Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 22(17): 6972-6981, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36018814

RESUMEN

A family of coordination polymers (CPs) based on dynamic structural elements are of great fundamental and commercial interest addressing modern problems in controlled molecular separation, catalysis, and even data processing. Herein, the endurance and fast structural dynamics of such materials at ambient conditions are still a fundamental challenge. Here, we report on the design of a series of Cu-based CPs [Cu(bImB)Cl2] and [Cu(bImB)2Cl2] with flexible ligand bImB (1,4-bis(imidazol-1-yl)butane) packed into one- and two-dimensional (1D, 2D) structures demonstrating dimensionality mediated flexibility and reversible structural transformations. Using the laser pulses as a fast source of activation energy, we initiate CP heating followed by anisotropic thermal expansion and 0.2-0.8% volume changes with the record transformation rates from 2220 to 1640 s-1 for 1D and 2D CPs, respectively. The endurance over 103 cycles of structural transformations, achieved for the CPs at ambient conditions, allows demonstrating optical fiber integrated all-optical data processing.

2.
Dalton Trans ; 53(8): 3459-3464, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38317527

RESUMEN

The threshold structural transformation of the DUT-4 metal-organic framework (MOF) from an ordered to distorted phase during exposure to ambient conditions has been revealed. The in situ X-ray diffraction analysis, in situ Raman and FTIR spectroscopy, scanning electron microscopy and synchronous thermal analysis have been used for investigation. The reversible effect of exposure time and humidity on such a phase transition has been confirmed. We also demonstrated that the observed phase transition correlated well with changes in the optical and electronic properties of DUT-4, paving the way to a new family of MOF-based phase change materials for optoelectronic applications.

3.
Small Methods ; 7(11): e2300752, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37702111

RESUMEN

Two-dimensional metal-organic frameworks (MOFs) occupy a special place among the large family of functional 2D materials. Even at a monolayer level, 2D MOFs exhibit unique sensing, separation, catalytic, electronic, and conductive properties due to the combination of porosity and organo-inorganic nature. However, lab-to-fab transfer for 2D MOF layers faces the challenge of their scalability, limited by weak interactions between the organic and inorganic building blocks. Here, comparing three top-down approaches to fabricate 2D MOF layers (sonication, freeze-thaw, and mechanical exfoliation), The technological criteria have established for creation of the layers of the thickness up to 1 nm with a record aspect ratio up to 2*10^4:1. The freezing-thaw and mechanical exfoliation are the most optimal approaches; wherein the rate and manufacturability of the mechanical exfoliation rivaling the greatest scalability of 2D MOF layers obtained by freezing-thaw (21300:1 vs 1330:1 aspect ratio), leaving the sonication approach behind (with a record 900:1 aspect ratio) have discovered. The high quality 2D MOF layers with a record aspect ratio demonstrate unique optical sensitivity to solvents of a varied polarity, which opens the way to fabricate scalable and freestanding 2D MOF-based atomically thin chemo-optical sensors by industry-oriented approach.

4.
J Phys Chem Lett ; 13(3): 777-783, 2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35041418

RESUMEN

Photoinduced modulation of the optical parameters of nanomaterials underlies the operating principles of all-optical nanodevices. Here, we demonstrate the laser-induced 10% modulation of the refractive index and 16-fold modulation of the extinction coefficient of the dynamic metal-organic framework (HKUST-1) nanocrystals within the whole visible range. Using the laser-induced water sorption/desorption process inside HKUST-1, we have achieved size-dependent reversible tuning of brightness and color of its nanocrystals over the different spatial directions and color palette. The numerical analysis also confirmed the detected optical tuning through the evolution of optical spectra and directivity of the scattered light. The results of the work demonstrate the promising nature of the dynamic metal-organic frameworks for nonlinear optics and expand the library of chemically synthesized hybrid materials with light-controlled optical properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA