RESUMEN
BACKGROUND: Properly understanding the origin and progression of the thoracic aortic aneurysm (TAA) can help prevent its growth and rupture. For a better understanding of this pathogenesis, the aortic blood flow has to be studied and interpreted in great detail. We can obtain detailed aortic blood flow information using magnetic resonance imaging (MRI) based computational fluid dynamics (CFD) with a prescribed motion of the aortic wall. METHODS: We performed two different types of simulations-static (rigid wall) and dynamic (moving wall) for healthy control and a patient with a TAA. For the latter, we have developed a novel morphing approach based on the radial basis function (RBF) interpolation of the segmented 4D-flow MRI geometries at different time instants. Additionally, we have applied reconstructed 4D-flow MRI velocity profiles at the inlet with an automatic registration protocol. RESULTS: The simulated RBF-based movement of the aorta matched well with the original 4D-flow MRI geometries. The wall movement was most dominant in the ascending aorta, accompanied by the highest variation of the blood flow patterns. The resulting data indicated significant differences between the dynamic and static simulations, with a relative difference for the patient of 7.47±14.18% in time-averaged wall shear stress and 15.97±43.32% in the oscillatory shear index (for the whole domain). CONCLUSIONS: In conclusion, the RBF-based morphing approach proved to be numerically accurate and computationally efficient in capturing complex kinematics of the aorta, as validated by 4D-flow MRI. We recommend this approach for future use in MRI-based CFD simulations in broad population studies. Performing these would bring a better understanding of the onset and growth of TAA.
Asunto(s)
Aorta , Simulación por Computador , Hidrodinámica , Imagen por Resonancia Magnética , Humanos , Aorta/diagnóstico por imagen , Aorta/fisiología , Modelos Cardiovasculares , Hemodinámica , Velocidad del Flujo Sanguíneo , Procesamiento de Imagen Asistido por Computador/métodos , Estrés Mecánico , Aneurisma de la Aorta Torácica/diagnóstico por imagen , Aneurisma de la Aorta Torácica/fisiopatologíaRESUMEN
PURPOSE: To assess errors associated with EPI-accelerated intracardiac 4D flow MRI (4DEPI) with EPI factor 5, compared with non-EPI gradient echo (4DGRE). METHODS: Three 3T MRI experiments were performed comparing 4DEPI to 4DGRE: steady flow through straight tubes, pulsatile flow in a left-ventricle phantom, and intracardiac flow in 10 healthy volunteers. For each experiment, 4DEPI was repeated with readout and blip phase-encoding gradient in different orientations, parallel or perpendicular to the flow direction. In vitro flow rates were compared with timed volumetric collection. In the left-ventricle phantom and in vivo, voxel-based speed and spatio-temporal median speed were compared between sequences, as well as mitral and aortic transvalvular net forward volume. RESULTS: In steady-flow phantoms, the flow rate error was largest (12%) for high velocity (>2 m/s) with 4DEPI readout gradient parallel to the flow. Voxel-based speed and median speed in the left-ventricle phantom were ≤5.5% different between sequences. In vivo, mean net forward volume inconsistency was largest (6.4 ± 8.5%) for 4DEPI with nonblip phase-encoding gradient parallel to the main flow. The difference in median speed for 4DEPI versus 4DGRE was largest (9%) when the 4DEPI readout gradient was parallel to the flow. CONCLUSIONS: Velocity and flow rate are inaccurate for 4DEPI with EPI factor 5 when flow is parallel to the readout or blip phase-encoding gradient. However, mean differences in flow rate, voxel-based speed, and spatio-temporal median speed were acceptable (≤10%) when comparing 4DEPI to 4DGRE for intracardiac flow in healthy volunteers.
Asunto(s)
Imagen Eco-Planar , Imagenología Tridimensional , Velocidad del Flujo Sanguíneo , Corazón/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Fantasmas de ImagenRESUMEN
More than 96% of steel in the world is produced via the method of continuous casting. The flow condition in the mould, where the initial solidification occurs, has a significant impact on the quality of steel products. It is important to have timely, and perhaps automated, control of the flow during casting. This work presents a new concept of using contactless inductive flow tomography (CIFT) as a sensor for a novel controller, which alters the strength of an electromagnetic brake (EMBr) of ruler type based on the reconstructed flow structure in the mould. The method was developed for the small-scale Liquid Metal Model for Continuous Casting (mini-LIMMCAST) facility available at the Helmholtz-Zentrum Dresden-Rossendorf. As an example of an undesired flow condition, clogging of the submerged entry nozzle (SEN) was modelled by partly closing one of the side ports of the SEN; in combination with an active EMBr, the jet penetrates deeper into the mould than when the EMBr is switched off. Corresponding flow patterns are detected by extracting the impingement position of the jets at the narrow faces of the mould from the CIFT reconstruction. The controller is designed to detect to undesired flow condition and switch off the EMBr. The temporal resolution of CIFT is 0.5 s.
RESUMEN
In this study, we analyzed turbulent flows through a phantom (a 180[Formula: see text] bend with narrowing) at peak systole and a patient-specific coarctation of the aorta (CoA), with a pulsating flow, using magnetic resonance imaging (MRI) and computational fluid dynamics (CFD). For MRI, a 4D-flow MRI is performed using a 3T scanner. For CFD, the standard [Formula: see text], shear stress transport [Formula: see text], and Reynolds stress (RSM) models are applied. A good agreement between measured and simulated velocity is obtained for the phantom, especially for CFD with RSM. The wall shear stress (WSS) shows significant differences between CFD and MRI in absolute values, due to the limited near-wall resolution of MRI. However, normalized WSS shows qualitatively very similar distributions of the local values between MRI and CFD. Finally, a direct comparison between in vivo 4D-flow MRI and CFD with the RSM turbulence model is performed in the CoA. MRI can properly identify regions with locally elevated or suppressed WSS. If the exact values of the WSS are necessary, CFD is the preferred method. For future applications, we recommend the use of the combined MRI/CFD method for analysis and evaluation of the local flow patterns and WSS in the aorta.
Asunto(s)
Coartación Aórtica , Coartación Aórtica/diagnóstico por imagen , Velocidad del Flujo Sanguíneo , Hemodinámica , Humanos , Hidrodinámica , Imagen por Resonancia Magnética , Modelos Cardiovasculares , Estrés MecánicoRESUMEN
Numerous studies in the literature have proposed the use of thermo-responsive hydrogels for filling cavities after tumor resection. However, optimizing the injection process is challenging due to the complex interplay of various multi-physics phenomena, such as the coupling of flow and heat transfer, multi-phase interactions, and phase-change dynamics. Therefore, gaining a fundamental understanding of these processes is crucial. In this study, we introduce a thermo-sensitive hydrogel formulated with poloxamer 407 and Gellan gum as a promising filling agent, offering an ideal phase-transition temperature along with suitable elastic and viscous modulus properties. We performed multi-physics simulations to predict the flow and temperature distributions during hydrogel injection. The results suggested that the hydrogel should be kept at 4 °C and injected within 90 s to avoid reaching the transition temperature. Cavity filling simulations indicated a symmetric distribution of the hydrogel, with minimal influence from the syringe's position. The temperature gradient at the cavity edge delays gelation during injection, which is essential to guarantee its administration as a liquid. The hydrogel's viscosity follows a sigmoidal function relative to temperature, taking five minutes to reach its maximum value. In summary, the multi-physics simulations carried out in this study confirm the potential of thermo-responsive hydrogels for use in post-tumor surgery treatment and define the conditions for a proper administration. Furthermore, the proposed model can be widely applied to other thermo-responsive hydrogels or under different conditions.
RESUMEN
BACKGROUND: Kidney disease is the most important predictor of death in patients with a Fontan circulation, yet its clinical and hemodynamic correlates have not been well established. METHODS AND RESULTS: A total of 53 ambulatory patients with a Fontan circulation (median age, 16.2 years, 52.8% male patients) underwent advanced cardiovascular magnetic resonance assessment, including 4-dimensional flow imaging and computational fluid dynamics. Estimated glomerular filtration rate (eGFR) <90 mL/min per 1.73 m2 was observed in 20.8% and albumin-to-creatinine ratio >3 mg/mmol in 39.6%. The average eGFR decline rate was -1.83 mL/min per 1.73 m2 per year (95% CI, -2.67 to -0.99; P<0.001). Lower eGFR was associated with older age, larger body surface area at examination, longer time since Fontan procedure, and lower systemic ventricular ejection fraction. Higher albumin-to-creatinine ratio was associated with absence of fenestration at the Fontan operation, and older age and lower systemic ventricular ejection fraction at the assessment. Lower cross-sectional area of the Fontan conduit indexed to flow (r=0.32, P=0.038), higher inferior vena cava-conduit velocity mismatch factor (r=-0.35, P=0.022), higher kinetic energy indexed to flow in the total cavopulmonary connection (r=-0.59, P=0.005), and higher total cavopulmonary connection resistance (r=-0.42, P=0.005 at rest; r=-0.43, P=0.004 during exercise) were all associated with lower eGFR but not with albuminuria. CONCLUSIONS: Kidney dysfunction and albuminuria are common among clinically well adolescents and young adults with a Fontan circulation. Advanced cardiovascular magnetic resonance-derived metrics indicative of declining Fontan hemodynamics are associated with eGFR and might serve as targets to improve kidney health. Albuminuria might be driven by other factors that need further investigation.
Asunto(s)
Procedimiento de Fontan , Cardiopatías Congénitas , Adolescente , Adulto Joven , Humanos , Masculino , Femenino , Creatinina , Albuminuria/etiología , Cardiopatías Congénitas/diagnóstico por imagen , Cardiopatías Congénitas/cirugía , Hemodinámica , Procedimiento de Fontan/efectos adversos , Procedimiento de Fontan/métodos , Riñón , Espectroscopía de Resonancia Magnética , AlbúminasRESUMEN
A long-time exposure to lack of oxygen (hypoxia) in some regions of the cerebrovascular system is believed to be one of the causes of cerebral neurological diseases. In the present study, we show how a combination of magnetic resonance imaging (MRI) and computational fluid dynamics (CFD) can provide a non-invasive alternative for studying blood flow and transport of oxygen within the cerebral vasculature. We perform computer simulations of oxygen mass transfer in the subject-specific geometry of the circle of Willis. The computational domain and boundary conditions are based on four-dimensional (4D)-flow MRI measurements. Two different oxygen mass transfer models are considered: passive (where oxygen is treated as a dilute chemical species in plasma) and active (where oxygen is bonded to haemoglobin) models. We show that neglecting haemoglobin transport results in a significant underestimation of the arterial wall mass transfer of oxygen. We identified the hypoxic regions along the arterial walls by introducing the critical thresholds that are obtained by comparison of the estimated range of Damköhler number (Da â ã9; 57ã) with the local Sherwood number. Finally, we recommend additional validations of the combined MRI/CFD approach proposed here for larger groups of subject- or patient-specific brain vasculature systems.
RESUMEN
There is a pressing need to establish novel biomarkers to predict the progression of thoracic aortic aneurysm (TAA) dilatation. Aside from hemodynamics, the roles of oxygen (O2) and nitric oxide (NO) in TAA pathogenesis are potentially significant. As such, it is imperative to comprehend the relationship between aneurysm presence and species distribution in both the lumen and aortic wall. Given the limitations of existing imaging methods, we propose the use of patient-specific computational fluid dynamics (CFD) to explore this relationship. We have performed CFD simulations of O2 and NO mass transfer in the lumen and aortic wall for two cases: a healthy control (HC) and a patient with TAA, both acquired using 4D-flow magnetic resonance imaging (MRI). The mass transfer of O2 was based on active transport by hemoglobin, while the local variations of the wall shear stress (WSS) drove NO production. Comparing hemodynamic properties, the time-averaged WSS was considerably lower for TAA, while the oscillatory shear index and endothelial cell activation potential were notably elevated. O2 and NO showed a non-uniform distribution within the lumen and an inverse correlation between the two species. We identified several locations of hypoxic regions for both cases due to lumen-side mass transfer limitations. In the wall, NO varied spatially, with a clear distinction between TAA and HC. In conclusion, the hemodynamics and mass transfer of NO in the aorta exhibit the potential to serve as a diagnostic biomarker for TAA. Furthermore, hypoxia may provide additional insights into the onset of other aortic pathologies.
Asunto(s)
Aneurisma de la Aorta Torácica , Aneurisma de la Aorta , Humanos , Óxido Nítrico , Hidrodinámica , Aneurisma de la Aorta/patología , Aorta/patología , Hemodinámica , Aneurisma de la Aorta Torácica/patología , Oxígeno , Estrés Mecánico , Modelos Cardiovasculares , Velocidad del Flujo Sanguíneo/fisiologíaRESUMEN
PURPOSE: Intraventricular blood flow dynamics are associated with cardiac function. Accurate, noninvasive, and easy assessments of hemodynamic quantities (such as velocity, vortex, and pressure) could be an important addition to the clinical diagnosis and treatment of heart diseases. However, the complex time-varying flow brings many challenges to the existing noninvasive image-based hemodynamic assessments. The development of reliable techniques and analysis tools is essential for the application of hemodynamic biomarkers in clinical practice. METHODS: In this study, a time-resolved particle tracking method, Shake-the-Box, was applied to reconstruct the flow in a realistic left ventricle (LV) silicone model with biological valves. Based on the obtained velocity, 4D pressure field was calculated using a Poisson equation-based pressure solver. Furthermore, flow analysis by proper orthogonal decomposition (POD) of the 4D velocity field has been performed. RESULTS: As a result of the Shake-the-Box algorithm, we have extracted: (i) particle positions, (ii) particle tracks, and finally, (iii) 4D velocity fields. From the latter, the temporal evolution of the 3D pressure field during the full cardiac cycle was obtained. The obtained maximal pressure difference extracted along the base-to-apex was about 2.7 mmHg, which is in good agreement with those reported in vivo. The POD analysis results showed a clear picture of different scale of vortices in the pulsatile LV flow, together with their time-varying information and corresponding kinetic energy content. To reconstruct 95% of the kinetic energy of the LV flow, only the first six POD modes would be required, leading to significant data reduction. CONCLUSIONS: This work demonstrated Shake-the-Box is a promising technique to accurately reconstruct the left ventricle flow field in vitro. The good spatial and temporal resolutions of the velocity measurements enabled a 4D reconstruction of the pressure field in the left ventricle. The application of POD analysis showed its potential in reducing the complexity of the high-resolution left ventricle flow measurements. For future work, image analysis, multi-modality flow assessments, and the development of new flow-derived biomarkers can benefit from fast and data-reducing POD analysis.
Asunto(s)
Ventrículos Cardíacos , Hemodinámica , Ventrículos Cardíacos/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador , Presión , Biomarcadores , Velocidad del Flujo SanguíneoRESUMEN
OBJECTIVES: Recent evidence suggests that conduits implanted in Fontan patients at the age of 2-4 years become undersized for adulthood. The objective of this study is to use computational fluid dynamic models to evaluate the effect of virtual expansion of the Fontan conduit on haemodynamics and energetics of the total cavopulmonary connection (TCPC) under resting conditions and increased flow conditions. METHODS: Patient-specific, magnetic resonance imaging-based simulation models of the TCPC were performed during resting and increased flow conditions. The original 16-mm conduits were virtually enlarged to 3 new sizes. The proposed conduit sizes were defined based on magnetic resonance imaging-derived conduit flow in each patient. Flow efficiency was evaluated based on power loss, pressure drop and resistance and thrombosis risk was based on flow stagnation volume and relative residence time (RRT). RESULTS: Models of 5 adult patients with a 16-mm extracardiac Fontan connection were simulated and subsequently virtually expanded to 24-32 mm depending on patient-specific conduit flow. Virtual expansion led to a 40-65% decrease in pressure gradient across the TCPC depending on virtual conduit size. Despite improved energetics of the entire TCPC, the pulmonary arteries remained a significant contributor to energy loss (60-73% of total loss) even after virtual surgery. Flow stagnation volume inside the virtual conduit and surface area in case of elevated RRT (>20/Pa) increased after conduit enlargement but remained negligible (flow stagnation <2% of conduit volume in rest, <0.5% with exercise and elevated RRT <3% in rest, <1% with exercise). CONCLUSIONS: Virtual expansion of 16-mm conduits to 24-32 mm, depending on patient-specific conduit flow, in Fontan patients significantly improves TCPC efficiency while thrombosis risk presumably remains low.
RESUMEN
INTRODUCTION: Wall shear stress (WSS) is associated with the growth and rupture of an intracranial aneurysm. To reveal their underlying connections, many image-based computational fluid dynamics (CFD) studies have been conducted. However, the methodological validations using both in vivo medical imaging and in vitro optical flow measurements were rarely accompanied in such studies. METHODS: In the present study, we performed a comparative assessment on the hemodynamics of a patient-specific intracranial saccular aneurysm using in vivo 4D Flow MRI, in silico CFD, in vitro stereoscopic and tomographic particle imaging velocimetry (Stereo-PIV and Tomo-PIV) techniques. PIV experiments and CFD were conducted under steady state corresponding to the peak systole of 4D Flow MRI. RESULTS: The results showed that all modalities provided similar flow features and overall surface distribution of WSS. However, a large variation in the absolute WSS values was found. 4D Flow MRI estimated a 2- to 4-fold lower peak WSS (3.99 Pa) and a 1.6- to 2-fold lower mean WSS (0.94 Pa) than Tomo-PIV, Stereo-PIV, and CFD. Bland-Altman plots of WSS showed that the differences between PIV-/CFD-based WSS and 4D Flow MRI-based WSS increase with higher WSS magnitude. Such proportional trend was absent in the Bland-Altman comparison of velocity where the resolutions of PIV and CFD datasets were matched to 4D Flow MRI. We also found that because of superior resolution in the out-of-plane direction, WSS estimation by Tomo-PIV was higher than Stereo-PIV. CONCLUSIONS: Our results indicated that the differences in spatial resolution could be the main contributor to the discrepancies between each modality. The findings of this study suggest that with current techniques, care should be taken when using absolute WSS values to perform a quantitative risk analysis of aneurysm rupture.
Asunto(s)
Aneurisma Intracraneal , Velocidad del Flujo Sanguíneo , Hemodinámica , Humanos , Hidrodinámica , Aneurisma Intracraneal/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Estrés MecánicoRESUMEN
OBJECTIVES: To date, it is not known if 16-20-mm extracardiac conduits are outgrown during somatic growth from childhood to adolescence. This study aims to determine total cavopulmonary connection (TCPC) haemodynamics in adolescent Fontan patients at rest and during simulated exercise and to assess the relationship between conduit size and haemodynamics. METHODS: Patient-specific, magnetic resonance imaging-based computational fluid dynamic models of the TCPC were performed in 51 extracardiac Fontan patients with 16-20-mm conduits. Power loss, pressure gradient and normalized resistance were quantified in rest and during simulated exercise. The cross-sectional area (CSA) (mean and minimum) of the vessels of the TCPC was determined and normalized for flow rate (mm2/l/min). Peak (predicted) oxygen uptake was assessed. RESULTS: The median age was 16.2 years (Q1-Q3 14.0-18.2). The normalized mean conduit CSA was 35-73% smaller compared to the inferior and superior vena cava, hepatic veins and left/right pulmonary artery (all P < 0.001). The median TCPC pressure gradient was 0.7 mmHg (Q1-Q3 0.5-0.8) and 2.0 (Q1-Q3 1.4-2.6) during rest and simulated exercise, respectively. A moderate-strong inverse non-linear relationship was present between normalized mean conduit CSA and TCPC haemodynamics in rest and exercise. TCPC pressure gradients of ≥1.0 at rest and ≥3.0 mmHg during simulated exercise were observed in patients with a conduit CSA ≤ 45 mm2/l/min and favourable haemodynamics (<1 mmHg during both rest and exercise) in conduits ≥125 mm2/l/min. Normalized TCPC resistance correlated with (predicted) peak oxygen uptake. CONCLUSIONS: Extracardiac conduits of 16-20 mm have become relatively undersized in most adolescent Fontan patients leading to suboptimal haemodynamics.
Asunto(s)
Procedimiento de Fontan , Cardiopatías Congénitas , Humanos , Adolescente , Niño , Vena Cava Superior/cirugía , Arteria Pulmonar/cirugía , Hemodinámica , Oxígeno , Cardiopatías Congénitas/cirugíaRESUMEN
OBJECTIVES: Adequacy of 16-20mm extracardiac conduits for adolescent Fontan patients remains unknown. This study aims to evaluate conduit adequacy using the inferior vena cava (IVC)-conduit velocity mismatch factor along the respiratory cycle. METHODS: Real-time 2D flow MRI was prospectively acquired in 50 extracardiac (16-20mm conduits) Fontan patients (mean age 16.9 ± 4.5 years) at the subhepatic IVC, conduit and superior vena cava. Hepatic venous flow was determined by subtracting IVC flow from conduit flow. The cross-sectional area (CSA) was reported for each vessel. Mean flow and velocity was calculated during the average respiratory cycle, inspiration and expiration. The IVC-conduit velocity mismatch factor was determined as follows: Vconduit/VIVC, where V is the mean velocity. RESULTS: Median conduit CSA and IVC CSA were 221 mm2 (Q1-Q3 201-255) and 244 mm2 (Q1-Q3 203-265), respectively. From the IVC towards the conduit, flow rates increased significantly due to the entry of hepatic venous flow (IVC 1.9, Q1-Q3 1.5-2.2) versus conduit (3.3, Q1-Q3 2.5-4.0 l/min, P < 0.001). Consequently, mean velocity significantly increased (IVC 12 (Q1-Q3 11-14 cm/s) versus conduit 25 (Q1-Q3 17-31 cm/s), P < 0.001), resulting in a median IVC-conduit velocity mismatch of 1.8 (Q1-Q3 1.5-2.4), further augmenting during inspiration (median 2.3, Q1-Q3 1.8-3.0). IVC-conduit mismatch was inversely related to measured conduit size and positively correlated with conduit flow. The normalized IVC-conduit velocity mismatch factor during expiration and the entire respiratory cycle correlated with peak VO2 (r = -0.37, P = 0.014 and r = -0.31, P = 0.04, respectively). CONCLUSIONS: Important blood flow accelerations are observed from the IVC towards the conduit in adolescent Fontan patients, which is related to peak VO2. This study, therefore, raises concerns that implanted 16-20mm conduits have become undersized for older Fontan patients and future studies should clarify its effect on long-term outcome.
Asunto(s)
Procedimiento de Fontan , Adolescente , Adulto , Prótesis Vascular , Niño , Procedimiento de Fontan/métodos , Hemodinámica , Humanos , Vena Cava Inferior/diagnóstico por imagen , Vena Cava Inferior/cirugía , Vena Cava Superior/cirugía , Adulto JovenRESUMEN
We present results of a series of numerical simulations of an initially fully developed turbulent flow of a liquid metal in a long duct under the influence of a constant uniform transverse magnetic field and various wall conductances (ranging from perfectly insulated to perfectly conducting walls). The changes in the wall conductance caused the appearance of novel flow regimes characterized by the coexistence of locally turbulent or laminar flow regions and a nonmonotonic behavior of the corresponding wall-friction coefficients. In contrast to the situation where an increase in the imposed magnetic field will lead to continuous suppression of turbulence and final complete relaminarization of the flow in a specific range of wall-conducting parameters, we also observe an apparent partial and complete turbulence regeneration from the magnetohydrodynamic-suppressed laminar state.
RESUMEN
We present a new numerical simulation framework for prediction of flow patterns in the human left ventricle model. In this study, a radial basis function (RBF) mesh morphing method is developed and applied within the finite-volume computational fluid dynamics (CFD) approach. The numerical simulations are designed to closely mimic details of recent tomographic particle image velocimetry (TomoPIV) experiments. The numerically simulated dynamic motions of the left ventricle and tri-leaflet biological mitral valve are emulated through the RBF morphing method. The arbitrary Lagrangian-Eulerian (ALE) based CFD is performed with the RBF-defined deforming wall boundaries. The results obtained show a good agreement with experiments, confirming the reliability and accuracy of the developed simulation framework.
Asunto(s)
Ventrículos Cardíacos , Válvula Mitral , Simulación por Computador , Ventrículos Cardíacos/diagnóstico por imagen , Humanos , Hidrodinámica , Modelos Cardiovasculares , Reproducibilidad de los ResultadosRESUMEN
Aortic aneurysm is associated with aberrant blood flow and wall shear stress (WSS). This can be studied by coupling magnetic resonance imaging (MRI) with computational fluid dynamics (CFD). For patient-specific simulations, extra attention should be given to the variation in segmentation of the MRI data-set and its effect on WSS. We performed CFD simulations of blood flow in the aorta for ten different volunteers and provided corresponding WSS distributions. The aorta of each volunteer was segmented four times. The same inlet and outlet boundary conditions were applied for all segmentation variations of each volunteer. Steady-state CFD simulations were performed with inlet flow based on phase-contrast MRI during peak systole. We show that the commonly used comparison of mean and maximal values of WSS, based on CFD in the different segments of the thoracic aorta, yields good to excellent correlation (0.78-0.95) for rescan and moderate to excellent correlation (0.64-1.00) for intra- and interobserver reproducibility. However, the effect of geometrical variations is higher for the voxel-to-voxel comparison of WSS. With this analysis method, the correlation for different segments of the whole aorta is poor to moderate (0.43-0.66) for rescan and poor to good (0.48-0.73) for intra- and interobserver reproducibility. Therefore, we advise being critical about the CFD results based on the MRI segmentations to avoid possible misinterpretation. While the global values of WSS are similar for different modalities, the variation of results is high when considering the local distributions.
Asunto(s)
Aorta Torácica , Hidrodinámica , Aorta Torácica/diagnóstico por imagen , Velocidad del Flujo Sanguíneo , Hemodinámica , Humanos , Imagen por Resonancia Magnética , Modelos Cardiovasculares , Reproducibilidad de los Resultados , Resistencia al Corte , Estrés MecánicoRESUMEN
Congenital heart disease is the most common birth defect and functionally univentricular heart defects represent the most severe end of this spectrum. The Fontan circulation provides an unique solution for single ventricle patients, by connecting both caval veins directly to the pulmonary arteries. As a result, the pulmonary circulation in Fontan palliated patients is characterized by a passive, low-energy circulation that depends on increased systemic venous pressure to drive blood toward the lungs. The absence of a subpulmonary ventricle led to the widely believed concept that respiration, by sucking blood to the pulmonary circulation during inspiration, is of great importance as a driving force for antegrade blood flow in Fontan patients. However, recent studies show that respiration influences pulsatility, but has a limited effect on net forward flow in the Fontan circulation. Importantly, since MRI examination is recommended every 2 years in Fontan patients, clinicians should be aware that most conventional MRI flow sequences do not capture the pulsatility of the blood flow as a result of the respiration. In this review, the unique flow dynamics influenced by the cardiac and respiratory cycle at multiple locations within the Fontan circulation is discussed. The impact of (not) incorporating respiration in different MRI flow sequences on the interpretation of clinical flow parameters will be covered. Finally, the influence of incorporating respiration in advanced computational fluid dynamic modeling will be outlined.
RESUMEN
OBJECTIVES: Degenerative thoracic aortic aneurysm (TAA) patients are known to be at risk of life-threatening acute aortic events. Guidelines recommend preemptive surgery at diameters of greater than 55 mm, although many patients with small aneurysms show only mild growth rates and more than half of complications occur in aneurysms below this threshold. Thus, assessment of hemodynamics using 4-dimensional flow magnetic resonance has been of interest to obtain more insights in aneurysm development. Nonetheless, the role of aberrant flow patterns in TAA patients is not yet fully understood. MATERIALS AND METHODS: A total of 25 TAA patients and 22 controls underwent time-resolved 3-dimensional phase contrast magnetic resonance imaging with 3-directional velocity encoding (ie, 4-dimensional flow magnetic resonance imaging). Hemodynamic parameters such as vorticity, helicity, and wall shear stress (WSS) were calculated from velocity data in 3 anatomical segments of the ascending aorta (root, proximal, and distal). Regional WSS distribution was assessed for the full cardiac cycle. RESULTS: Flow vorticity and helicity were significantly lower for TAA patients in all segments. The proximal ascending aorta showed a significant increase in peak WSS in the outer curvature in TAA patients, whereas WSS values at the inner curvature were significantly lower as compared with controls. Furthermore, positive WSS gradients from sinotubular junction to midascending aorta were most prominent in the outer curvature, whereas from midascending aorta to brachiocephalic trunk, the outer curvature showed negative WSS gradients in the TAA group. Controls solely showed a positive gradient at the inner curvature for both segments. CONCLUSIONS: Degenerative TAA patients show a decrease in flow vorticity and helicity, which is likely to cause perturbations in physiological flow patterns. The subsequent differing distribution of WSS might be a contributor to vessel wall remodeling and aneurysm formation.
Asunto(s)
Aorta , Aneurisma de la Aorta Torácica , Aorta/diagnóstico por imagen , Aorta Torácica , Aneurisma de la Aorta Torácica/diagnóstico por imagen , Velocidad del Flujo Sanguíneo , Hemodinámica , Humanos , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Flujo Sanguíneo Regional , Estrés MecánicoRESUMEN
Fontan patients require a balanced hepatic blood flow distribution (HFD) to prevent pulmonary arteriovenous malformations. Currently, HFD is quantified by tracking Fontan conduit flow, assuming hepatic venous (HV) flow to be uniformly distributed within the Fontan conduit. However, this assumption may be unvalid leading to inaccuracies in HFD quantification with potential clinical impact. The aim of this study was to (i) assess the mixing of HV flow and inferior vena caval (IVC) flow within the Fontan conduit and (ii) quantify HFD by directly tracking HV flow and quantitatively comparing results with the conventional approach. Patient-specific, time-resolved computational fluid dynamic models of 15 total cavopulmonary connections were generated, including the HV and subhepatic IVC. Mixing of HV and IVC flow, on a scale between 0 (no mixing) and 1 (perfect mixing), was assessed at the caudal and cranial Fontan conduit. HFD was quantified by tracking particles from the caudal (HFDcaudal conduit) and cranial (HFDcranial conduit) conduit and from the hepatic veins (HFDHV). HV flow was non-uniformly distributed at both the caudal (mean mixing 0.66 ± 0.13) and cranial (mean 0.79 ± 0.11) level within the Fontan conduit. On a cohort level, differences in HFD between methods were significant but small; HFDHV (51.0 ± 20.6%) versus HFDcaudal conduit (48.2 ± 21.9%, p = 0.033) or HFDcranial conduit (48.0 ± 21.9%, p = 0.044). However, individual absolute differences of 8.2-14.9% in HFD were observed in 4/15 patients. HV flow is non-uniformly distributed within the Fontan conduit. Substantial individual inaccuracies in HFD quantification were observed in a subset of patients with potential clinical impact.
Asunto(s)
Fístula Arteriovenosa , Procedimiento de Fontan , Cardiopatías Congénitas , Cardiopatías Congénitas/cirugía , Hemodinámica , Venas Hepáticas/cirugía , Humanos , Arteria Pulmonar , Vena Cava Inferior/cirugíaRESUMEN
Left ventricular (LV) blood flow is an inherently complex time-varying 3-D phenomenon, where 2-D quantification often ignores the effect of out-of-plane motion. In this study, we describe high frame rate 4-D echocardiographic particle image velocimetry (echo-PIV) using a prototype matrix transesophageal transducer and a dynamic LV phantom for testing the accuracy of echo-PIV in the presence of complex flow patterns. Optical time-resolved tomographic PIV (tomo-PIV) was used as a reference standard for comparison. Echo-PIV and tomo-PIV agreed on the general profile of the LV flow patterns, but echo-PIV smoothed out the smaller flow structures. Echo-PIV also underestimated the flow rates at greater imaging depths, where the PIV kernel size and transducer point spread function were large relative to the velocity gradients. We demonstrate that 4-D echo-PIV could be performed in just four heart cycles, which would require only a short breath-hold, providing promising results. However, methods for resolving high velocity gradients in regions of poor spatial resolution are required before clinical translation.