Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochemistry ; 58(18): 2362-2372, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-30964996

RESUMEN

There is an increasing realization that structure-based drug design may show improved success by understanding the ensemble of conformations accessible to an enzyme and how the environment affects this ensemble. Human monoamine oxidase B (MAO-B) catalyzes the oxidation of amines and is inhibited for the treatment of both Parkinson's disease and depression. Despite its clinical importance, its catalytic mechanism remains unclear, and routes to drugging this target would be valuable. Evidence of a radical in either the transition state or the resting state of MAO-B is present throughout the literature and is suggested to be a flavin semiquinone, a tyrosyl radical, or both. Here we see evidence of a resting-state flavin semiquinone, via absorption redox studies and electron paramagnetic resonance, suggesting that the anionic semiquinone is biologically relevant. On the basis of enzyme kinetic studies, enzyme variants, and molecular dynamics simulations, we find evidence for the importance of the membrane environment in mediating the activity of MAO-B and that this mediation is related to the protein dynamics of MAO-B. Further, our MD simulations identify a hitherto undescribed entrance for substrate binding, membrane modulated substrate access, and indications for half-site reactivity: only one active site is accessible to binding at a time. Our study combines both experimental and computational evidence to illustrate the subtle interplay between enzyme activity and protein dynamics and the immediate membrane environment. Understanding key biomedical enzymes to this level of detail will be crucial to inform strategies (and binding sites) for rational drug design for these targets.


Asunto(s)
Membrana Celular/química , Flavina-Adenina Dinucleótido/análogos & derivados , Simulación de Dinámica Molecular , Monoaminooxidasa/química , Sitios de Unión , Dominio Catalítico , Membrana Celular/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Flavina-Adenina Dinucleótido/química , Flavina-Adenina Dinucleótido/metabolismo , Humanos , Cinética , Monoaminooxidasa/metabolismo , Oxidación-Reducción , Unión Proteica
2.
Microb Cell Fact ; 18(1): 105, 2019 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-31176369

RESUMEN

BACKGROUND: Geraniol, an acyclic monoterpene alcohol, is found as a primary constituent in the essential oils of plants such as geranium, lemongrass and rose. The floral-like scent of geraniol has made it a popular constituent of flavour and fragrance products. Over recent decades biotechnology has made significant progress towards the development of industrial platforms for the production of commercially valuable monoterpenoids, such as geraniol, through expression of recombinant terpene biosynthetic pathways in microbial hosts. Titres, however, have been hindered due to the inherent toxicity of these compounds-which are often utilised for anti-microbial and anti-fungal functions in their host plant. RESULTS: In this study we modified an Escherichia coli strain, engineered to express a heterologous mevalonate pathway, by replacement of the terpene synthase with a geraniol synthase from Ocimum basilicum for the production of geraniol, and co-expressed an alcohol acyltransferase (AAT) from Rosa hybrida for the specific acetylation of geraniol. The low water solubility of geranyl acetate facilitated its partition into the organic phase of a two-phase system, relieving the cellular toxicity attributed to the build-up of geraniol in the aqueous phase. In a partially optimised system this strain produced 4.8 g/L geranyl acetate (based on the aqueous volume) which, on a molar equivalent basis, represents the highest monoterpene titre achieved from microbial culture to date. It was also found that esterification of geraniol prevented bioconversion into other monoterpenoids, leading to a significant improvement in product specificity, with geranyl acetate being the sole product observed. CONCLUSION: In this study we have shown that it is possible to both overcome the toxicity limit impeding the production of the monoterpene alcohol geraniol and mitigate product loss in culture through endogenous metabolism by using an in vivo esterification strategy. This strategy has resulted in the highest geraniol (equivalent) titres achieved from a microbial host, and presents esterification as a viable approach to increasing the titres obtained in microbial monoterpenoid production.


Asunto(s)
Acetatos/metabolismo , Escherichia coli , Ingeniería Metabólica/métodos , Terpenos/metabolismo , Monoterpenos Acíclicos , Escherichia coli/genética , Escherichia coli/metabolismo , Esterificación , Ácido Mevalónico/metabolismo , Organismos Modificados Genéticamente
3.
Bioresour Technol ; 358: 127399, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35640812

RESUMEN

Enzyme combinations producing short-chain cello-oligosaccharides (COS) as major bio-products from cellulose of Miscanthus Mx2779 accessed through different pretreatment methods were compared. Over short hydrolysis times, processive endoglucanase TfCel9a produced a high percentage of cellotetraose and cellopentaose and is synergistic with endoglucanase CcCel9m for producing short oligomers from amorphous cellulose but had low activity on untreated Miscanthus. Hydrolysis of the latter improved when these were combined with a mutant cellobio/triohydrolase OsCelC7(-105) and a lytic polysaccharide monooxygenase TrCel61a, a combination which also produced the highest COS yields from phosphoric acid swollen cellulose. Steam explosion pretreatment of Miscanthus increased COS yields, with/without phosphoric acid swelling, while increased swelling time (from 20 to 45 min) also increased yields but decreased the need for TrCel61a. The highest COS yields (933 mg/g glucan) and most stable product profile were obtained using ionic liquid [C2mim][OAc] pretreatment and the three enzyme mixture TfCel9a, Cel9m and OsCel7a(-105).


Asunto(s)
Celulasa , Celulosa , Hidrólisis , Oligosacáridos , Poaceae
4.
PeerJ ; 7: e6971, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31304053

RESUMEN

Medium chain esters produced from fruits and flowering plants have a number of commercial applications including use as flavour and fragrance ingredients, biofuels, and in pharmaceutical formulations. These esters are typically made via the activity of an alcohol acyl transferase (AAT) enzyme which catalyses the condensation of an alcohol and an acyl-CoA. Developing a microbial platform for medium chain ester production using AAT activity presents several obstacles, including the low product specificity of these enzymes for the desired ester and/or low endogenous substrate availability. In this study, we engineered Escherichia coli for the production of butyl octanoate from endogenously produced octanoyl-CoA. This was achieved through rational protein engineering of an AAT enzyme from Actinidia chinensis for improved octanoyl-CoA substrate specificity and metabolic engineering of E. coli fatty acid metabolism for increased endogenous octanoyl-CoA availability. This resulted in accumulation of 3.3 + 0.1 mg/L butyl octanoate as the sole product from E. coli after 48 h. This study represents a preliminary examination of the feasibility of developing E. coli platforms for the synthesis single medium chain esters from endogenous fatty acids.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA