Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 26(3)2021 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-33573121

RESUMEN

Metabolic syndrome (MetS) is a global public health problem affecting nearly 25.9% of the world population characterised by a cluster of disorders dominated by abdominal obesity, high blood pressure, high fasting plasma glucose, hypertriacylglycerolaemia and low HDL-cholesterol. In recent years, marine organisms, especially seaweeds, have been highlighted as potential natural sources of bioactive compounds and useful metabolites, with many biological and physiological activities to be used in functional foods or in human nutraceuticals for the management of MetS and related disorders. Of the three groups of seaweeds, brown seaweeds are known to contain more bioactive components than either red and green seaweeds. Among the different brown seaweed species, Ascophyllum nodosum and Fucus vesiculosus have the highest antioxidant values and highest total phenolic content. However, the evidence base relies mainly on cell line and small animal models, with few studies to date involving humans. This review intends to provide an overview of the potential of brown seaweed extracts Ascophyllum nodosum and Fucus vesiculosus for the management and prevention of MetS and related conditions, based on the available evidence obtained from clinical trials.


Asunto(s)
Ascophyllum/química , Fucus/química , Síndrome Metabólico/dietoterapia , Extractos Vegetales/uso terapéutico , Ensayos Clínicos como Asunto , Inhibidores de Glicósido Hidrolasas/uso terapéutico , Humanos , Síndrome Metabólico/epidemiología , Síndrome Metabólico/patología , Extractos Vegetales/química , Algas Marinas/química
2.
Molecules ; 26(8)2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33923841

RESUMEN

The response of a coeliac and a healthy gut microbiota to the green algae Chlorella pyrenoidosa was evaluated using an in vitro continuous, pH controlled, gut model system, which simulated the human colon. The effect of C. pyrenoidosa on the microbial structure was determined by 16S rRNA gene sequencing and inferred metagenomics, whereas the metabolic activitywas determined by1H-nuclear magnetic resonancespectroscopic analysis. The addition of C. pyrenoidosa significantly increased the abundance of the genera Prevotella, Ruminococcus and Faecalibacterium in the healthy donor, while an increase in Faecalibacterium, Bifidobacterium and Megasphaera and a decrease in Enterobacteriaceae were observed in the coeliac donor. C. pyrenoidosa also altered several microbial pathways including those involved in short-chain fatty acid (SCFA) production. At the metabolic level, a significant increase from baseline was seen in butyrate and propionate (p < 0.0001) in the healthy donor, especially in vessels 2 and 3. While acetate was significantly higher in the healthy donor at baseline in vessel 3 (p < 0.001) compared to the coeliac donor, this was markedly decreased after in vitro fermentation with C. pyrenoidosa. This is the first in vitro fermentation study of C. pyrenoidosa and human gut microbiota, however, further in vivo studies are needed to prove its efficacy.


Asunto(s)
Chlorella , Microbioma Gastrointestinal/fisiología , Enterobacteriaceae/clasificación , Enterobacteriaceae/genética , Fermentación/fisiología , ARN Ribosómico 16S
3.
Microb Cell Fact ; 19(1): 82, 2020 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-32245478

RESUMEN

BACKGROUND: Dietary lignans belong to the group of phytoestrogens together with coumestans, stilbenes and isoflavones, and themselves do not exhibit oestrogen-like properties. Nonetheless, the gut microbiota converts them into enterolignans, which show chemical similarity to the human oestrogen molecule. One of the richest dietary sources of lignans are oilseeds, including flaxseed. The aim of this pilot study was to determine the concentration of the main dietary lignans in an oilseed mix, and explore the gut microbiota-dependent production of enterolignans for oestrogen substitution in young and premenopausal women. The oilseed mix was fermented in a pH-controlled batch culture system inoculated with women's faecal samples. The lignan content and enterolignan production were measured by ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS), and the faecal-derived microbial communities were profiled by 16S rRNA gene-based next-generation sequencing. RESULTS: In vitro batch culture fermentation of faecal samples inoculated with oilseed mix for 24 h resulted in a substantial increase in enterolactone production in younger women and an increase in enterodiol in the premenopausal group. As for the gut microbiota, different baseline profiles were observed as well as different temporal dynamics, mainly related to Clostridiaceae, and Klebsiella and Collinsella spp. CONCLUSIONS: Despite the small sample size, our pilot study revealed that lignan-rich oilseeds could strongly influence the faecal microbiota of both younger and premenopausal females, leading to a different enterolignan profile being produced. Further studies in larger cohorts are needed to evaluate the long-term effects of lignan-rich diets on the gut microbiota and find out how enterolactone-producing bacterial species could be increased. Diets rich in lignans could potentially serve as a safe supplement of oestrogen analogues to meet the cellular needs of endogenous oestrogen and deliver numerous health benefits, provided that the premenopausal woman microbiota is capable of converting dietary precursors into enterolignans.


Asunto(s)
Microbioma Gastrointestinal/efectos de los fármacos , Lignanos/química , Aceites de Plantas/química , Estudios de Casos y Controles , Femenino , Humanos , Proyectos Piloto , Premenopausia
4.
Antibiotics (Basel) ; 9(12)2020 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-33261022

RESUMEN

Probiotics have been shown to bind to host receptors, which are important for pathogen adhesion and induce the host's production of defence factors. They can activate the goblet-cell-derived production of mucins, a major component of the mucus layer and a physical barrier participating in limiting the proximity of microorganisms to the epithelial layer. In the last decade, Bacillus spp. strains have gained interest in human and animal health due to their tolerance and stability under gastrointestinal tract conditions. Moreover, Bacillus spp. strains can also produce various antimicrobial peptides that can support their use as commercial probiotic supplements and functional foods. The present study aimed to evaluate and determine the ability of selected Bacillus spp. strains to inhibit the growth of enterotoxigenic Escherichia coli (ETEC) F4 and to reduce binding of ETEC F4 to HT29-16E (mucus-secreting and goblet-like) human intestinal cells. Moreover, mucus production in the HT29 cells in the presence of the Bacillus spp. strains was quantified by ELISA. Bacillus spp. strains (CHCC 15076, CHCC 15516, CHCC 15541, and CHCC 16872) significantly inhibited the growth of ETEC F4. Moreover, the ability of the probiotic Bacillus spp. strains to stimulate mucin release was highly strain dependent. The treatment with Bacillus subtilis CHCC 15541 resulted in a significant increase of both MUC2 and MUC3 in HT29-16E cells. Therefore, this strain could be an up-and-coming candidate for developing commercial probiotic supplements to prevent infections caused by ETEC F4 and, potentially, other pathogens.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA