Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Dev Biol ; 492: 200-211, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36273621

RESUMEN

Germ granules harbor processes that maintain germline integrity and germline stem cell capacity. Depleting core germ granule components in C. elegans leads to the reprogramming of germ cells, causing them to express markers of somatic differentiation in day-two adults. Somatic reprogramming is associated with complete sterility at this stage. The resulting germ cell atrophy and other pleiotropic defects complicate our understanding of the initiation of reprogramming and how processes within germ granules safeguard the totipotency and immortal potential of germline stem cells. To better understand the initial events of somatic reprogramming, we examined total mRNA (transcriptome) and polysome-associated mRNA (translatome) changes in a precision full-length deletion of glh-1, which encodes a homolog of the germline-specific Vasa/DDX4 DEAD-box RNA helicase. Fertile animals at a permissive temperature were analyzed as young adults, a stage that precedes by 24 â€‹h the previously determined onset of somatic reporter-gene expression in the germline. Two significant changes are observed at this early stage. First, the majority of neuropeptide-encoding transcripts increase in both the total and polysomal mRNA fractions, suggesting that GLH-1 or its effectors suppress this expression. Second, there is a significant decrease in Major Sperm Protein (MSP)-domain mRNAs when glh-1 is deleted. We find that the presence of GLH-1 helps repress spermatogenic expression during oogenesis, but boosts MSP expression to drive spermiogenesis and sperm motility. These insights define an early role for GLH-1 in repressing somatic reprogramming to maintain germline integrity.


Asunto(s)
Proteínas de Caenorhabditis elegans , Neuropéptidos , Animales , Masculino , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Gránulos Citoplasmáticos/metabolismo , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Motilidad Espermática , Semen/metabolismo , Células Germinativas/metabolismo , Espermatogénesis/genética , Neuropéptidos/genética , Neuropéptidos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
2.
J Cell Sci ; 133(6)2020 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-32079657

RESUMEN

Germ cells use both positive and negative mRNA translational control to regulate gene expression that drives their differentiation into gametes. mRNA translational control is mediated by RNA-binding proteins, miRNAs and translation initiation factors. We have uncovered the discrete roles of two translation initiation factor eIF4E isoforms (IFE-1, IFE-3) that bind 7-methylguanosine (m7G) mRNA caps during Caenorhabditiselegans germline development. IFE-3 plays important roles in germline sex determination (GSD), where it promotes oocyte cell fate and is dispensable for spermatogenesis. IFE-3 is expressed throughout the germline and localizes to germ granules, but is distinct from IFE-1 and PGL-1, and facilitates oocyte growth and viability. This contrasts with the robust expression in spermatocytes of IFE-1, the isoform that resides within P granules in spermatocytes and oocytes, and promotes late spermatogenesis. Each eIF4E is localized by its cognate eIF4E-binding protein (IFE-1:PGL-1 and IFE-3:IFET-1). IFE-3 and IFET-1 regulate translation of several GSD mRNAs, but not those under control of IFE-1. Distinct mutant phenotypes, in vivo localization and differential mRNA translation suggest independent dormant and active periods for each eIF4E isoform in the germline.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Factor 4E Eucariótico de Iniciación/genética , Masculino , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Mensajero , Proteínas de Unión al ARN
3.
Int J Mol Sci ; 20(1)2019 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-30621249

RESUMEN

Cellular mRNAs in plants and animals have a 5'-cap structure that is accepted as the recognition point to initiate translation by ribosomes. Consequently, it was long assumed that the translation initiation apparatus was built solely for a cap-dependent (CD) mechanism. Exceptions that emerged invoke structural damage (proteolytic cleavage) to eukaryotic initiation factor 4 (eIF4) factors that disable cap recognition. The residual eIF4 complex is thought to be crippled, but capable of cap-independent (CI) translation to recruit viral or death-associated mRNAs begrudgingly when cells are in great distress. However, situations where CI translation coexists with CD translation are now known. In such cases, CI translation is still a minor mechanism in the major background of CD synthesis. In this review, I propose that germ cells do not fit this mold. Using observations from various animal models of oogenesis and spermatogenesis, I suggest that CI translation is a robust partner to CD translation to carry out the translational control that is so prevalent in germ cell development. Evidence suggests that CI translation provides surveillance of germ cell homeostasis, while CD translation governs the regulated protein synthesis that ushers these meiotic cells through the remarkable steps in sperm/oocyte differentiation.


Asunto(s)
Células Germinativas/metabolismo , Biosíntesis de Proteínas , Caperuzas de ARN/metabolismo , ARN Mensajero/metabolismo , Animales , Células Germinativas/citología , Humanos , Meiosis , Modelos Biológicos , ARN Mensajero/genética
4.
Nucleic Acids Res ; 44(12): 5924-35, 2016 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-27095199

RESUMEN

Cytoplasmic poly(A)-binding proteins (PABPs) link mRNA 3' termini to translation initiation factors, but they also play key roles in mRNA regulation and decay. Reports from mice, zebrafish and Drosophila further involved PABPs in microRNA (miRNA)-mediated silencing, but through seemingly distinct mechanisms. Here, we implicate the two Caenorhabditis elegans PABPs (PAB-1 and PAB-2) in miRNA-mediated silencing, and elucidate their mechanisms of action using concerted genetics, protein interaction analyses, and cell-free assays. We find that C. elegans PABPs are required for miRNA-mediated silencing in embryonic and larval developmental stages, where they act through a multi-faceted mechanism. Depletion of PAB-1 and PAB-2 results in loss of both poly(A)-dependent and -independent translational silencing. PABPs accelerate miRNA-mediated deadenylation, but this contribution can be modulated by 3'UTR sequences. While greater distances with the poly(A) tail exacerbate dependency on PABP for deadenylation, more potent miRNA-binding sites partially suppress this effect. Our results refine the roles of PABPs in miRNA-mediated silencing and support a model wherein they enable miRNA-binding sites by looping the 3'UTR poly(A) tail to the bound miRISC and deadenylase.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Larva/genética , MicroARNs/genética , Poli A/genética , Proteína II de Unión a Poli(A)/genética , Proteína I de Unión a Poli(A)/genética , Regiones no Traducidas 3' , Adenosina Monofosfato/metabolismo , Animales , Sitios de Unión , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Embrión no Mamífero , Silenciador del Gen , Larva/crecimiento & desarrollo , Larva/metabolismo , MicroARNs/metabolismo , Poli A/metabolismo , Proteína I de Unión a Poli(A)/metabolismo , Proteína II de Unión a Poli(A)/metabolismo , Unión Proteica , Biosíntesis de Proteínas , Complejo Silenciador Inducido por ARN/genética , Complejo Silenciador Inducido por ARN/metabolismo
5.
J Cell Sci ; 128(24): 4487-98, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26542024

RESUMEN

Regulated mRNA translation is vital for germ cells to produce new proteins in the spatial and temporal patterns that drive gamete development. Translational control involves the de-repression of stored mRNAs and their recruitment by eukaryotic initiation factors (eIFs) to ribosomes. C. elegans expresses five eIF4Es (IFE-1-IFE-5); several have been shown to selectively recruit unique pools of mRNA. Individual IFE knockouts yield unique phenotypes due to inefficient translation of certain mRNAs. Here, we identified mRNAs preferentially translated through the germline-specific eIF4E isoform IFE-1. Differential polysome microarray analysis identified 77 mRNAs recruited by IFE-1. Among the IFE-1-dependent mRNAs are several required for late germ cell differentiation and maturation. Polysome association of gld-1, vab-1, vpr-1, rab-7 and rnp-3 mRNAs relies on IFE-1. Live animal imaging showed IFE-1-dependent selectivity in spatial and temporal translation of germline mRNAs. Altered MAPK activation in oocytes suggests dual roles for IFE-1, both promoting and suppressing oocyte maturation at different stages. This single eIF4E isoform exerts positive, selective translational control during germ cell differentiation.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Factores Eucarióticos de Iniciación/metabolismo , Oocitos/metabolismo , Biosíntesis de Proteínas/fisiología , ARN de Helminto/metabolismo , ARN Mensajero/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Factor 4E Eucariótico de Iniciación/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Factores Eucarióticos de Iniciación/genética , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Sistema de Señalización de MAP Quinasas/fisiología , Oocitos/citología , Polirribosomas/genética , Polirribosomas/metabolismo , ARN de Helminto/genética , ARN Mensajero/genética
6.
Dev Biol ; 407(1): 90-102, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26254600

RESUMEN

Spermatogonial stem cells (SSCs) must balance self-renewal with production of transit-amplifying progenitors that differentiate in response to retinoic acid (RA) before entering meiosis. This self-renewal vs. differentiation spermatogonial fate decision is critical for maintaining tissue homeostasis, as imbalances cause spermatogenesis defects that can lead to human testicular cancer or infertility. A great deal of effort has been exerted to understand how the SSC population is maintained. In contrast, little is known about the essential program of differentiation initiated by retinoic acid (RA) that precedes meiosis, and the pathways and proteins involved are poorly defined. We recently reported a novel role for RA in stimulating the PI3/AKT/mTOR kinase signaling pathway to activate translation of repressed mRNAs such as Kit. Here, we examined the requirement for mTOR complex 1 (mTORC1) in mediating the RA signal to direct spermatogonial differentiation in the neonatal testis. We found that in vivo inhibition of mTORC1 by rapamycin blocked spermatogonial differentiation, which led to an accumulation of undifferentiated spermatogonia. In addition, rapamycin also blocked the RA-induced translational activation of mRNAs encoding KIT, SOHLH1, and SOHLH2 without affecting expression of STRA8. These findings highlight dual roles for RA in germ cell development - transcriptional activation of genes, and kinase signaling to stimulate translation of repressed messages required for spermatogonial differentiation.


Asunto(s)
Complejos Multiproteicos/fisiología , Espermatogonias/citología , Serina-Treonina Quinasas TOR/fisiología , Proteínas Adaptadoras Transductoras de Señales/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Endogámicos C57BL , Complejos Multiproteicos/antagonistas & inhibidores , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Testículo/efectos de los fármacos , Testículo/patología , Tretinoina/farmacología
7.
Dev Biol ; 397(1): 140-9, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25446031

RESUMEN

In the testis, a subset of spermatogonia retains stem cell potential, while others differentiate to eventually become spermatozoa. This delicate balance must be maintained, as defects can result in testicular cancer or infertility. Currently, little is known about the gene products and signaling pathways directing these critical cell fate decisions. Retinoic acid (RA) is a requisite driver of spermatogonial differentiation and entry into meiosis, yet the mechanisms activated downstream are undefined. Here, we determined a requirement for RA in the expression of KIT, a receptor tyrosine kinase essential for spermatogonial differentiation. We found that RA signaling utilized the PI3K/AKT/mTOR signaling pathway to induce the efficient translation of mRNAs for Kit, which are present but not translated in undifferentiated spermatogonia. Our findings provide an important molecular link between a morphogen (RA) and the expression of KIT protein, which together direct the differentiation of spermatogonia throughout the male reproductive lifespan.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Proto-Oncogénicas c-kit/metabolismo , Espermatogénesis , Tretinoina/metabolismo , Animales , Diferenciación Celular , Linaje de la Célula , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Espermatogonias/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Testículo/metabolismo
8.
bioRxiv ; 2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38826235

RESUMEN

We studied the function of translation factor eIF4E isoforms in regulating mRNAs in germ cell granules/condensates. Translational control of mRNAs plays an essential role in germ cell gene regulation. Messenger ribonucleoprotein (mRNP) complexes assemble on mRNAs as they move from the nucleus into perinuclear germ granules to exert both positive and negative post-transcriptional regulation in the cytoplasm. In C. elegans , germ granules are surprisingly dynamic mRNP condensates that remodel during development. Two eIF4E isoforms (called IFE-1 and IFE-3), eIF4E-Interacting Proteins (4EIPs), RBPs, DEAD-box helicases, polyadenylated mRNAs, Argonautes and miRNAs all occupy positions in germ granules. Affinity purification of IFE-1 and IFE-3 allowed mass spectrometry and mRNA-Seq to identify the proteins and mRNAs that populate stable eIF4E mRNPs. We find translationally controlled mRNAs (e.g. pos-1, mex-3, spn-4, etc.) enriched in IFE-3 mRNPs, but excluded from IFE-1 mRNPs. These mRNAs also require IFE-1 for efficient translation. The findings support a model in which oocytes and embryos utilize the two eIF4Es for opposite purposes on critically regulated germline mRNAs. Careful colocalization of the eIF4Es with other germ granule components suggests an architecture in which GLH-1, PGL-1 and the IFEs are stratified to facilitate sequential interactions for mRNAs. Biochemical characterization demonstrates opposing yet cooperative roles for IFE-3 and IFE-1 to hand-off of translationally controlled mRNAs from the repressed to the activated state, respectively. The model involves eIF4E mRNPs shuttling mRNAs through nuclear pore-associated granules/condensates to cytoplasmic ribosomes.

9.
Biol Reprod ; 89(3): 61, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23926285

RESUMEN

The basic tenets of germ cell development are conserved among metazoans. Following lineage commitment in the embryo, germ cells proliferate, transition into meiosis, and then differentiate into gametes capable of fertilization. In lower organisms such as Drosophila and C. elegans, germline stem cells make the decision to proliferate or enter meiosis based in large part on the regulated expression of genes by translational control. This study undertakes a direct characterization of mRNAs that experience translational control and their involvement in similar decisions in the mammalian testis. We previously showed that translation of mRNA encoding the germ cell-specific gene Rhox13 was suppressed in the fetal and neonatal testis. By investigating changes in message utilization during neonatal testis development, we found that a large number of mRNAs encoding both housekeeping and germ cell-specific proteins experience enhanced translational efficiency, rather than increase in abundance, in the testis as quiescent gonocytes transition to mitotic spermatogonia. Our results indicate that translational control is a significant regulator of the germ cell proteome during neonatal testis development.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Genes del Desarrollo , Biosíntesis de Proteínas/genética , ARN Mensajero/metabolismo , Testículo/crecimiento & desarrollo , Proteínas Adaptadoras Transductoras de Señales , Animales , Animales Recién Nacidos , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular , Factores Eucarióticos de Iniciación , Masculino , Ratones , Fosfoproteínas/metabolismo , Polirribosomas/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Espermatogénesis/genética , Espermatogonias/metabolismo , Espermatogonias/fisiología , Testículo/metabolismo
10.
J Cell Sci ; 123(Pt 13): 2228-37, 2010 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-20530576

RESUMEN

Caenorhabditis elegans expresses five family members of the translation initiation factor eIF4E whose individual physiological roles are only partially understood. We report a specific role for IFE-2 in a conserved temperature-sensitive meiotic process. ife-2 deletion mutants have severe temperature-sensitive chromosome-segregation defects. Mutant germ cells contain the normal six bivalents at diakinesis at 20 degrees C but 12 univalents at 25 degrees C, indicating a defect in crossover formation. Analysis of chromosome pairing in ife-2 mutants at the permissive and restrictive temperatures reveals no defects. The presence of RAD-51-marked early recombination intermediates and 12 well condensed univalents indicate that IFE-2 is not essential for formation of meiotic double-strand breaks or their repair through homologous recombination but is required for crossover formation. However, RAD-51 foci in ife-2 mutants persist into inappropriately late stages of meiotic prophase at 25 degrees C, similar to mutants defective in MSH-4/HIM-14 and MSH-5, which stabilize a critical intermediate in crossover formation. In wild-type worms, mRNAs for msh-4/him-14 and msh-5 shift from free messenger ribonucleoproteins to polysomes at 25 degrees C but not in ife-2 mutants, suggesting that IFE-2 translationally upregulates synthesis of MSH-4/HIM-14 and MSH-5 at elevated temperatures to stabilize Holliday junctions. This is confirmed by an IFE-2-dependent increase in MSH-5 protein levels.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Unión al ADN/metabolismo , Factor 4E Eucariótico de Iniciación/metabolismo , Meiosis/fisiología , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Intercambio Genético , ADN/genética , ADN/metabolismo , ADN/efectos de la radiación , Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN/genética , Factor 4E Eucariótico de Iniciación/genética , Femenino , Calor , Masculino , Mutación , Oogénesis/fisiología , Fenotipo , ARN Mensajero/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Espermatogénesis/fisiología
11.
Front Cell Dev Biol ; 8: 562, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32733883

RESUMEN

Translational regulation of mRNAs is critically important for proper gene expression in germ cells, gametes, and embryos. The ability of the nucleus to control gene expression in these systems may be limited due to spatial or temporal constraints, as well as the breadth of gene products they express to prepare for the rapid animal development that follows. During development germ granules are hubs of post-transcriptional regulation of mRNAs. They assemble and remodel messenger ribonucleoprotein (mRNP) complexes for translational repression or activation. Recently, mRNPs have been appreciated as discrete regulatory units, whose function is dictated by the many positive and negative acting factors within the complex. Repressed mRNPs must be activated for translation on ribosomes to introduce novel proteins into germ cells. The binding of eIF4E to interacting proteins (4EIPs) that sequester it represents a node that controls many aspects of mRNP fate including localization, stability, poly(A) elongation, deadenylation, and translational activation/repression. Furthermore, plants and animals have evolved to express multiple functionally distinct eIF4E and 4EIP variants within germ cells, giving rise to different modes of translational regulation.

12.
Mol Cell Biol ; 25(1): 100-13, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15601834

RESUMEN

The mRNA cap-binding protein eukaryotic translation initiation factor 4E (eIF4E) participates in protein synthesis initiation, translational repression of specific mRNAs, and nucleocytoplasmic shuttling. Multiple isoforms of eIF4E are expressed in a variety of organisms, but their specific roles are poorly understood. We investigated one Caenorhabditis elegans isoform, IFE-4, which has homologues in plants and mammals. IFE-4::green fluorescent protein (GFP) was expressed in pharyngeal and tail neurons, body wall muscle, spermatheca, and vulva. Knockout of ife-4 by RNA interference (RNAi) or a null mutation produced a pleiotropic phenotype that included egg-laying defects. Sedimentation analysis demonstrated that IFE-4, but not IFE-1, was present in 48S initiation complexes, indicating that it participates in protein synthesis initiation. mRNAs affected by ife-4 knockout were determined by DNA microarray analysis of polysomal distribution. Polysome shifts, in the absence of total mRNA changes, were observed for only 33 of the 18,967 C. elegans mRNAs tested, of which a disproportionate number were related to egg laying and were expressed in neurons and/or muscle. Translational regulation was confirmed by reduced levels of DAF-12, EGL-15, and KIN-29. The functions of these proteins can explain some phenotypes observed in ife-4 knockout mutants. These results indicate that translation of a limited subset of mRNAs is dependent on a specific isoform of eIF4E.


Asunto(s)
Factor 4E Eucariótico de Iniciación/química , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Alelos , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/biosíntesis , Proteínas de Caenorhabditis elegans/fisiología , Núcleo Celular/metabolismo , Centrifugación por Gradiente de Densidad , Mapeo Cromosómico , Cruzamientos Genéticos , Citoplasma/metabolismo , Factor 4E Eucariótico de Iniciación/metabolismo , Eliminación de Gen , Regulación de la Expresión Génica , Proteínas Fluorescentes Verdes/metabolismo , Homocigoto , Ratones , Ratones Noqueados , Modelos Genéticos , Músculos/metabolismo , Mutación , Neuronas/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Factores de Iniciación de Péptidos/fisiología , Fenotipo , Polirribosomas/metabolismo , Unión Proteica , Isoformas de Proteínas , Proteínas Serina-Treonina Quinasas/biosíntesis , ARN/metabolismo , Interferencia de ARN , Receptores Citoplasmáticos y Nucleares/biosíntesis , Receptores de Factores de Crecimiento de Fibroblastos/biosíntesis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sacarosa/farmacología , Factores de Tiempo
13.
FEBS J ; 285(14): 2590-2604, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29775245

RESUMEN

Notch receptor signaling is a highly conserved cell communication system in most multicellular organisms and plays a critical role at several junctures in animal development. In Caenorhabditis elegans,GLP-1/Notch signaling is essential for both germline stem cell maintenance and germ cell proliferation during gonad development. Here, we show that subunits (POLA-1, DIV-1, PRI-1, and PRI-2) of the DNA polymerase alpha-primase complex are required for germ cell proliferation in response to GLP-1/Notch signaling in different tissues at different developmental stages. Specifically, genetic and functional analyses demonstrated that (a) maternally contributed DIV-1 (regulatory subunit) is indispensable non-cell autonomously for GLP-1/Notch-mediated germ cell proliferation during early larval development, whereas POLA-1 (catalytic subunit) and two primase subunits, PRI-1 and PRI-2, do not appear to be essential; (b) germline POLA-1, PRI-1, and PRI-2 play a crucial role in GLP-1/Notch-mediated maintenance of proliferative cell fate during adulthood, while DIV-1 is dispensable; and (c) germline POLA-1, DIV-1, PRI-1, and PRI-2 function in tandem with PUF (Pumilio/FBF) RNA-binding proteins to maintain germline stem cells in the adult gonad. These findings suggest that the subunits of the DNA polymerase alpha-primase complex exhibit both discrete and shared functions in GLP-1/Notch or PUF-mediated germ cell dynamics in C. elegans. These findings link the biological functions of DNA replication machineries to signals that maintain a stem cell population, and may have further implications for Notch-dependent tumors.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , ADN Polimerasa I/genética , ADN Primasa/genética , Gónadas/metabolismo , Óvulo/metabolismo , Receptores Notch/genética , Espermatozoides/metabolismo , Animales , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Comunicación Celular , Diferenciación Celular , Proliferación Celular , ADN Polimerasa I/metabolismo , ADN Primasa/metabolismo , Regulación del Desarrollo de la Expresión Génica , Gónadas/citología , Gónadas/crecimiento & desarrollo , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Masculino , Óvulo/citología , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Receptores Notch/metabolismo , Transducción de Señal , Espermatozoides/citología , Células Madre/citología , Células Madre/metabolismo
14.
BMB Rep ; 49(2): 93-8, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26303971

RESUMEN

Germline stem cells (GSCs) are the best understood adult stem cell types in the nematode Caenorhabditis elegans, and have provided an important model system for studying stem cells and their cell fate in vivo, in mammals. In this review, we propose a mechanism that controls GSCs and their cell fate through selective activation, repression and mobilization of the specific mRNAs. This mechanism is acutely controlled by known signal transduction pathways (e.g., Notch signaling and Ras-ERK MAPK signaling pathways) and P granule (analogous to mammalian germ granule)-associated mRNA regulators (FBF-1, FBF-2, GLD-1, GLD-2, GLD-3, RNP-8 and IFE-1). Importantly, all regulators are highly conserved in many multi-cellular animals. Therefore, GSCs from a simple animal may provide broad insight into vertebrate stem cells (e.g., hematopoietic stem cells) and their cell fate specification. [BMB Reports 2016; 49(2): 93-98].


Asunto(s)
Linaje de la Célula/genética , Células Germinativas/citología , Homeostasis/genética , Células Madre/citología , Animales , Células Germinativas/metabolismo , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Células Madre/metabolismo , Activación Transcripcional/genética
15.
Biomed Res Int ; 2015: 327963, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26357652

RESUMEN

Ultimately, the production of new proteins in undetermined cells pushes them to new fates. Other proteins hold a stem cell in a mode of self-renewal. In germ cells, these decision-making proteins are produced largely from translational control of preexisting mRNAs. To date, all of the regulation has been attributed to RNA binding proteins (RBPs) that repress mRNAs in many models of germ cell development (Drosophila, mouse, C. elegans, and Xenopus). In this review, we focus on the selective, positive function of translation initiation factors eIF4E and eIF4G, which recruit mRNAs to ribosomes upon derepression. Evidence now shows that the two events are not separate but rather are coordinated through composite complexes of repressors and germ cell isoforms of eIF4 factors. Strikingly, the initiation factor isoforms are themselves mRNA selective. The mRNP complexes of translation factors and RBPs are built on specific populations of mRNAs to prime them for subsequent translation initiation. Simple rearrangement of the partners causes a dormant mRNP to become synthetically active in germ cells when and where they are required to support gametogenesis.


Asunto(s)
Factor 4E Eucariótico de Iniciación/genética , Factor 4G Eucariótico de Iniciación/genética , Células Germinativas/metabolismo , Biosíntesis de Proteínas/genética , ARN Mensajero/genética , Animales , Humanos , Ribosomas/genética
16.
Translation (Austin) ; 2(1): e28935, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-26779406

RESUMEN

During apoptosis, activated caspases cleave the translation initiation factor eIF4G. This cleavage disrupts cap-dependent mRNA translation initiation within the cell. However, a specific subset of mRNAs can still be recruited for protein synthesis in a cap-independent manner by the residual initiation machinery. Many of these mRNAs, including cell death related mRNAs, contain internal ribosome entry sites (IRESes) that promote their enhanced translation during apoptosis. Still other mRNAs have little dependence on the cap recognition mechanism. The expression of the encoded proteins, both anti- and pro-apoptotic, allows for an initial period of attempted cell survival, then commitment to cell death when damage is extensive. In this study we address the translational regulation of the stress and apoptosis-related mRNAs in C. elegans: BiP (hsp-3) (hsp-4), Hif-1 (hif-1), p53 (cep-1), Bcl-2 (ced-9) and Apaf-1 (ced-4). Altered translational efficiency of these messages was observed upon depletion of cap-dependent translation and induction of apoptosis within the C. elegans gonad. Our findings suggest a physiological link between the cap-independent mechanism and the enhanced translation of hsp-3 and ced-9. This increase in the efficiency of translation may be integral to the stress response during the induction of physiological apoptosis.

17.
PLoS One ; 6(9): e24444, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21909434

RESUMEN

Apoptosis is a natural process during animal development for the programmed removal of superfluous cells. During apoptosis general protein synthesis is reduced, but the synthesis of cell death proteins is enhanced. Selective translation has been attributed to modification of the protein synthesis machinery to disrupt cap-dependent mRNA translation and induce a cap-independent mechanism. We have previously shown that disruption of the balance between cap-dependent and cap-independent C. elegans eIF4G isoforms (IFG-1 p170 and p130) by RNA interference promotes apoptosis in developing oocytes. Germ cell apoptosis was accompanied by the appearance of the Apaf-1 homolog, CED-4. Here we show that IFG-1 p170 is a native substrate of the worm executioner caspase, CED-3, just as mammalian eIF4GI is cleaved by caspase-3. Loss of Bcl-2 function (ced-9ts) in worms induced p170 cleavage in vivo, coincident with extensive germ cell apoptosis. Truncation of IFG-1 occurred at a single site that separates the cap-binding and ribosome-associated domains. Site-directed mutagenesis indicated that CED-3 processes IFG-1 at a non-canonical motif, TTTD(456). Coincidentally, the recognition site was located 65 amino acids downstream of the newly mapped IFG-1 p130 start site suggesting that both forms support cap-independent initiation. Genetic evidence confirmed that apoptosis induced by loss of ifg-1 p170 mRNA was caspase (ced-3) and apoptosome (ced-4/Apaf-1) dependent. These findings support a new paradigm in which modal changes in protein synthesis act as a physiological signal to initiate cell death, rather than occur merely as downstream consequences of the apoptotic event.


Asunto(s)
Apoptosis , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citología , Proteínas de Unión al Calcio/metabolismo , Caspasa 3/metabolismo , Células Germinativas/citología , Biosíntesis de Proteínas , Caperuzas de ARN/metabolismo , Animales , Apoptosomas/metabolismo , Factor Apoptótico 1 Activador de Proteasas/metabolismo , Ácido Aspártico/metabolismo , Secuencia de Bases , Sitios de Unión , Biocatálisis , Caenorhabditis elegans/metabolismo , Caspasas/metabolismo , Factor 4G Eucariótico de Iniciación/metabolismo , Células Germinativas/metabolismo , Humanos , Datos de Secuencia Molecular , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
18.
J Cell Sci ; 122(Pt 10): 1529-39, 2009 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-19383718

RESUMEN

Fertility and embryonic viability are measures of efficient germ cell growth and development. During oogenesis and spermatogenesis, new proteins are required for both mitotic expansion and differentiation. Qualitative and quantitative changes in protein synthesis occur by translational control of mRNAs, mediated in part by eIF4E, which binds the mRNAs 5' cap. IFE-1 is one of five eIF4E isoforms identified in C. elegans. IFE-1 is expressed primarily in the germ line and associates with P granules, large mRNPs that store mRNAs. We isolated a strain that lacks IFE-1 [ife-1(bn127)] and demonstrated that the translation of several maternal mRNAs (pos-1, pal-1, mex-1 and oma-1) was inefficient relative to that in wild-type worms. At 25 degrees C, ife-1(bn127) spermatocytes failed in cytokinesis, prematurely expressed the pro-apoptotic protein CED-4/Apaf-1, and accumulated as multinucleate cells unable to mature to spermatids. A modest defect in oocyte development was also observed. Oocytes progressed normally through mitosis and meiosis, but subsequent production of competent oocytes became limiting, even in the presence of wild-type sperm. Combined gametogenesis defects decreased worm fertility by 80% at 20 degrees C; ife-1 worms were completely sterile at 25 degrees C. Thus, IFE-1 plays independent roles in late oogenesis and spermatogenesis through selective translation of germline-specific mRNAs.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Factor 4E Eucariótico de Iniciación/metabolismo , Oocitos/metabolismo , Oogénesis , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Espermatogénesis , Espermatozoides/metabolismo , Animales , Apoptosis , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Citocinesis , Factor 4E Eucariótico de Iniciación/genética , Fertilidad , Genotipo , Humanos , Masculino , Meiosis , Mitosis , Oocitos/patología , Oogénesis/genética , Fenotipo , Isoformas de Proteínas , Ribonucleoproteínas/metabolismo , Eliminación de Secuencia , Interacciones Espermatozoide-Óvulo , Espermatogénesis/genética , Espermatozoides/patología , Temperatura , Factores de Tiempo
19.
EMBO J ; 21(17): 4680-90, 2002 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-12198170

RESUMEN

Primitive eukaryotes like Caenorhabditis elegans produce mRNAs capped with either m(7)GTP or m(3)(2,2,7)GTP. Caenorhabditis elegans also expresses five isoforms of the cap-binding protein eIF4E. Some isoforms (e.g. IFE-3) bind to m(7)GTP-Sepharose exclusively, whereas others (e.g. IFE-5) bind to both m(7)GTP- and m(3)(2,2,7)GTP-Sepharose. To examine specificity differences, we devised molecular models of the tertiary structures of IFE-3 and IFE-5, based on the known structure of mouse eIF4E-1. We then substituted amino acid sequences of IFE-5 with homologous sequences from IFE-3. As few as two changes (N64Y/V65L) converted the cap specificity of IFE-5 to essentially that of IFE-3. Molecular dynamics simulations suggested that the width and depth of the cap-binding cavity were larger in IFE-5 than in IFE-3 or the N64Y/V65L variant, supporting a model in which IFE-3 discriminates against m(3)(2,2,7)GTP by steric hindrance. Furthermore, the affinity of IFE-5 (but not IFE-3) for m(3)(2,2,7)GTP was reversibly increased when thiol reagents were removed. This was correlated with the formation of a disulfide bond between Cys-122 and Cys-126. Thus, translation of m(3)(2,2,7)GTP-capped mRNAs may be regulated by intracellular redox state.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Factores de Iniciación de Péptidos/metabolismo , Caperuzas de ARN/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Proteínas de Caenorhabditis elegans/química , Cromatografía de Afinidad , Cistina/química , Factor 4E Eucariótico de Iniciación , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Oxidación-Reducción , Factores de Iniciación de Péptidos/química , Conformación Proteica , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína , Caperuzas de ARN/química , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Espectrometría de Fluorescencia , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA