Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Nucl Med ; 65(5): 788-793, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38423785

RESUMEN

Phosphodiesterase-4D (PDE4D) has emerged as a significant target for treating neuropsychiatric disorders, but no PET radioligand currently exists for robustly quantifying human brain PDE4D to assist biomedical research and drug discovery. A prior candidate PDE4D PET radioligand, namely [11C]T1650, failed in humans because of poor time stability of brain PDE4D-specific signal (indexed by total volume of distribution), likely due to radiometabolites accumulating in brain. Its nitro group was considered to be a source of the brain radiometabolites. Methods: We selected 5 high-affinity and selective PDE4D inhibitors, absent of a nitro group, from our prior structure-activity relationship study for evaluation as PET radioligands. Results: All 5 radioligands were labeled with 11C (half-time, 20.4 min) in useful yields and with high molar activity. All displayed sizable PDE4D-specific signals in rhesus monkey brain. Notably, [11C]JMJ-81 and [11C]JMJ-129 exhibited excellent time stability of signal (total volume of distribution). Furthermore, as an example, [11C]JMJ-81 was found to be free of radiometabolites in ex vivo monkey brain, affirming that this radioligand can provide robust quantification of brain PDE4D with PET. Conclusion: Given their high similarity in structures and metabolic profiles, both [11C]JMJ-81 and [11C]JMJ-129 warrant further evaluation in human subjects. [11C]JMJ-129 shows a higher PDE4D specific-to-nonspecific binding ratio and will be the first to be evaluated.


Asunto(s)
Encéfalo , Radioisótopos de Carbono , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4 , Macaca mulatta , Tomografía de Emisión de Positrones , Animales , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Ligandos , Radiofármacos/farmacocinética , Radiofármacos/química , Masculino , Marcaje Isotópico , Inhibidores de Fosfodiesterasa 4/química , Humanos
2.
Birth Defects Res ; 115(3): 357-370, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36369782

RESUMEN

BACKGROUND: Human exposures to organophosphate flame retardants result from their use as additives in numerous consumer products. These agents are replacements for brominated flame retardants but have not yet faced similar scrutiny for developmental neurotoxicity. We examined a representative organophosphate flame retardant, triphenyl phosphate (TPP) and its potential effects on behavioral development and dopaminergic function. METHODS: Female Sprague-Dawley rats were given low doses of TPP (16 or 32 mg kg-1  day-1 ) via subcutaneous osmotic minipumps, begun preconception and continued into the early postnatal period. Offspring were administered a battery of behavioral tests from adolescence into adulthood, and littermates were used to evaluate dopaminergic synaptic function. RESULTS: Offspring with TPP exposures showed increased latency to begin eating in the novelty-suppressed feeding test, impaired object recognition memory, impaired choice accuracy in the visual signal detection test, and sex-selective effects on locomotor activity in adolescence (males) but not adulthood. Male, but not female, offspring showed marked increases in dopamine utilization in the striatum, evidenced by an increase in the ratio of the primary dopamine metabolite (3,4-dihydroxyphenylacetic acid) relative to dopamine levels. CONCLUSIONS: These results indicate that TPP has adverse effects that are similar in some respects to those of organophosphate pesticides, which were restricted because of their developmental neurotoxicity.


Asunto(s)
Retardadores de Llama , Humanos , Animales , Ratas , Masculino , Retardadores de Llama/toxicidad , Dopamina , Ratas Sprague-Dawley , Pez Cebra , Organofosfatos/toxicidad
3.
Toxicology ; 472: 153189, 2022 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-35452779

RESUMEN

Diazinon is an organophosphate pesticide that has a history of wide use. Developmental exposures to organophosphates lead to neurobehavioral changes that emerge early in life and can persist into adulthood. However, preclinical studies have generally evaluated changes through young adulthood, whereas the persistence or progression of deficits into middle age remain poorly understood. The current study evaluated the effects of maternal diazinon exposure on behavior and neurochemistry in middle age, at 1 year postpartum, comparing the results to our previous studies of outcomes at adolescence and in young adulthood (4 months of age) (Hawkey 2020). Female rats received 0, 0.5 or 1.0 mg/kg/day of diazinon via osmotic minipump throughout gestation and into the postpartum period. The offspring were tested on a battery of locomotor, affective, and cognitive tests at young adulthood and during middle age. Some of the neurobehavioral consequences of developmental DZN seen during adolescence and young adulthood faded with continued aging, whereas other neurobehavioral effects emerged with aging. At middle age, the rats showed few locomotor effects, in contrast to the locomotor hyperactivity that had been observed in adolescence. Notably, though, DZN exposure during development impaired reference memory performance in middle-aged males, an effect that had not been seen in the younger animals. Likewise, middle-aged females exposed to DZN showed deficient attentional accuracy, an effect not seen in young adults. Across adulthood, the continued potential for behavioral defects was associated with altered dopaminergic function, characterized by enhanced dopamine utilization that was regionally-selective (striatum but not frontal/parietal cortex). This study shows that the neurobehavioral impairments from maternal low dose exposure to diazinon not only persist, but may continue to evolve as animals enter middle age.


Asunto(s)
Diazinón , Insecticidas , Animales , Conducta Animal , Diazinón/toxicidad , Femenino , Masculino , Organofosfatos/farmacología , Compuestos Organofosforados/farmacología , Ratas
4.
J Nucl Med ; 63(Suppl 1): 53S-59S, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35649646

RESUMEN

The most frequently studied target of neuroinflammation using PET is 18-kDa translocator protein, but its limitations have spurred the molecular imaging community to find more promising targets. This article reviews the development of PET radioligands for cyclooxygenase (COX) subtypes 1 and 2, enzymes that catalyze the production of inflammatory prostanoids in the periphery and brain. Although both isozymes produce the same precursor compound, prostaglandin H2, they have distinct functions based on their differential cellular localization in the periphery and brain. For example, COX-1 is located primarily in microglia, a resident inflammatory cell in the brain whose role in producing inflammatory cytokines is well documented. In contrast, COX-2 is located primarily in neurons and can be markedly upregulated by inflammatory and excitatory stimuli, but its functions are poorly understood. This article reviews these 2 isozymes as biomarkers of neuroinflammation, as well as the radioligands that have recently been developed to image them in animals and humans. To place this work into context, the properties of COX-1 and COX-2 are compared with 18-kDa translocator protein, with special consideration of their application in Alzheimer disease as a representative neurodegenerative disorder.


Asunto(s)
Enfermedad de Alzheimer , Receptores de GABA , Animales , Biomarcadores/metabolismo , Ciclooxigenasa 2 , Isoenzimas , Enfermedades Neuroinflamatorias , Tomografía de Emisión de Positrones/métodos , Receptores de GABA/metabolismo
5.
Toxicology ; 429: 152327, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31704166

RESUMEN

Diazinon is a widely-used organophosphate pesticide. Pulsatile exposure to diazinon during neonatal development has previously been shown cause long-term neurobehavioral impairments in rats. However, the effects of chronic low concentration exposures during perinatal development remain unclear. This experiment evaluated such effects in Sprague-Dawley rats by implanting osmotic pumps in breeder females prior to conception (N = 13-15 litters per condition) which then delivered chronic, zero order kinetic low-level infusions of 0, 114 or 228 ug/day of diazinon throughout pregnancy. One male and one female from each litter was assessed with a battery of behavioral tests that continued from four weeks of age into adulthood. Litter was used as the unit of variance for the analysis of variance test of significance, with sex as a within litter factor. Diazinon treatment condition was the between subjects factor and time or sessions were repeated measures. Chronic diazinon exposure from pre-mating until the neonatal period caused a significant (p < 0.05) increase in percent of time spent on the open arms of the elevated plus maze, an index of risk-taking behavior. Gestational and lactational diazinon exposure also caused a significant (p < 0.05) degree of hyperactivity in the Figure-8 apparatus during adolescence, specifically affecting the early part of the hour-long test session. This effect had dissipated by the time the rats reached adulthood. Diazinon exposure also caused a significant impairment in novel object recognition, a test of cognitive function. Offspring exposed to 228 ug/day diazinon (p < 0.05) showed significantly less preference for the novel vs. familiar object than controls during the first five minutes of the novel object recognition test.


Asunto(s)
Conducta Animal/efectos de los fármacos , Diazinón/toxicidad , Insecticidas/toxicidad , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Animales , Cognición/efectos de los fármacos , Diazinón/administración & dosificación , Femenino , Insecticidas/administración & dosificación , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Embarazo , Ratas , Ratas Sprague-Dawley , Reconocimiento en Psicología/efectos de los fármacos
6.
Neurotoxicology ; 81: 180-188, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33091435

RESUMEN

Maternal toxicant exposure during gestation can have deleterious effects on neurobehavioral development of the offspring. The potential risks engendered by paternal toxicant exposure prior to conception have been largely understudied. Recently, we found that chronic THC exposure prior to conception in male rats causes long-lasting behavioral impairment in their offspring. The current study examined the effects of chronic preconception exposure to cannabis smoke extract in Sprague-Dawley rats at two different phases in sperm development. One group received daily subcutaneous (sc) injections of THC in cannabis extract at 4 mg/kg/day for 28 days until three days prior to mating with untreated females (late exposure group). Another group received the same regimen except they underwent 56 days of drug abstinence prior to mating (early exposure group). These were compared with a control group treated with vehicle. The offspring underwent a battery of tests for behavioral function to assess motor, emotional and cognitive function. On the elevated plus maze test, the offspring of both paternal cannabis smoke extract (CSE) exposure groups had significantly more time on the open arms than control offspring, indicative of greater risk-taking behavior. No significant main effects of CSE exposure were seen on adolescent or adult locomotor activity in the figure-8 apparatus. In the novel object recognition test, there was a significantly greater drop-off in novel object preference across the session in the male, but not female offspring of the late exposure group. There was also a sex-selective effect of paternal CSE treatment in the 16-arm radial maze test of memory function. Female offspring of the late exposure group had significantly more working memory errors than control females in the first half of the 12-session training sequence. No significant effects were seen in the operant visual signal sustained detection test of attention. This study shows that there are long-lasting behavioral consequences of preconception CSE exposure through the paternal lineage in rats.


Asunto(s)
Conducta Animal/efectos de los fármacos , Dronabinol/toxicidad , Alucinógenos/toxicidad , Exposición Paterna/efectos adversos , Espermatogénesis/efectos de los fármacos , Animales , Cognición/efectos de los fármacos , Prueba de Laberinto Elevado , Emociones/efectos de los fármacos , Femenino , Locomoción , Masculino , Actividad Motora/efectos de los fármacos , Prueba de Campo Abierto , Ratas Sprague-Dawley , Factores Sexuales
7.
Neurotoxicology ; 78: 57-63, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32045580

RESUMEN

The potential health risks of cannabis are of growing concern, including effects on reproduction and development. Extensive research has investigated risks associated with maternal exposure to THC during gestation and its impacts on the development of offspring, but little research has been done regarding paternal THC exposure effects prior to conception. We have previously found that paternal THC exposure in rats causes changes in sperm methylation. In an initial study we also showed that a 12-day paternal THC exposure prior to conception alters locomotor activity and impairs cognitive function of their offspring. This study investigated the cross-generational effects of chronic paternal THC exposure in rats (0, 2, or 4 mg/kg/day SC for 28 days) prior to mating with drug naïve females. The offspring of THC-exposed male rats had significant alterations in locomotor activity and cognitive function. Specifically, during adolescence there was significant locomotor hyperactivity in the offspring of males exposed to 2 mg/kg/day of THC. During the novel object recognition task, the controls maintained their relative preference for the novel object across the duration of the ten-min session while the rats whose fathers received THC (2 mg/kg/day) showed a significantly greater drop-off in interest in the novel object during the second half of the session. Learning in the radial-arm maze was significantly delayed in the offspring of males exposed to 4 mg/kg/day of THC. This study shows that premating chronic paternal THC exposure at multiple dose regimens can cause long-lasting detrimental behavioral effects in their offspring, including abnormal locomotor activity and impaired cognitive function. Future studies should investigate the underlying mechanisms driving these aberrant developmental outcomes and seek to identify possible treatments of alleviation in the presence of paternal THC exposure.


Asunto(s)
Conducta Animal/efectos de los fármacos , Dronabinol/toxicidad , Exposición Paterna , Animales , Femenino , Locomoción/efectos de los fármacos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratas Sprague-Dawley , Reconocimiento en Psicología/efectos de los fármacos
8.
Neurotoxicol Teratol ; 74: 106806, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31028824

RESUMEN

Developmental neurotoxicity of a wide variety of toxicants mediated via maternal exposure during gestation is very well established. In contrast, the impacts of paternal toxicant exposure on offspring neurobehavioral function are much less well studied. A vector for paternal toxicant exposure on development of his offspring has been identified. Sperm DNA can be imprinted by chemical exposures of the father. Most but not all of the epigenetic marks in sperm are reprogrammed after fertilization. The persisting epigenetic marks can lead to abnormal genetic expression in the offspring. We have found that paternal delta-9-tetrohydrocannabinol (THC) exposure in rats causes changes in methylation of sperm (Murphy et al., 2018). This is similar to cannabis-associated changes in sperm DNA methylation we found in human males who smoke cannabis (Murphy et al., 2018). In the current study we investigated the intergeneration effects of THC exposure of young adult male rats (0 or 2 mg/kg/day orally for 12 days) to the neurobehavioral development of their offspring. This paternal THC exposure was not found to significantly impact the clinical health of the offspring, including litter size, sex ratio, pup birth weight, survival and growth. However, it did cause a long-lasting significant impairment in attentional performance in the offspring relative to controls when they were tested in adulthood. There was also a significant increase in habituation of locomotor activity in the adult offspring of the males exposed to THC prior to mating. This study shows that premating paternal THC exposure even at a modest dose for a brief period can cause deleterious long-term behavioral effects in the offspring, notably significant impairment in an operant attention task. Further research should be conducted to determine the degree to which this type of risk is seen in humans and to investigate the mechanisms underlying these effects and possible treatments to ameliorate these long-term adverse behavioral consequences of paternal THC exposure.


Asunto(s)
Conducta Animal/efectos de los fármacos , Dronabinol/toxicidad , Epigénesis Genética/fisiología , Exposición Paterna , Animales , Ansiedad/inducido químicamente , Atención/efectos de los fármacos , Femenino , Habituación Psicofisiológica/efectos de los fármacos , Masculino , Actividad Motora/efectos de los fármacos , Embarazo , Ratas , Ratas Sprague-Dawley , Reconocimiento en Psicología/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA