzing fast ChlF measurements of silver birch (Betula pendula) in field conditions studying diurnal and within-crown variation. The time-adjusted JIP test method showed potential for studying ChlF dynamics, as it takes into account potential time shifts in the occurrence of J and I steps. The exact occurrence times of J and I steps and other landmark events coincided with the times of significant differences in fluorescence intensity. Chlorophyll fluorescence parameters were linearly related to photosynthetic photon flux density (PPFD) at different times of day, and the values obtained by the time-adjusted JIP test showed a stronger linear regression than the traditional JIP test. For fluorescence parameters having significant differences among different times of day and crown layers, the time-adjusted JIP test resulted in more clear differences than the traditional JIP test. Diurnal ChlF intensity data indicated that differences between the southern and northern provenance were only evident under low light conditions. Taken together, our results emphasize the potential relevance of considering the time domain in the analysis of the fast ChlF induction.


Asunto(s)
Betula , Árboles , Fluorescencia , Clorofila , Fotosíntesis , Hojas de la Planta
2.
Plant J ; 97(2): 306-320, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30288820

RESUMEN

Calamine accessions of the zinc/cadmium/nickel hyperaccumulator, Noccaea caerulescens, exhibit striking variation in foliar cadmium accumulation in nature. The Ganges accession (GA) from Southern France displays foliar cadmium hyperaccumulation (>1000 µg g-1 DW), whereas the accession La Calamine (LC) from Belgium, with similar local soil metal composition, does not (<100 µg g-1 DW). All calamine accessions are cadmium hypertolerant. To find out the differences between LC and GA in their basic adaptation mechanisms, we bypassed the cadmium excluding phenotype of LC by exposing the plants to 50 µm cadmium in hydroponics, achieving equal cadmium accumulation in the shoots. The iron content increased in the roots of both accessions. GA exhibited significant decreases in manganese and zinc contents in the roots and shoots, approaching those in LC. Altogether 702 genes responded differently to cadmium exposure between the accessions, 157 and 545 in the roots and shoots, respectively. Cadmium-exposed LC showed a stress response and had decreased levels of a wide range of photosynthesis-related transcripts. GA showed less changes, mainly exhibiting an iron deficiency-like response. This included increased expression of genes encoding five iron deficiency-regulated bHLH transcription factors, ferric reduction oxidase FRO2, iron transporters IRT1 and OPT3, and nicotianamine synthase NAS1, and decreased expression of genes encoding ferritins and NEET (a NEET family iron-sulfur protein), which is possibly involved in iron transfer, distribution and/or management. The function of the IRT1 gene in the accessions was compared. We conclude that the major difference between the two accessions is in the way they cope with iron under cadmium exposure.


Asunto(s)
Brassicaceae/genética , Cadmio/metabolismo , Hierro/metabolismo , Transcriptoma , Brassicaceae/fisiología , Productos Agrícolas , Homeostasis , Hidroponía , Deficiencias de Hierro , Metales/metabolismo , Fotosíntesis/genética , Raíces de Plantas/genética , Raíces de Plantas/fisiología , RNA-Seq , Thlaspi/genética , Thlaspi/fisiología , Zinc/metabolismo
4.
PLoS Genet ; 10(2): e1004112, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24550736

RESUMEN

Plant responses to changes in environmental conditions are mediated by a network of signaling events leading to downstream responses, including changes in gene expression and activation of cell death programs. Arabidopsis thaliana RADICAL-INDUCED CELL DEATH1 (RCD1) has been proposed to regulate plant stress responses by protein-protein interactions with transcription factors. Furthermore, the rcd1 mutant has defective control of cell death in response to apoplastic reactive oxygen species (ROS). Combining transcriptomic and functional genomics approaches we first used microarray analysis in a time series to study changes in gene expression after apoplastic ROS treatment in rcd1. To identify a core set of cell death regulated genes, RCD1-regulated genes were clustered together with other array experiments from plants undergoing cell death or treated with various pathogens, plant hormones or other chemicals. Subsequently, selected rcd1 double mutants were constructed to further define the genetic requirements for the execution of apoplastic ROS induced cell death. Through the genetic analysis we identified WRKY70 and SGT1b as cell death regulators functioning downstream of RCD1 and show that quantitative rather than qualitative differences in gene expression related to cell death appeared to better explain the outcome. Allocation of plant energy to defenses diverts resources from growth. Recently, a plant response termed stress-induced morphogenic response (SIMR) was proposed to regulate the balance between defense and growth. Using a rcd1 double mutant collection we show that SIMR is mostly independent of the classical plant defense signaling pathways and that the redox balance is involved in development of SIMR.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Muerte Celular/genética , Proteínas Nucleares/genética , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/genética , Proteínas de Arabidopsis/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Genómica , Proteínas Nucleares/metabolismo , Estrés Fisiológico/genética
5.
J Exp Bot ; 67(14): 4367-78, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27255929

RESUMEN

Relative air humidity (RH) is expected to increase in northern Europe due to climate change. Increasing RH reduces the difference of water vapour pressure deficit (VPD) between the leaf and the atmosphere, and affects the gas exchange of plants. Little is known about the effects of decreased VPD on plant metabolism, especially under field conditions. This study was conducted to determine the effects of artificially decreased VPD on silver birch (Betula pendula Roth.) and hybrid aspen (Populus tremula L.×P. tremuloides Michx.) foliar metabolite and nutrient profiles in a unique free air humidity manipulation (FAHM) field experiment during the fourth season of humidity manipulation, in 2011. Long-term exposure to decreased VPD modified nutrient homeostasis in tree leaves, as demonstrated by a lower N concentration and N:P ratio in aspen leaves, and higher Na concentration and lower K:Na ratio in the leaves of both species in decreased VPD than in ambient VPD. Decreased VPD caused a shift in foliar metabolite profiles of both species, affecting primary and secondary metabolites. Metabolic adjustment to decreased VPD included elevated levels of starch and heptulose sugars, sorbitol, hemiterpenoid and phenolic glycosides, and α-tocopherol. High levels of carbon reserves, phenolic compounds, and antioxidants under decreased VPD may modify plant resistance to environmental stresses emerging under changing climate.


Asunto(s)
Betula/metabolismo , Hojas de la Planta/metabolismo , Populus/metabolismo , Antioxidantes/análisis , Antioxidantes/metabolismo , Glicósidos/análisis , Glicósidos/metabolismo , Humedad , Fenoles/análisis , Fenoles/metabolismo , Hojas de la Planta/química , Sorbitol/análisis , Sorbitol/metabolismo , Almidón/análisis , Almidón/metabolismo , alfa-Tocoferol/análisis , alfa-Tocoferol/metabolismo
6.
J Exp Bot ; 67(14): 4353-65, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27259554

RESUMEN

Air humidity indicated as vapour pressure deficit (VPD) is directly related to transpiration and stomatal function of plants. We studied the effects of VPD and nitrogen (N) supply on leaf metabolites, plant growth, and mineral nutrition with young micropropagated silver birches (Betula pendula Roth.) in a growth chamber experiment. Plants that were grown under low VPD for 26 d had higher biomass, larger stem diameter, more leaves, fewer fallen leaves, and larger total leaf area than plants that were grown under high VPD. Initially, low VPD increased height growth rate and stomatal conductance; however, the effect was transient and the differences between low and high VPD plants became smaller with time. Metabolic adjustment to low VPD reflected N deficiency. The concentrations of N, iron, chlorophyll, amino acids, and soluble carbohydrates were lower and the levels of starch, quercetin glycosides, and raffinose were higher in the leaves that had developed under low VPD compared with high VPD. Additional N supply did not fully overcome the negative effect of low VPD on nutrient status but it diminished the effects of low VPD on leaf metabolism. Thus, with high N supply, the glutamine to glutamate ratio and starch production under low VPD became comparable with the levels under high VPD. The present study demonstrates that low VPD affects carbon and nutrient homeostasis and modifies N allocation of plants.


Asunto(s)
Betula/metabolismo , Nitrógeno/metabolismo , Hojas de la Planta/metabolismo , Betula/crecimiento & desarrollo , Metabolismo de los Hidratos de Carbono , Humedad , Estomas de Plantas/metabolismo , Transpiración de Plantas/fisiología
7.
Tree Physiol ; 43(1): 16-30, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36049078

RESUMEN

Continuous light (CL) is available throughout the polar day for plants in the Arctic during the growing season, whereas provenances of the same species experience a very different environment with non-CL (NCL) just a few latitudes to the south. Both provenances need to acclimate to climate warming, yet we lack comprehensive understanding of how their growth, photosynthesis and leaf traits differ. Further, the provenances presumably have morphological and physiological adaptations to their native environments and therefore differ in response to photoperiod. We tested the height growth, leaf longevity, biomass accumulation, biomass allocation and rates of gas exchange of northern (67°N) and southern (61°N) Finnish silver birch (Betula pendula Roth) origins in CL- and NCL-treatments in a 4-month chamber experiment. Irrespective of photoperiod, 67°N had higher area-based photosynthetic rate (Anet), stomatal conductance (gs) and relative height growth rate (RGR), but lower stomatal density and fewer branches and leaves than 61°N. Photoperiod affected height growth cessation, biomass and photosynthetic traits, whereas leaf longevity and many leaf functional traits remained unchanged. In CL, both provenances had lower gs, higher RGR, increased shoot:root ratio and increased sink sizes (more branching, more leaves, increased total plant dry weight) compared with NCL. In NCL, 67°N ceased height growth earlier than in CL, which altered biomass accumulation and distribution patterns. Northern conditions impose challenges for plant growth and physiology. Whether a provenance inhabits and is adapted to an area with or without CL can also affect its response to the changing climate. Northern birches may have adapted to CL and the short growing season with a 'polar day syndrome' of traits, including relatively high gas exchange rates with low leaf biomass and growth traits that are mainly limited by the environment and the earlier growth cessation (to avoid frost damage).


Asunto(s)
Betula , Fotoperiodo , Finlandia , Fotosíntesis , Hojas de la Planta/fisiología
8.
Sci Total Environ ; 858(Pt 2): 159809, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36336039

RESUMEN

Peatland ecosystems emit biogenic volatile organic compounds (BVOC), which have a net cooling impact on the climate. However, the quality and quantity of BVOC emissions, and how they are regulated by vegetation and peatland type remain poorly understood. Here we measured BVOC emissions with dynamic enclosures from two major boreal peatland types, a minerotrophic fen and an ombrotrophic bog situated in Siikaneva, southern Finland and experimentally assessed the role of vegetation by removing vascular vegetation with or without the moss layer. Our measurements from four campaigns during growing seasons in 2017 and 2018 identified emissions of 59 compounds from nine different chemical groups. Isoprene accounted for 81 % of BVOC emissions. Measurements also revealed uptake of dichloromethane. Total BVOC emissions and the emissions of isoprene, monoterpenoids, sesquiterpenes, homoterpenes, and green leaf volatiles were tightly connected to vascular plants. Isoprene and sesquiterpene emissions were associated with sedges, whereas monoterpenoids and homoterpenes were associated with shrubs. Additionally, isoprene and alkane emissions were higher in the fen than in the bog and they significantly contributed to the higher BVOC emissions from intact vegetation in the fen. During an extreme drought event in 2018, emissions of organic halides were absent. Our results indicate that climate change with an increase in shrub cover and increased frequency of extreme weather events may have a negative impact on total BVOC emissions that otherwise are predicted to increase in warmer temperatures. However, these changes also accompanied a change in BVOC emission quality. As different compounds differ in their capacity to form secondary organic aerosols, the ultimate climate impact of peatland BVOC emissions may be altered.


Asunto(s)
Compuestos Orgánicos Volátiles , Ecosistema , Humedales , Monoterpenos
9.
Plant Phenomics ; 5: 0111, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38026471

RESUMEN

Hyperspectral reflectance contains valuable information about leaf functional traits, which can indicate a plant's physiological status. Therefore, using hyperspectral reflectance for high-throughput phenotyping of foliar traits could be a powerful tool for tree breeders and nursery practitioners to distinguish and select seedlings with desired adaptation potential to local environments. We evaluated the use of 2 nondestructive methods (i.e., leaf and proximal/canopy) measuring hyperspectral reflectance in the 350- to 2,500-nm range for phenotyping on 1,788 individual Scots pine seedlings belonging to lowland and upland ecotypes of 3 different local populations from the Czech Republic. Leaf-level measurements were collected using a spectroradiometer and a contact probe with an internal light source to measure the biconical reflectance factor of a sample of needles placed on a black background in the contact probe field of view. The proximal canopy measurements were collected under natural solar light, using the same spectroradiometer with fiber optical cable to collect data on individual seedlings' hemispherical conical reflectance factor. The latter method was highly susceptible to changes in incoming radiation. Both spectral datasets showed statistically significant differences among Scots pine populations in the whole spectral range. Moreover, using random forest and support vector machine learning algorithms, the proximal data obtained from the top of the seedlings offered up to 83% accuracy in predicting 3 different Scots pine populations. We conclude that both approaches are viable for hyperspectral phenotyping to disentangle the phenotypic and the underlying genetic variation within Scots pine seedlings.

10.
Plant Physiol ; 157(4): 1866-83, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22007024

RESUMEN

Reactive oxygen species (ROS) are ubiquitous signaling molecules in plant stress and development. To gain further insight into the plant transcriptional response to apoplastic ROS, the phytotoxic atmospheric pollutant ozone was used as a model ROS inducer in Arabidopsis (Arabidopsis thaliana) and gene expression was analyzed with microarrays. In contrast to the increase in signaling via the stress hormones salicylic acid, abscisic acid, jasmonic acid (JA), and ethylene, ROS treatment caused auxin signaling to be transiently suppressed, which was confirmed with a DR5-uidA auxin reporter construct. Transcriptomic data revealed that various aspects of auxin homeostasis and signaling were modified by apoplastic ROS. Furthermore, a detailed analysis of auxin signaling showed that transcripts of several auxin receptors and Auxin/Indole-3-Acetic Acid (Aux/IAA) transcriptional repressors were reduced in response to apoplastic ROS. The ROS-derived changes in the expression of auxin signaling genes partially overlapped with abiotic stress, pathogen responses, and salicylic acid signaling. Several mechanisms known to suppress auxin signaling during biotic stress were excluded, indicating that ROS regulated auxin responses via a novel mechanism. Using mutants defective in various auxin (axr1, nit1, aux1, tir1 afb2, iaa28-1, iaa28-2) and JA (axr1, coi1-16) responses, ROS-induced cell death was found to be regulated by JA but not by auxin. Chronic ROS treatment resulted in altered leaf morphology, a stress response known as "stress-induced morphogenic response." Altered leaf shape of tir1 afb2 suggests that auxin was a negative regulator of stress-induced morphogenic response in the rosette.


Asunto(s)
Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ozono/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Especies Reactivas de Oxígeno/farmacología , Transducción de Señal/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Transporte Biológico , Análisis por Conglomerados , Perfilación de la Expresión Génica , Genes de Plantas/genética , Homeostasis , Ácidos Indolacéticos/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Estrés Oxidativo , Regiones Promotoras Genéticas/genética , ARN de Planta/genética , Factores de Tiempo , Transcriptoma
11.
Antioxidants (Basel) ; 11(10)2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36290757

RESUMEN

RADICAL-INDUCED CELL DEATH1 (RCD1) is an Arabidopsis thaliana nuclear protein that is disrupted during oxidative stress. RCD1 is considered an important integrative node in development and stress responses, and the rcd1 plants have several phenotypes and altered resistance to a variety of abiotic and biotic stresses. One of the phenotypes of rcd1 is resistance to the herbicide paraquat, but the mechanisms behind it are unknown. Paraquat causes a rapid burst of reactive oxygen species (ROS) initially in the chloroplast. We performed multi-platform metabolomic analyses in wild type Col-0 and paraquat resistant rcd1 plants to identify pathways conveying resistance and the function of RCD1 in this respect. Wild type and rcd1 plants were clearly distinguished by their abundance of antioxidants and specialized metabolites and their responses to paraquat. The lack of response in rcd1 suggested constitutively active defense against ROS via elevated flavonoid, glutathione, ß-carotene, and tocopherol levels, whereas its ascorbic acid levels were compromised under non-stressed control conditions when compared to Col-0. We propose that RCD1 acts as a hub that maintains basal antioxidant system, and its inactivation induces defense responses by enhancing the biosynthesis and redox cycling of low molecular weight antioxidants and specialized metabolites with profound antioxidant activities alleviating oxidative stress.

12.
J Am Soc Mass Spectrom ; 32(12): 2895-2903, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34738804

RESUMEN

In this study, we show that infrared laser ablation atmospheric pressure photoionization mass spectrometry (LAAPPI-MS) imaging with 70 µm lateral resolution allows for the analysis of Arabidopsis thaliana (A. thaliana) leaf substructures ranging from single-cell trichomes and the interveinal leaf lamina to primary, secondary, and tertiary veins. The method also showed its potential for depth profiling analysis for the first time by mapping analytes at the different depths of the leaf and spatially resolving the topmost trichomes and cuticular wax layer from the underlying tissues. Negative ion LAAPPI-MS detected many different flavonol glycosides, fatty acids, fatty acid esters, galactolipids, and glycosphingolipids, whose distributions varied significantly between the different substructures of A. thaliana leaves. The results show that LAAPPI-MS provides a highly promising new tool to study the role of metabolites in plants.


Asunto(s)
Arabidopsis/química , Espectrometría de Masas/métodos , Hojas de la Planta/química , Presión Atmosférica , Ácidos Grasos/análisis , Ácidos Grasos/química , Imagen Molecular , Esfingolípidos/análisis , Esfingolípidos/química
13.
Tree Physiol ; 41(6): 974-991, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-33171495

RESUMEN

Growth of northern trees is limited by short growing seasons. In multi-year trials, northern trees usually grow less than southern ones but can have higher gas exchange, whereas differences in biomass allocation and its relation to photosynthesis are less known. We characterized silver birch (Betula pendula Roth) provenances from southern (latitude 61°) and northern (latitude 67°) Finland in uniform chamber conditions. In a time-series experiment, we measured traits related to growth, biomass allocation and photosynthesis, and determined gas exchange responses to temperature and light. We found provenance differences in photosynthetic capacity and growth. The northern provenance allocated relatively more to roots, having a higher root mass fraction and lower shoot:root ratio than the southern provenance. On the other hand, the northern provenance had fewer leaves and lower total leaf dry weight (DW) than the southern provenance. The northern provenance attained higher rates of net photosynthesis (Anet) and higher stomatal conductance (gs) in all measured temperatures and higher photosynthesis at the optimum temperature (Aopt) than the southern provenance, but there was no difference in the optimum temperature of photosynthesis (Topt, 18.3 °C for the southern provenance vs 18.9 °C for the northern one). Photosynthetic light response curves showed no between-provenance differences. In a time-series, the northern provenance had higher Anet than the southern provenance, but gs was similar. The northern provenance had higher maximum quantum yield of photosystem II photochemistry (Fv/Fm) than the southern provenance. There were no differences between provenances in height, total plant DW, shoot DW, root DW or shoot mass fraction. Our results suggest that the provenances occupy a common thermal niche, or can at least relatively quickly acclimate to a common growth temperature. Thus, carbon assimilation of these northern trees may not be significantly affected by rising temperatures alone. In an equal photoperiod and optimal conditions, we found different one-season biomass accumulation strategies: southern trees grow with more leaves, while northern trees reach similar total assimilation (total DW, height) with more efficient photosynthetic capacity per leaf area (higher gas exchange, higher Fv/Fm) and relatively more investment in the below-ground fraction of the plant.


Asunto(s)
Betula , Fotosíntesis , Finlandia , Hojas de la Planta , Árboles
14.
Talanta ; 224: 121919, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33379120

RESUMEN

Quantification of dissolved organic carbon (DOC) and iron (Fe) in surface waters is critical for understanding the water quality dynamics, brownification and carbon balance in the northern hemisphere. Especially in the remote areas, sampling and laboratory analysis of DOC and Fe content at a sufficient temporal frequency is difficult. Ultraviolet-visible (UV-Vis) spectrophotometry is a promising tool for water quality monitoring to increase the sampling frequency and applications in remote regions. The aim of this study was (1) to investigate the performance of an in-situ UV-Vis spectrophotometer for detecting spectral absorbances in comparison with a laboratory benchtop instrument; (2) to analyse the stability of DOC and Fe estimates from UV-Vis spectrophotometers among different rivers using multivariate methods; (3) to compare site-specific calibration of models to pooled models and investigate the extrapolation of DOC and Fe predictions from one catchment to another. This study indicates that absorbances that were measured by UV-Vis sensor explained 96% of the absorbance data from the laboratory benchtop instrument. Among the three tested multivariate methods, multiple stepwise regression (MSR) was the best model for both DOC and Fe predictions. Accurate and unbiased models for multiple watersheds for DOC were built successfully, and these models could be extrapolated from one watershed to another even without site-specific calibration for DOC. However, for Fe the combination of different datasets was not possible.

15.
Data Brief ; 35: 106747, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33537378

RESUMEN

This paper presents data for the assessment of a portable UV-Vis spectrophotometer's performance on predicting stream water DOC and Fe content. The dataset contains DOC and Fe concentrations by laboratory methods, in-situ and ex-situ spectral absorbances, monitoring environmental indexes such as water depth, temperature, turbidity and voltage. The records in Yli-Nuortti river (Cold station, Finland) took place during the hydrological year 2018-2019 and in Krycklan (C4 and C5, Sweden) during the hydrological years 2016-2019. The data analyses were conducted with 'pls' and 'caret' package in R. The correlation coefficient (R), root-mean-square deviation (RMSD), standard deviation (STD) and bias were used to check the performance of the models. This dataset can be combined with datasets from other regions around the world to build more universal models. For discussion and more information of the dataset creation, please refer to the full-length article "Assessment of a portable UV-Vis spectrophotometer's performance for stream water DOC and Fe content monitoring in remote areas" [1].

16.
Plant Cell Environ ; 33(6): 1016-28, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20132521

RESUMEN

Long-term effects of elevated CO(2) and O(3) concentrations on gene expression in silver birch (Betula pendula Roth) leaves were studied during the end of the growing season. Two birch genotypes, clones 4 and 80, with different ozone growth responses, were exposed to 2x ambient CO(2) and/or O(3) in open-top chambers (OTCs). Microarray analyses were performed after 2 years of exposure, and the transcriptional profiles were compared to key physiological characteristics during leaf senescence. There were genotypic differences in the responses to CO(2) and O(3). Clone 80 exhibited greater transcriptional response and capacity to alter metabolism, resulting in better stress tolerance. The gene expression patterns of birch leaves indicated contrasting responses of senescence-related genes to elevated CO(2) and O(3). Elevated CO(2) delayed leaf senescence and reduced associated transcriptional changes, whereas elevated O(3) advanced leaf senescence because of increased oxidative stress. The combined treatment demonstrated that elevated CO(2) only temporarily alleviated the negative effects of O(3). Gene expression data alone were insufficient to explain the O(3) response in birch, and additional physiological and biochemical data were required to understand the true O(3) sensitivity of these clones.


Asunto(s)
Betula/genética , Dióxido de Carbono/farmacología , Senescencia Celular/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ozono/farmacología , Hojas de la Planta/genética , Atmósfera/química , Betula/citología , Betula/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Células Clonales , Genes de Plantas/genética , Genotipo , Hibridación de Ácido Nucleico/genética , Filogenia , Hojas de la Planta/citología , Hojas de la Planta/efectos de los fármacos , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/metabolismo , Factores de Tiempo
17.
Tree Physiol ; 30(7): 923-34, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20519675

RESUMEN

Ultraviolet (UV) radiation is an important environmental factor for plant communities; however, plant responses to solar UV are not fully understood. Here, we report differential effects of solar UV-A and UV-B radiation on the expression of flavonoid pathway genes and phenolic accumulation in leaves of Betula pendula Roth (silver birch) seedlings grown outdoors. Plants were exposed for 30 days to six UV treatments created using three types of plastic film. Epidermal flavonoids measured in vivo decreased when UV-B was excluded. In addition, the concentrations of six flavonoids determined by high-performance liquid chromatography-mass spectrometry declined linearly with UV-B exclusion, and transcripts of PAL and HYH measured by quantitative real-time polymerase chain reaction were expressed at lower levels. UV-A linearly regulated the accumulation of quercetin-3-galactoside and quercetin-3-arabinopyranoside and had a quadratic effect on HYH expression. Furthermore, there were strong positive correlations between PAL expression and accumulation of four flavonols under the UV treatments. Our findings in silver birch contribute to a more detailed understanding of plant responses to solar UV radiation at both molecular and metabolite levels.


Asunto(s)
Betula/metabolismo , Betula/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Fenoles/metabolismo , Luz Solar , Rayos Ultravioleta , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantones/metabolismo , Plantones/efectos de la radiación
18.
Front Plant Sci ; 11: 194, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32180786

RESUMEN

Rcd1 (radical-induced cell death1) is an Arabidopsis thaliana mutant, which exhibits high tolerance to paraquat [methyl viologen (MV)], herbicide that interrupts photosynthetic electron transport chain causing the formation of superoxide and inhibiting NADPH production in the chloroplast. To understand the biochemical mechanisms of MV-resistance and the role of RCD1 in oxidative stress responses, we performed metabolite profiling of wild type (Col-0) and rcd1 plants in light, after MV exposure and after prolonged darkness. The function of RCD1 has been extensively studied at transcriptomic and biochemical level, but comprehensive metabolite profiling of rcd1 mutant has not been conducted until now. The mutant plants exhibited very different metabolic features from the wild type under light conditions implying enhanced glycolytic activity, altered nitrogen and nucleotide metabolism. In light conditions, superoxide production was elevated in rcd1, but no metabolic markers of oxidative stress were detected. Elevated senescence-associated metabolite marker levels in rcd1 at early developmental stage were in line with its early-senescing phenotype and possible mitochondrial dysfunction. After MV exposure, a marked decline in the levels of glycolytic and TCA cycle intermediates in Col-0 suggested severe plastidic oxidative stress and inhibition of photosynthesis and respiration, whereas in rcd1 the results indicated sustained photosynthesis and respiration and induction of energy salvaging pathways. The accumulation of oxidative stress markers in both plant lines indicated that MV-resistance in rcd1 derived from the altered regulation of cellular metabolism and not from the restricted delivery of MV into the cells or chloroplasts. Considering the evidence from metabolomic, transcriptomic and biochemical studies, we propose that RCD1 has a negative effect on reductive metabolism and rerouting of the energy production pathways. Thus, the altered, highly active reductive metabolism, energy salvaging pathways and redox transfer between cellular compartments in rcd1 could be sufficient to avoid the negative effects of MV-induced toxicity.

19.
Tree Physiol ; 40(2): 198-214, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-31860709

RESUMEN

Due to its ubiquity across northern latitudes, silver birch (Betula pendula Roth) is an attractive model species for studying geographical trait variation and acclimation capacity. Six birch provenances from 60 to 67°N across Finland were grown in a common garden and studied for provenance and genotype variation. We looked for differences in height growth, photosynthetic gas exchange and chlorophyll content index (CCI) and compared the gas exchange of early and late leaves on short and long shoots, respectively. The provenances stratified into southern and northern groups. Northern provenances attained less height growth increment and had higher stomatal conductance (gs) and lower intrinsic water-use efficiency (WUE, Anet/gs) than southern provenances, whereas net photosynthesis (Anet) or CCI did not show clear grouping. Short shoot leaves had lower gs and higher WUE than long shoot leaves in all provenances, but there was no difference in Anet between shoot types. The separation of the provenances into two groups according to their physiological responses might reflect the evolutionary history of B. pendula. Latitudinal differences in gas exchange and water use traits can have plausible consequences for global carbon and water fluxes in a warming climate.


Asunto(s)
Betula/genética , Fotosíntesis , Clorofila , Europa (Continente) , Finlandia , Hojas de la Planta
20.
Sci Total Environ ; 746: 141161, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32750582

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are global contaminants of concern. Despite several decades of research, their mechanisms of toxicity are not very well understood. Early life stages of fish are particularly sensitive with the developing cardiac tissue being a main target of PAHs toxicity. The mechanisms of cardiotoxicity of the three widespread model polycyclic aromatic hydrocarbons (PAHs) retene, pyrene and phenanthrene were explored in rainbow trout (Oncorhynchus mykiss) early life stages. Newly hatched larvae were exposed to sublethal doses of each individual PAH causing no detectable morphometric alterations. Changes in the cardiac proteome and metabolome were assessed after 7 or 14 days of exposure to each PAH. Phase I and II enzymes regulated by the aryl hydrocarbon receptor were significantly induced by all PAHs, with retene being the most potent compound. Retene significantly altered the level of several proteins involved in key cardiac functions such as muscle contraction, cellular tight junctions or calcium homeostasis. Those findings were quite consistent with previous reports regarding the effects of retene on the cardiac transcriptome. Significant changes in proteins linked to iron and heme metabolism were observed following exposure to pyrene. While phenanthrene also altered the levels of several proteins in the cardiac tissue, no clear mechanisms or pathways could be highlighted. Due to high variability between samples, very few significant changes were detected in the cardiac metabolome overall. Slight but significant changes were still observed for pyrene and phenanthrene, suggesting possible effects on several energetic or signaling pathways. This study shows that early exposure to different PAHs can alter the expression of key proteins involved in the cardiac function, which could potentially affect negatively the fitness of the larvae and later of the juvenile fish.


Asunto(s)
Oncorhynchus mykiss , Fenantrenos/toxicidad , Hidrocarburos Policíclicos Aromáticos/toxicidad , Animales , Larva , Metabolómica , Proteómica , Pirenos/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA