Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-30397057

RESUMEN

Tetrazole antifungals designed to target fungal lanosterol 14α-demethylase (LDM) appear to be effective against a range of fungal pathogens. In addition, a crystal structure of the catalytic domain of Candida albicans LDM in complex with the tetrazole VT-1161 has been obtained. We have addressed concern about artifacts that might arise from crystallizing VT-1161 with truncated recombinant CYP51s and measured the impact on VT-1161 susceptibility of genotypes known to confer azole resistance. A yeast system was used to overexpress recombinant full-length Saccharomyces cerevisiae LDM with a C-terminal hexahistidine tag (ScLDM6×His) for phenotypic analysis and crystallographic studies with VT-1161 or with the widely used triazole drug posaconazole (PCZ). We determined the effect of characterized mutations in LDM on VT-1161 activity and identified drug efflux pumps from fungi, including key fungal pathogens, that efflux VT-1161. The relevance of these yeast-based observations on drug efflux was verified using clinical isolates of C. albicans and Candida glabrata VT-1161 binding elicits a significant conformational difference between the full-length and truncated enzymes not found when posaconazole is bound. Susceptibility to VT-1161 is reduced by ATP-binding cassette (ABC) and major facilitator superfamily (MFS) drug efflux pumps, the overexpression of LDM, and mutations within the drug binding pocket of LDM that affect interaction with the tertiary alcohol of the drug.


Asunto(s)
Antifúngicos/metabolismo , Candida albicans/efectos de los fármacos , Candida glabrata/efectos de los fármacos , Farmacorresistencia Fúngica/efectos de los fármacos , Proteínas Fúngicas/química , Piridinas/metabolismo , Esterol 14-Desmetilasa/química , Tetrazoles/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Secuencia de Aminoácidos , Antifúngicos/química , Antifúngicos/farmacología , Candida albicans/enzimología , Candida albicans/genética , Candida albicans/crecimiento & desarrollo , Candida glabrata/enzimología , Candida glabrata/genética , Candida glabrata/crecimiento & desarrollo , Dominio Catalítico , Clonación Molecular , Cristalografía por Rayos X , Farmacorresistencia Fúngica/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Piridinas/química , Piridinas/farmacología , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Esterol 14-Desmetilasa/genética , Esterol 14-Desmetilasa/metabolismo , Especificidad por Sustrato , Tetrazoles/química , Tetrazoles/farmacología , Triazoles/química , Triazoles/metabolismo , Triazoles/farmacología
2.
FEMS Yeast Res ; 19(5)2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31291458

RESUMEN

Fungal infections are a major challenge to medicine and agriculture. Repeated and prophylactic use of antifungals can lead to pathogen cross-resistance to different classes of drugs. The early development of multidrug resistance in pathogenic fungi includes drug tolerance mediated by drug-dependent activation of drug efflux. In Saccharomyces cerevisiae and the fungal pathogen Candida glabrata, xenobiotic sensing motifs in transcription factors upregulate expression of several ATP-binding cassette (ABC) drug efflux pumps. We have therefore considered how drug candidates that trigger or prevent drug resistance could be identified and evaluated during drug discovery. We report a robust and sensitive, S. cerevisiae-based xenobiotic sensing system using the Pdr1 protein as a sensor and an attenuated version of the apoptotic murine BCL2-associated X (BAX) gene as a reporter. A molecular mechanism of attenuation that involves frameshift reversal may be associated with translation coupling and requires further investigation.


Asunto(s)
Apoptosis , Farmacorresistencia Fúngica Múltiple/genética , Genes Reporteros , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteína X Asociada a bcl-2/genética , Adenosina Trifosfato/metabolismo , Animales , Antifúngicos/farmacología , Candida glabrata/genética , Descubrimiento de Drogas , Sistema de Lectura Ribosómico , Proteínas de Transporte de Membrana/genética , Ratones , Xenobióticos
3.
Artículo en Inglés | MEDLINE | ID: mdl-29263059

RESUMEN

Fungal infections frequently affect immunodeficient individuals and are estimated to kill 1.35 million people per annum. Azole antifungals target the membrane-bound cytochrome P450 monooxygenase lanosterol 14α-demethylase (CYP51; Erg11p). Mutations in CYP51 can render the widely used triazole drugs less effective. The Candida albicans CYP51 mutation G464S and the double mutation Y132F G464S (Y140F and G464S by Saccharomyces cerevisiae numbering) as well as the CYP51A G54E/R/W mutations of Aspergillus fumigatus (G73E/R/W by S. cerevisiae numbering) have been reproduced in a recombinant C-terminal hexahistidine-tagged version of S. cerevisiae CYP51 (ScErg11p6×His). Phenotypes and X-ray crystal structures were determined for the mutant enzymes. Liquid microdilution assays showed that the G464S mutation in ScErg11p6×His conferred no difference in the susceptibility of yeast to triazole drugs but in combination with the Y140F mutation gave a 4-fold reduction in susceptibility to the short-tailed triazole fluconazole. The ScErg11p6×His Y140F G464S mutant was unstable during purification and was not crystallized. The ScErg11p6×His G73E/R/W mutations conferred increased susceptibly to all triazoles tested in liquid microdilution assays. High-resolution X-ray crystal structures reveal two different conformations of the ligand itraconazole, including a previously unseen conformation, as well as interactions between the tail of this triazole and the E/W73 residue. This study shows that S. cerevisiae CYP51 adequately represents some but not all mutations in CYP51s of pathogenic fungi. Insight into the molecular mechanisms of resistance mutations in CYP51 will assist the development of inhibitors that will overcome antifungal resistance.


Asunto(s)
Antifúngicos/química , Aspergillus fumigatus/genética , Candida albicans/genética , Farmacorresistencia Fúngica/genética , Proteínas Fúngicas/genética , Saccharomyces cerevisiae/genética , Esterol 14-Desmetilasa/genética , Antifúngicos/metabolismo , Antifúngicos/farmacología , Aspergillus fumigatus/enzimología , Candida albicans/enzimología , Dominio Catalítico , Clonación Molecular , Cristalografía por Rayos X , Fluconazol/química , Fluconazol/metabolismo , Fluconazol/farmacología , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Histidina/genética , Histidina/metabolismo , Itraconazol/química , Itraconazol/metabolismo , Itraconazol/farmacología , Cinética , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Mutación , Oligopéptidos/genética , Oligopéptidos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/enzimología , Esterol 14-Desmetilasa/química , Esterol 14-Desmetilasa/metabolismo , Especificidad por Sustrato
4.
Artículo en Inglés | MEDLINE | ID: mdl-30126959

RESUMEN

Targeting lanosterol 14α-demethylase (LDM) with azole drugs provides prophylaxis and treatments for superficial and disseminated fungal infections, but cure rates are modest for immunocompromised patients and individuals with comorbidities. The efficacy of azole drugs has also been reduced due to the emergence of drug-resistant fungal pathogens. We have addressed these problems by expressing in Saccharomyces cerevisiae functional, hexahistidine-tagged, full-length Candida albicans LDM (CaLDM6×His) and Candida glabrata LDM (CgLDM6×His) for drug discovery purposes and determining their X-ray crystal structures. Compared with S. cerevisiae overexpressing LDM6×His (ScLDM6×His), the reduced susceptibility of CgLDM6×His to all azole drugs tested correlated with its level of overexpression. In contrast, the reduced susceptibility to short-tailed (fluconazole and voriconazole) but not medium-tailed (VT-1161) or long-tailed azoles (itraconazole and posaconazole) indicates CaLDM6×His works best when coexpressed with its cognate NADPH-cytochrome P450 reductase (CaNcp1A) rather than the host reductase (ScNcp1). Overexpression of LDM or Ncp1 modified the ergosterol content of yeast and affected growth inhibition by the polyene antibiotic amphotericin B. Affinity-purified recombinant Candida LDMs bind carbon monoxide and show tight type II binding of a range of azole drugs, including itraconazole, posaconazole, fluconazole, and voriconazole. This study provides a practical basis for the phenotype-, biochemistry-, and structure-directed discovery of novel antifungals that target LDMs of fungal pathogens.


Asunto(s)
Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Candida glabrata/efectos de los fármacos , Lanosterol/metabolismo , Esterol 14-Desmetilasa/metabolismo , Anfotericina B/farmacología , Azoles/farmacología , Farmacorresistencia Fúngica/efectos de los fármacos , Ergosterol/farmacología , Fluconazol/farmacología , Proteínas Fúngicas/metabolismo , Humanos , Itraconazol/farmacología , Pruebas de Sensibilidad Microbiana/métodos , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Triazoles/farmacología , Voriconazol/farmacología
5.
Artículo en Inglés | MEDLINE | ID: mdl-30126961

RESUMEN

Targeting lanosterol 14α-demethylase (LDM) with azole drugs provides prophylaxis and treatments for superficial and disseminated fungal infections, but cure rates are not optimal for immunocompromised patients and individuals with comorbidities. The efficacy of azole drugs has also been reduced due to the emergence of drug-resistant fungal pathogens. We have addressed the need to improve the potency, spectrum, and specificity for azoles by expressing in Saccharomyces cerevisiae functional, recombinant, hexahistidine-tagged, full-length Candida albicans LDM (CaLDM6×His) and Candida glabrata LDM (CgLDM6×His) and determining their X-ray crystal structures. The crystal structures of CaLDM6×His, CgLDM6×His, and ScLDM6×His have the same fold and bind itraconazole in nearly identical conformations. The catalytic domains of the full-length LDMs have the same fold as the CaLDM6×His catalytic domain in complex with posaconazole, with minor structural differences within the ligand binding pocket. Our structures give insight into the LDM reaction mechanism and phenotypes of single-site CaLDM mutations. This study provides a practical basis for the structure-directed discovery of novel antifungals that target LDMs of fungal pathogens.


Asunto(s)
Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Candida glabrata/efectos de los fármacos , Lanosterol/metabolismo , Esterol 14-Desmetilasa/metabolismo , Azoles/farmacología , Candida albicans/metabolismo , Candida glabrata/metabolismo , Dominio Catalítico/efectos de los fármacos , Fluconazol/farmacología , Proteínas Fúngicas/metabolismo , Humanos , Itraconazol/farmacología , Pruebas de Sensibilidad Microbiana/métodos , Unión Proteica/efectos de los fármacos , Saccharomyces cerevisiae/efectos de los fármacos , Triazoles/farmacología
6.
Proc Natl Acad Sci U S A ; 111(10): 3865-70, 2014 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-24613931

RESUMEN

Bitopic integral membrane proteins with a single transmembrane helix play diverse roles in catalysis, cell signaling, and morphogenesis. Complete monospanning protein structures are needed to show how interaction between the transmembrane helix and catalytic domain might influence association with the membrane and function. We report crystal structures of full-length Saccharomyces cerevisiae lanosterol 14α-demethylase, a membrane monospanning cytochrome P450 of the CYP51 family that catalyzes the first postcyclization step in ergosterol biosynthesis and is inhibited by triazole drugs. The structures reveal a well-ordered N-terminal amphipathic helix preceding a putative transmembrane helix that would constrain the catalytic domain orientation to lie partly in the lipid bilayer. The structures locate the substrate lanosterol, identify putative substrate and product channels, and reveal constrained interactions with triazole antifungal drugs that are important for drug design and understanding drug resistance.


Asunto(s)
Dominio Catalítico/genética , Sistema Enzimático del Citocromo P-450/química , Membrana Dobles de Lípidos/metabolismo , Modelos Moleculares , Conformación Proteica , Proteínas de Saccharomyces cerevisiae/química , Cromatografía de Afinidad , Cromatografía en Gel , Cristalización
7.
Antimicrob Agents Chemother ; 59(8): 4982-9, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26055382

RESUMEN

Infections by fungal pathogens such as Candida albicans and Aspergillus fumigatus and their resistance to triazole drugs are major concerns. Fungal lanosterol 14α-demethylase belongs to the CYP51 class in the cytochrome P450 superfamily of enzymes. This monospanning bitopic membrane protein is involved in ergosterol biosynthesis and is the primary target of azole antifungal drugs, including fluconazole. The lack of high-resolution structural information for this drug target from fungal pathogens has been a limiting factor for the design of modified triazole drugs that will overcome resistance. Here we report the X-ray structure of full-length Saccharomyces cerevisiae lanosterol 14α-demethylase in complex with fluconazole at a resolution of 2.05 Å. This structure shows the key interactions involved in fluconazole binding and provides insight into resistance mechanisms by revealing a water-mediated hydrogen bonding network between the drug and tyrosine 140, a residue frequently found mutated to histidine or phenylalanine in resistant clinical isolates.


Asunto(s)
Antifúngicos/química , Antifúngicos/farmacología , Lanosterol/química , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/enzimología , Esterol 14-Desmetilasa/química , Aspergillus fumigatus/efectos de los fármacos , Azoles/química , Azoles/farmacología , Candida albicans/efectos de los fármacos , Cristalografía por Rayos X/métodos , Farmacorresistencia Fúngica Múltiple , Fluconazol , Enlace de Hidrógeno , Triazoles/química , Triazoles/farmacología
8.
Mol Pharm ; 11(10): 3452-62, 2014 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-25115303

RESUMEN

ABCB5, an ATP-binding cassette (ABC) transporter, is highly expressed in melanoma cells, and may contribute to the extreme resistance of melanomas to chemotherapy by efflux of anti-cancer drugs. Our goal was to determine whether we could functionally express human ABCB5 in the model yeast Saccharomyces cerevisiae, in order to demonstrate an efflux function for ABCB5 in the absence of background pump activity from other human transporters. Heterologous expression would also facilitate drug discovery for this important target. DNAs encoding ABCB5 sequences were cloned into the chromosomal PDR5 locus of a S. cerevisiae strain in which seven endogenous ABC transporters have been deleted. Protein expression in the yeast cells was monitored by immunodetection using both a specific anti-ABCB5 antibody and a cross-reactive anti-ABCB1 antibody. ABCB5 function in recombinant yeast cells was measured by determining whether the cells possessed increased resistance to known pump substrates, compared to the host yeast strain, in assays of yeast growth. Three ABCB5 constructs were made in yeast. One was derived from the ABCB5-ß mRNA, which is highly expressed in human tissues but is a truncation of a canonical full-size ABC transporter. Two constructs contained full-length ABCB5 sequences: either a native sequence from cDNA or a synthetic sequence codon-harmonized for S. cerevisiae. Expression of all three constructs in yeast was confirmed by immunodetection. Expression of the codon-harmonized full-length ABCB5 DNA conferred increased resistance, relative to the host yeast strain, to the putative substrates rhodamine 123, daunorubicin, tetramethylrhodamine, FK506, or clorgyline. We conclude that full-length ABCB5 can be functionally expressed in S. cerevisiae and confers drug resistance.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Melanoma/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Clorgilina/farmacología , Daunorrubicina/farmacología , Humanos , Rodamina 123/farmacología , Rodaminas/farmacología , Saccharomyces cerevisiae/genética , Tacrolimus/farmacología
9.
bioRxiv ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38854035

RESUMEN

Fungal plasma membrane proteins represent key therapeutic targets for antifungal agents, yet their structure and spatial distribution in the native context remain poorly characterized. Herein, we employ an integrative multimodal approach to elucidate the structural and functional organization of plasma membrane protein complexes in Candida glabrata , focusing on prominent and essential membrane proteins, the polysaccharide synthase ß-(1,3)-glucan synthase (GS) and the proton pump Pma1. Cryo-electron tomography (cryo-ET) and live cell imaging reveal that GS and Pma1 are heterogeneously distributed into distinct plasma membrane microdomains. Treatment with caspofungin, an echinocandin antifungal that targets GS, alters the plasma membrane and disrupts the native distribution of GS and Pma1. Based on these findings, we propose a model for echinocandin action that considers how drug interactions with the plasma membrane environment lead to inhibition of GS. Our work underscores the importance of interrogating the structural and dynamic characteristics of fungal plasma membrane proteins in situ to understand function and facilitate precisely targeted development of novel antifungal therapies.

10.
FEMS Yeast Res ; 13(3): 302-11, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23374681

RESUMEN

Candida albicans is a major cause of opportunistic and life-threatening systemic fungal infections, especially in the immunocompromised. The plasma membrane proton-pumping ATPase (Pma1p) is an essential enzyme that generates the electrochemical gradient required for cell growth. We expressed C. albicans Pma1p (CaPma1p) in Saccharomyces cerevisiae to facilitate screening for inhibitors. Replacement of S. cerevisiae PMA1 with C. albicans PMA1 gave clones expressing CaPma1p that grew slowly at low pH. CaPma1p was expressed at significantly lower levels and had lower specific activity than the native Pma1p. It also conferred pH sensitivity, hygromycin B resistance, and low levels of glucose-dependent proton pumping. Recombination between CaPMA1 and the homologous nonessential ScPMA2 resulted in chimeric suppressor mutants that expressed functional CaPma1p with improved H(+) -ATPase activity and growth rates at low pH. Molecular models of suppressor mutants identified specific amino acids (between 531 and 595 in CaPma1p) that may affect regulation of the activity of Pma1p oligomers in S. cerevisiae. A modified CaPma1p chimeric construct containing only 5 amino acids from ScPma2p enabled the expression of a fully functional enzyme for drug screens and structural resolution.


Asunto(s)
Candida albicans/enzimología , Expresión Génica , ATPasas de Translocación de Protón/genética , ATPasas de Translocación de Protón/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Candida albicans/genética , Medios de Cultivo/química , Evaluación Preclínica de Medicamentos/métodos , Inhibidores Enzimáticos/aislamiento & purificación , Concentración de Iones de Hidrógeno , Modelos Moleculares , Conformación Proteica , ATPasas de Translocación de Protón/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Recombinación Genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Supresión Genética
11.
J Fungi (Basel) ; 9(2)2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36836283

RESUMEN

Candida auris infections are difficult to treat due to acquired drug resistance against one or multiple antifungal drug classes. The most prominent resistance mechanisms in C. auris are overexpression and point mutations in Erg11, and the overexpression of efflux pump genes CDR1 and MDR1. We report the establishment of a novel platform for molecular analysis and drug screening based on acquired azole-resistance mechanisms found in C. auris. Constitutive functional overexpression of wild-type C. auris Erg11, Erg11 with amino acid substitutions Y132F or K143R and the recombinant efflux pumps Cdr1 and Mdr1 has been achieved in Saccharomyces cerevisiae. Phenotypes were evaluated for standard azoles and the tetrazole VT-1161. Overexpression of CauErg11 Y132F, CauErg11 K143R, and CauMdr1 conferred resistance exclusively to the short-tailed azoles Fluconazole and Voriconazole. Strains overexpressing the Cdr1 protein were pan-azole resistant. While CauErg11 Y132F increased VT-1161 resistance, K143R had no impact. Type II binding spectra showed tight azole binding to the affinity-purified recombinant CauErg11 protein. The Nile Red assay confirmed the efflux functions of CauMdr1 and CauCdr1, which were specifically inhibited by MCC1189 and Beauvericin, respectively. CauCdr1 exhibited ATPase activity that was inhibited by Oligomycin. The S. cerevisiae overexpression platform enables evaluation of the interaction of existing and novel azole drugs with their primary target CauErg11 and their susceptibility to drug efflux.

12.
J Fungi (Basel) ; 9(6)2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37367600

RESUMEN

Concern about the global emergence of multidrug-resistant fungal pathogens led us to explore the use of combination therapy to combat azole resistance in Candida auris. Clorgyline had previously been shown to be a multi-target inhibitor of Cdr1 and Mdr1 efflux pumps of Candida albicans and Candida glabrata. A screen for antifungal sensitizers among synthetic analogs of Clorgyline detected interactions with the C. auris efflux pump azole substrates Posaconazole and Voriconazole. Of six Clorgyline analogs, M19 and M25 were identified as potential sensitizers of azole resistance. M19 and M25 were found to act synergistically with azoles against resistant C. auris clade I isolates and recombinant Saccharomyces cerevisiae strains overexpressing C. auris efflux pumps. Nile Red assays with the recombinant strains showed M19 and M25 inhibited the activity of Cdr1 and Mdr1 efflux pumps that are known to play key roles in azole resistance in C. auris clades I, III, and IV. While Clorgyline, M19 and M25 uncoupled the Oligomycin-sensitive ATPase activity of Cdr1 from C. albicans and C. auris, their mode of action is yet to be fully elucidated. The experimental combinations described herein provides a starting point to combat azole resistance dominated by overexpression of CauCdr1 in C. auris clades I and IV and CauMdr1 in C. auris clade III.

13.
Antimicrob Agents Chemother ; 56(3): 1508-15, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22203607

RESUMEN

Resistance to the commonly used azole antifungal fluconazole (FLC) can develop due to overexpression of ATP-binding cassette (ABC) and major facilitator superfamily (MFS) plasma membrane transporters. An approach to overcoming this resistance is to identify inhibitors of these efflux pumps. We have developed a pump assay suitable for high-throughput screening (HTS) that uses recombinant Saccharomyces cerevisiae strains hyperexpressing individual transporters from the opportunistic fungal pathogen Candida albicans. The recombinant strains possess greater resistance to azoles and other pump substrates than the parental host strain. A flow cytometry-based HTS, which measured increased intracellular retention of the fluorescent pump substrate rhodamine 6G (R6G) within yeast cells, was used to screen the Prestwick Chemical Library (PCL) of 1,200 marketed drugs. Nine compounds were identified as hits, and the monoamine oxidase A inhibitor (MAOI) clorgyline was identified as an inhibitor of two C. albicans ABC efflux pumps, CaCdr1p and CaCdr2p. Secondary in vitro assays confirmed inhibition of pump-mediated efflux by clorgyline. Clorgyline also reversed the FLC resistance of S. cerevisiae strains expressing other individual fungal ABC transporters (Candida glabrata Cdr1p or Candida krusei Abc1p) or the C. albicans MFS transporter Mdr1p. Recombinant strains were also chemosensitized by clorgyline to other azoles (itraconazole and miconazole). Importantly, clorgyline showed synergy with FLC against FLC-resistant C. albicans clinical isolates and a C. glabrata strain and inhibited R6G efflux from a FLC-resistant C. albicans clinical isolate. Clorgyline is a novel broad-spectrum inhibitor of two classes of fungal efflux pumps that acts synergistically with azoles against azole-resistant C. albicans and C. glabrata strains.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/antagonistas & inhibidores , Antifúngicos/farmacología , Candida albicans/genética , Candida glabrata/genética , Clorgilina/farmacología , Inhibidores de la Monoaminooxidasa/farmacología , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Transporte Biológico , Candida albicans/enzimología , Candida albicans/aislamiento & purificación , Candida glabrata/enzimología , Candida glabrata/aislamiento & purificación , Farmacorresistencia Fúngica , Sinergismo Farmacológico , Citometría de Flujo , Fluconazol/farmacología , Colorantes Fluorescentes , Expresión Génica , Ensayos Analíticos de Alto Rendimiento , Humanos , Pruebas de Sensibilidad Microbiana , Monoaminooxidasa/genética , Monoaminooxidasa/metabolismo , Organismos Modificados Genéticamente , Rodaminas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Bibliotecas de Moléculas Pequeñas
14.
J Fungi (Basel) ; 8(12)2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36547589

RESUMEN

Cryptococcus remains a leading cause of invasive fungal infections in immunocompromised people. Resistance to azole drugs has imposed a further challenge to the effective treatment of such infections. In this study, the functional expression of full-length hexahistidine-tagged Cryptococcus neoformans CYP51 (CnCYP51-6×His), with or without its cognate hexahistidine-tagged NADPH-cytochrome P450 reductase (CnCPR-6×His), in a Saccharomyces cerevisiae host system has been used to characterise these enzymes. The heterologous expression of CnCYP51-6×His complemented deletion of the host CYP51 and conferred increased susceptibility to both short-tailed and long-tailed azole drugs. In addition, co-expression of CnCPR-6×His decreased susceptibility 2- to 4-fold for short-tailed but not long-tailed azoles. Type 2 binding of azoles to CnCYP51-6×His and assay of NADPH cytochrome P450 reductase activity confirmed that the heterologously expressed CnCYP51 and CnCPR are functional. The constructs have potential as screening tools and use in structure-directed antifungal discovery.

15.
J Fungi (Basel) ; 8(1)2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-35050009

RESUMEN

The fungal cytochrome P450 lanosterol 14α-demethylase (CYP51) is required for the biosynthesis of fungal-specific ergosterol and is the target of azole antifungal drugs. Despite proven success as a clinical target for azole antifungals, there is an urgent need to develop next-generation antifungals that target CYP51 to overcome the resistance of pathogenic fungi to existing azole drugs, toxic adverse reactions and drug interactions due to human drug-metabolizing CYPs. Candida parapsilosis is a readily transmitted opportunistic fungal pathogen that causes candidiasis in health care environments. In this study, we have characterised wild type C. parapsilosis CYP51 and its clinically significant, resistance-causing point mutation Y132F by expressing these enzymes in a Saccharomyces cerevisiae host system. In some cases, the enzymes were co-expressed with their cognate NADPH-cytochrome P450 reductase (CPR). Constitutive expression of CpCYP51 Y132F conferred a 10- to 12-fold resistance to fluconazole and voriconazole, reduced to ~6-fold resistance for the tetrazoles VT-1161 and VT-1129, but did not confer resistance to the long-tailed triazoles. Susceptibilities were unchanged in the case of CpCPR co-expression. Type II binding spectra showed tight triazole and tetrazole binding by affinity-purified recombinant CpCYP51. We report the X-ray crystal structure of ScCYP51 in complex with VT-1129 obtained at a resolution of 2.1 Å. Structural analysis of azole-enzyme interactions and functional studies of recombinant CYP51 from C. parapsilosis have improved understanding of their susceptibility to azole drugs and will help advance structure-directed antifungal discovery.

16.
Clin Microbiol Rev ; 22(2): 291-321, Table of Contents, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19366916

RESUMEN

Fungi cause serious infections in the immunocompromised and debilitated, and the incidence of invasive mycoses has increased significantly over the last 3 decades. Slow diagnosis and the relatively few classes of antifungal drugs result in high attributable mortality for systemic fungal infections. Azole antifungals are commonly used for fungal infections, but azole resistance can be a problem for some patient groups. High-level, clinically significant azole resistance usually involves overexpression of plasma membrane efflux pumps belonging to the ATP-binding cassette (ABC) or the major facilitator superfamily class of transporters. The heterologous expression of efflux pumps in model systems, such Saccharomyces cerevisiae, has enabled the functional analysis of efflux pumps from a variety of fungi. Phylogenetic analysis of the ABC pleiotropic drug resistance family has provided a new view of the evolution of this important class of efflux pumps. There are several ways in which the clinical significance of efflux-mediated antifungal drug resistance can be mitigated. Alternative antifungal drugs, such as the echinocandins, that are not efflux pump substrates provide one option. Potential therapeutic approaches that could overcome azole resistance include targeting efflux pump transcriptional regulators and fungal stress response pathways, blockade of energy supply, and direct inhibition of efflux pumps.


Asunto(s)
Antifúngicos/metabolismo , Antifúngicos/farmacología , Farmacorresistencia Fúngica/fisiología , Hongos/efectos de los fármacos , Hongos/metabolismo , Micosis , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hongos/genética , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Micosis/diagnóstico , Micosis/tratamiento farmacológico , Micosis/microbiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
17.
J Fungi (Basel) ; 7(2)2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33498194

RESUMEN

Antifungal drugs and antifungal agrochemicals have significant limitations. These include several unintended consequences of their use including the growing importance of intrinsic and acquired resistance. These problems underpin an increasingly urgent need to improve the existing classes of antifungals and to discover novel antifungals. Structural insights into drug targets and their complexes with both substrates and inhibitory ligands increase opportunity for the discovery of more effective antifungals. Implementation of this promise, which requires multiple skill sets, is beginning to yield candidates from discovery programs that could more quickly find their place in the clinic. This review will describe how structural biology is providing information for the improvement and discovery of inhibitors targeting the essential fungal enzyme sterol 14α-demethylase.

19.
J Fungi (Basel) ; 7(11)2021 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-34829185

RESUMEN

Target-based azole resistance in Candida albicans involves overexpression of the ERG11 gene encoding lanosterol 14α-demethylase (LDM), and/or the presence of single or multiple mutations in this enzyme. Overexpression of Candida albicans LDM (CaLDM) Y132H I471T by the Darlington strain strongly increased resistance to the short-tailed azoles fluconazole and voriconazole, and weakly increased resistance to the longer-tailed azoles VT-1161, itraconazole and posaconazole. We have used, as surrogates, structurally aligned mutations in recombinant hexahistidine-tagged full-length Saccharomyces cerevisiae LDM6×His (ScLDM6×His) to elucidate how differential susceptibility to azole drugs is conferred by LDM of the C. albicans Darlington strain. The mutations Y140H and I471T were introduced, either alone or in combination, into ScLDM6×His via overexpression of the recombinant enzyme from the PDR5 locus of an azole hypersensitive strain of S. cerevisiae. Phenotypes and high-resolution X-ray crystal structures were determined for the surrogate enzymes in complex with representative short-tailed (voriconazole) and long-tailed (itraconazole) triazoles. The preferential high-level resistance to short-tailed azoles conferred by the ScLDM Y140H I471T mutant required both mutations, despite the I471T mutation conferring only a slight increase in resistance. Crystal structures did not detect changes in the position/tilt of the heme co-factor of wild-type ScLDM, I471T and Y140H single mutants, or the Y140H I471T double-mutant. The mutant threonine sidechain in the Darlington strain CaLDM perturbs the environment of the neighboring C-helix, affects the electronic environment of the heme, and may, via differences in closure of the neck of the substrate entry channel, increase preferential competition between lanosterol and short-tailed azole drugs.

20.
Biochim Biophys Acta Proteins Proteom ; 1868(3): 140206, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-30851431

RESUMEN

The cytochrome P450 enzyme lanosterol 14α-demethylase (LDM) is the target of the azole antifungals used widely in medicine and agriculture as prophylaxis or treatments of infections or diseases caused by fungal pathogens. These drugs and agrochemicals contain an imidazole, triazole or tetrazole substituent, with one of the nitrogens in the azole ring coordinating as the sixth axial ligand to the LDM heme iron. Structural studies show that this membrane bound enzyme contains a relatively rigid ligand binding pocket comprised of a deeply buried heme-containing active site together with a substrate entry channel and putative product exit channel that reach to the membrane. Within the ligand binding pocket the azole antifungals have additional affinity determining interactions with hydrophobic side-chains, the polypeptide backbone and via water-mediated hydrogen bond networks. This review will describe the tools that can be used to identify and characterise the next generation of antifungals targeting LDM, with the goal of obtaining highly potent broad-spectrum fungicides that will be able to avoid target and drug efflux mediated antifungal resistance.


Asunto(s)
Inhibidores de 14 alfa Desmetilasa/farmacología , Antifúngicos/farmacología , Esterol 14-Desmetilasa/química , Inhibidores de 14 alfa Desmetilasa/química , Inhibidores de 14 alfa Desmetilasa/economía , Inhibidores de 14 alfa Desmetilasa/uso terapéutico , Agroquímicos/química , Animales , Antifúngicos/química , Antifúngicos/economía , Antifúngicos/uso terapéutico , Azoles/química , Azoles/economía , Azoles/farmacología , Azoles/uso terapéutico , Descubrimiento de Drogas , Ecosistema , Abastecimiento de Alimentos , Humanos , Ratones , Micosis/tratamiento farmacológico , Esterol 14-Desmetilasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA