Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Prostate ; 82(12): 1202-1209, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35652618

RESUMEN

BACKGROUND: Radium (Ra)-223 is an established treatment option for patients with metastatic castrate-resistant prostate cancer (mCRPC) who have symptomatic bone metastases without soft tissue disease. Studies have indicated genetic aberrations that regulate DNA damage response (DDR) in prostate cancer can increase susceptibility to treatments such as poly ADP-ribose polymerase inhibitors and platinum-based therapies. This study aims to evaluate mCRPC response to Ra-223 stratified by tumor genomics. METHODS: This is a retrospective study of mCRPC patients who received Ra-223 and genetic testing within the Mayo Clinic database (Arizona, Florida, and Minnesota) and Tulane Cancer Center. Patient demographics, genetic aberrations, treatment responses in terms of alkaline phosphatase (ALP) and prostate-specific antigen (PSA), and survival were assessed. Primary end points were ALP and PSA response. Secondary end points were progression-free survival (PFS) and overall survival (OS) from time of first radium treatment. RESULTS: One hundred and twenty-seven mCRPC patients treated with Ra-223 had germline and/or somatic genetic sequencing. The median age at time of diagnosis and Ra-223 treatment was 61.0 and 68.6 years, respectively. Seventy-nine (62.2%) had Gleason score ≥ 8 at time of diagnosis. 50.4% received prior docetaxel, and 12.6% received prior cabazitaxel. Notable alterations include TP53 (51.7%), BRCA 1/2 (15.0%), PTEN (13.4%), ATM (11.7%), TMPRSS2-ERG (8.2%), RB deletion (3.4%), and CDK12 (1.9%). There was no significant difference in ALP or PSA response among the different genetic aberrations. Patients with a TMPRSS2-ERG mutation exhibited a trend toward lower OS 15.4 months (95% confidence interval [CI] 10.0-NR) versus 26.8 months (95% CI 20.9-35.1). Patients with an RB deletion had a lower PFS 6.0 months (95% CI 1.28-NR) versus 9.0 months (95% CI 7.3-11.1) and a lower OS 13.9 months (95% CI 5.2-NR) versus 26.5 months (95% CI 19.8-33.8). CONCLUSIONS: Among mCRPC patients treated with Ra-223 at Mayo Clinic and Tulane Cancer Center, we did not find any clear negative predictors of biochemical response or survival to treatment. TMPRSS2-ERG and RB mutations were associated with a worse OS. Prospective studies and larger sample sizes are needed to determine the impact of genetic aberrations in response to Ra-223.


Asunto(s)
Neoplasias Óseas , Neoplasias de la Próstata Resistentes a la Castración , Radio (Elemento) , Neoplasias Óseas/genética , Neoplasias Óseas/radioterapia , Humanos , Masculino , Estudios Prospectivos , Antígeno Prostático Específico , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/radioterapia , Radio (Elemento)/uso terapéutico , Estudios Retrospectivos , Resultado del Tratamiento
2.
Prostate ; 82(14): 1338-1345, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35789497

RESUMEN

BACKGROUND: The objective of this study was to report acute changes in patient-reported quality of life (PRQOL) using the 26-item Expanded Prostate Index Composite (EPIC-26) questionnaire in a prospective study using hypofractionated intensity-modulated proton beam therapy (H-IMPT) targeting the prostate and the pelvic lymph nodes for high-risk or unfavorable intermediate-risk prostate cancer. METHODS: Fifty-five patients were enrolled. H-IMPT consisted of 45 GyE to the pelvic lymph nodes and 67.5 GyE to the prostate and seminal vesicles in 25 fractions. PRQOL was assessed with the urinary incontinence (UI), urinary irritative/obstructive symptoms (UO), and bowel function (BF) domains of EPIC-26 questionnaire. Mean changes in domain scores were analyzed from pretreatment to the end of treatment and 3 months posttreatment. A clinically meaningful change (or minimum important change) was defined as a score change > 50% of the baseline standard deviation. RESULTS: The mean scores of UO, UI, and BF at baseline were 84.6, 91.1, and 95.3, respectively. At the end of treatment, there were statistically significant and clinically meaningful declines in UO and BF scores (-13.5 and -2.3, respectively), while the decline in UI score was statistically significant but not clinically meaningful (-13.7). A clinically meaningful decline in UO, UI, and BF scores occurred in 53.5%, 22.7%, and 73.2% of the patients, respectively. At 3 months posttreatment, all three mean scores showed an improvement, with fewer patients having a clinically meaningful decline in UO, UI, and BF scores (18.4%, 20.5%, and 45.0%, respectively). There was no significant reduction in the mean UO and UI scores compared to baseline, although the mean BF score remained lower than baseline and the difference was clinically meaningful. CONCLUSIONS: UO, UI, and BF scores of PRQOL declined at the end of H-IMPT. UO and UI scores showed improvement at 3 months posttreatment and were similar to the baseline scores. However, BF score remained lower at 3 months posttreatment with a clinically meaningful decline.


Asunto(s)
Neoplasias de la Próstata , Terapia de Protones , Incontinencia Urinaria , Humanos , Ganglios Linfáticos/patología , Masculino , Medición de Resultados Informados por el Paciente , Estudios Prospectivos , Próstata/patología , Neoplasias de la Próstata/patología , Calidad de Vida
3.
Breast J ; 27(5): 466-471, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33715231

RESUMEN

Study conducted to determine frequency and timing of unplanned breast implant removal after mastectomy, reconstruction, and postmastectomy radiation (PMRT). From 2010-2017, 52 patients underwent mastectomy, reconstruction, and PMRT. With median follow-up of 3.1 years, 23 patients (44%) experienced implant removal. Implant removal occurred in 9 (17%) patients before starting PMRT and 14 (27%) patients after starting PMRT. Implant removal rates were similar for hypofractionated PMRT compared with standard fractionation and for proton compared with photon PMRT. Implant removal is common for women undergoing mastectomy and reconstruction followed by PMRT. The risk is clinically significant even before starting radiation.


Asunto(s)
Implantes de Mama , Neoplasias de la Mama , Mamoplastia , Implantes de Mama/efectos adversos , Neoplasias de la Mama/radioterapia , Neoplasias de la Mama/cirugía , Femenino , Estudios de Seguimiento , Humanos , Mamoplastia/efectos adversos , Mastectomía , Complicaciones Posoperatorias , Radioterapia Adyuvante , Resultado del Tratamiento
4.
Med Phys ; 51(2): 1484-1498, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37748037

RESUMEN

BACKGROUND: Accurate and efficient dose calculation is essential for on-line adaptive planning in proton therapy. Deep learning (DL) has shown promising dose prediction results in photon therapy. However, there is a scarcity of DL-based dose prediction methods specifically designed for proton therapy. Successful dose prediction method for proton therapy should account for more challenging dose prediction problems in pencil beam scanning proton therapy (PBSPT) due to its sensitivity to heterogeneities. PURPOSE: To develop a DL-based PBSPT dose prediction workflow with high accuracy and balanced complexity to support on-line adaptive proton therapy clinical decision and subsequent replanning. METHODS: PBSPT plans of 103 prostate cancer patients (93 for training and the other 10 for independent testing) and 83 lung cancer patients (73 for training and the other 10 for independent testing) previously treated at our institution were included in the study, each with computed tomography scans (CTs), structure sets, and plan doses calculated by the in-house developed Monte-Carlo dose engine (considered as the ground truth in the model training and testing). For the ablation study, we designed three experiments corresponding to the following three methods: (1) Experiment 1, the conventional region of interest (ROI) (composed of targets and organs-at-risk [OARs]) method. (2) Experiment 2, the beam mask (generated by raytracing of proton beams) method to improve proton dose prediction. (3) Experiment 3, the sliding window method for the model to focus on local details to further improve proton dose prediction. A fully connected 3D-Unet was adopted as the backbone. Dose volume histogram (DVH) indices, 3D Gamma passing rates with a criterion of 3%/3 mm/10%, and dice coefficients for the structures enclosed by the iso-dose lines between the predicted and the ground truth doses were used as the evaluation metrics. The calculation time for each proton dose prediction was recorded to evaluate the method's efficiency. RESULTS: Compared to the conventional ROI method, the beam mask method improved the agreement of DVH indices for both targets and OARs and the sliding window method further improved the agreement of the DVH indices (for lung cancer, CTV D98 absolute deviation: 0.74 ± 0.18 vs. 0.57 ± 0.21 vs. 0.54 ± 0.15 Gy[RBE], ROI vs. beam mask vs. sliding window methods, respectively). For the 3D Gamma passing rates in the target, OARs, and BODY (outside target and OARs), the beam mask method improved the passing rates in these regions and the sliding window method further improved them (for prostate cancer, targets: 96.93% ± 0.53% vs. 98.88% ± 0.49% vs. 99.97% ± 0.07%, BODY: 86.88% ± 0.74% vs. 93.21% ± 0.56% vs. 95.17% ± 0.59%). A similar trend was also observed for the dice coefficients. This trend was especially remarkable for relatively low prescription isodose lines (for lung cancer, 10% isodose line dice: 0.871 ± 0.027 vs. 0.911 ± 0.023 vs. 0.927 ± 0.017). The dose predictions for all the testing cases were completed within 0.25 s. CONCLUSIONS: An accurate and efficient deep learning-augmented proton dose prediction framework has been developed for PBSPT, which can predict accurate dose distributions not only inside but also outside ROI efficiently. The framework can potentially further reduce the initial planning and adaptive replanning workload in PBSPT.


Asunto(s)
Aprendizaje Profundo , Neoplasias Pulmonares , Neoplasias de la Próstata , Terapia de Protones , Radioterapia de Intensidad Modulada , Masculino , Humanos , Dosificación Radioterapéutica , Protones , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/cirugía , Neoplasias de la Próstata/radioterapia
5.
Artículo en Inglés | MEDLINE | ID: mdl-38972465

RESUMEN

PURPOSE: We aimed to determine if ultra-hypofractionated proton therapy delivered via stereotactic body proton therapy (SBPT) is non-inferior to conventionally fractionated proton therapy (CFPT) in patients with early prostate cancer. MATERIALS AND METHODS: This study was a multicenter, randomized, controlled, non-inferiority phase 3 trial that included patients with histologically confirmed low-risk prostate adenocarcinoma defined by Gleason score grouping 1, PSA <10 ng/mL, and clinical stage T1-2a N0 M0 according to AJCC 7th ed. Eligible participants were randomly assigned initially at a 1:1 ratio and later at a 2:1 ratio to SBPT (38 Gy in 5 fractions) or CFPT (79.2 Gy in 44 fractions). The primary endpoint was freedom from failure (FFF) at 2 years from the date of randomization. Non-inferiority for FFF was determined based on one-sided confidence intervals. Toxicities were compared at different time points using Fisher's Exact test. Health-related quality-of-life (HRQoL) was analyzed at different time points using a mixed-effects linear model. This trial is registered with ClinicalTrials.gov, NCT01230866, and is closed to accrual. RESULTS: Between December 10, 2010, and September 29, 2020, 144 patients were enrolled and 135 were randomly assigned (90 to the SBPT group and 45 to the CFPT group). The median follow-up was 5 years (IQR 3.9-5.2). The 2-year FFF was 100% for both groups, with the one-sided 5-year risk difference in FFF between groups reported as 2.63% (90% CI: -1.70%-6.96%), favoring the SBRT arm, thus fulfilling the pre-specified criteria for non-inferiority of SBPT compared to CFPT. Rates of gastrointestinal (GI) and genitourinary (GU) G2 and G3 toxicities did not differ significantly between groups but the the study was not powered to detect significant toxicity differences. Also, HRQoL metrics did not differ significantly between groups over the study median follow up. CONCLUSIONS: SBPT is non-inferior to CFPT regarding FFF, with similar long-term GU and GI toxicity rates and minimal impact in patient reported HRQoL over time.

6.
Int J Radiat Oncol Biol Phys ; 118(4): 1049-1059, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-37914139

RESUMEN

PURPOSE: Our aim was to report physician- and patient-reported outcomes of patients with localized breast cancer treated with moderate versus ultrahypofractionated whole breast irradiation (WBI) after breast-conserving surgery (BCS). METHODS AND MATERIALS: Between February 2018 and February 2020, patients with localized breast cancer (pT0-3 pN0-1 M0) were offered participation in a phase 3 randomized clinical trial assessing adjuvant moderate hypofractionation (MHF) to 40 Gy in 15 fractions versus ultrahypofractionation (UHF) to 25 Gy in 5 fractions after BCS, with an optional simultaneously integrated boost. Toxicities, cosmesis, and quality of life were assessed at baseline, end of treatment (EOT), and 3 months, 1 year, 2 years, and 3 years from irradiation using validated metric tools. RESULTS: One hundred seven patients were randomized to MHF (n = 54) or UHF (n = 53) adjuvant WBI. The median follow-up was 42.8 months. Grade 2 radiation dermatitis was experienced by 4 patients (7.4%) in the MHF arm and 2 patients (3.7%) in the UHF arm at EOT (P = .726). No grade 3 or higher toxicities were observed. Deterioration of cosmesis by physician assessment was observed in 2 (6.7%) patients treated in the UHF arm and 1 (1.9%) patient treated in the MHF arm at EOT (P = .534), whereas at 3 months, only 1 (1.8%) patient treated in the MHF arm demonstrated deterioration of cosmesis (P = .315). At EOT, 91% and 94% of patients reported excellent/good cosmesis among those treated with MHF and UHF regimens, respectively (P = .550). At 3 months, more patients within the MHF arm reported excellent/good cosmesis compared with those in the UHF arm (100% vs 91%; P = .030). However, the difference in patient-reported cosmesis disappeared at the 1-, 2-, and 3-year time points. CONCLUSIONS: UHF WBI showed similar treatment-related late toxicities and similar provider-scored cosmesis compared with MHF radiation in patients treated adjuvantly after BCS.


Asunto(s)
Neoplasias de la Mama , Mastectomía Segmentaria , Humanos , Femenino , Radioterapia Adyuvante , Calidad de Vida , Neoplasias de la Mama/radioterapia , Neoplasias de la Mama/cirugía , Medición de Resultados Informados por el Paciente
7.
Cancers (Basel) ; 15(17)2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37686545

RESUMEN

BACKGROUND: Adolescent and young adult cancer patients are at high risk of developing radiation-associated side effects after treatment. Proton beam radiation therapy might reduce the risk of these side effects for this population without compromising treatment efficacy. METHODS: We review the current literature describing the utility of proton beam radiation therapy in the treatment of central nervous system tumors, sarcomas, breast cancer and Hodgkin lymphoma for the adolescent and young adult cancer population. RESULTS: Proton beam radiation therapy has utility for the treatment of certain cancers in the young adult population. Preliminary data suggest reduced radiation dose to normal tissues, which might reduce radiation-associated toxicities. Research is ongoing to further establish the role of proton therapy in this population. CONCLUSION: This report highlights the potential utility of proton beam radiation for certain adolescent young adult cancers, especially with reducing radiation doses to organs at risk and thereby potentially lowering risks of certain treatment-associated toxicities.

8.
Cancer Rep (Hoboken) ; 6(1): e1672, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35790091

RESUMEN

PURPOSE/OBJECTIVES: Holmium laser enucleation of the prostate (HoLEP) is commonly performed in patients with significant bladder outlet obstruction. However, there are few reports on the toxicity of external beam irradiation (RT) for prostate cancer in patients after prior HoLEP. In this study, we evaluate the side effects and treatment outcomes of RT after HoLEP. MATERIALS/METHODS: Eighteen patients who had HoLEP and subsequently received RT for prostate cancer were included. Data collected included patient and disease characteristics, urinary function, and radiation dose. Acute and late urinary (GU) and gastrointestinal (GI) side effects were evaluated. Disease control and survival rates were calculated using Kaplan-Meier method. RESULTS: Median follow-up was 18 months (range: 4-46 months). Median prostate volume was 107 ml before HoLEP and 24 ml after HoLEP. Median International Prostate Symptom Score (IPSS) was 17 (range: 5-32) before HoLEP. Median decline in IPSS score after HoLEP was 7 (range: -2-21). On uroflow study, peak flow rate, and post-void residual were significantly improved after HoLEP. After radiation, peak flow rate and average flow rate showed a decline but remained significantly improved compared to pre-HoLEP measurements. Maximum acute Common Terminology Criteria for Adverse Events (CTCAE) adverse events were 12 grade 1 and 3 grade 2 for GU, and 3 grade 1 for GI, respectively. Maximum late adverse events were 13 grade 1 and 2 grade 2 for GU, and all grade 0 for GI, respectively. At last follow-up, there were 8 grade 1 and 1 grade 2 late GU, and 3 grade 1 late GI adverse events, respectively. There was no significant increase in urinary incontinence after RT compared to before RT. The 18-month biochemical control, local control, distant control rates were 78%, 94%, and 80%, respectively. CONCLUSIONS: Patients who received RT as definitive treatment for prostate cancer after prior HoLEP had low risk of serious acute and late side effects. HoLEP can be safely performed and should be considered in patients with significant bladder outlet obstruction and large prostate volume before RT.


Asunto(s)
Láseres de Estado Sólido , Hiperplasia Prostática , Neoplasias de la Próstata , Obstrucción del Cuello de la Vejiga Urinaria , Masculino , Humanos , Próstata/cirugía , Obstrucción del Cuello de la Vejiga Urinaria/diagnóstico , Obstrucción del Cuello de la Vejiga Urinaria/etiología , Láseres de Estado Sólido/efectos adversos , Neoplasias de la Próstata/radioterapia , Neoplasias de la Próstata/cirugía , Hiperplasia Prostática/diagnóstico , Hiperplasia Prostática/cirugía , Holmio
9.
Adv Radiat Oncol ; 8(3): 101142, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36896215

RESUMEN

Purpose: Our objective was to report the quality of life (QoL) analysis and toxicity in patients with intermediate-risk prostate cancer treated with or without androgen deprivation therapy (ADT) in Proton Collaborative Group (PCG) GU003. Methods and Materials: Between 2012 and 2019, patients with intermediate-risk prostate cancer were enrolled. Patients were randomized to receive moderately hypofractionated proton beam therapy (PBT) to 70 Gy relative biologic effectiveness in 28 fractions to the prostate with or without 6 months of ADT. Expanded Prostate Cancer Index Composite, Short-Form 12, and the American Urological Association Symptom Index instruments were given at baseline and 3, 6, 12, 18, and 24 months after PBT. Toxicities were assessed according to Common Terminology Criteria for Adverse Events (version 4). Results: One hundred ten patients were randomized to PBT either with 6 months of ADT (n = 55) or without ADT (n = 55). The median follow-up was 32.4 months (range, 5.5-84.6). On average, 101 out of 110 (92%) patients filled out baseline QoL and patient-reported outcome surveys. The compliance was 84%, 82%, 64%, and 42% at 3, 6, 12, and 24 months, respectively. Baseline median American Urological Association Symptom Index was comparable between arms (6 [11%] ADT vs 5 [9%] no ADT, P = .359). Acute and late grade 2+ genitourinary and gastrointestinal toxicity were similar between arms. The ADT arm experienced a QoL decline of mean scores in the sexual (-16.1, P < .001) and hormonal (-6.3, P < .001) domains, with the largest time-specific hormonal differences at 3 (-13.8, P < .001) and 6 (-11.2, P < .001) months. The hormonal QoL domain returned to baseline 6 months after therapy. There was a trend to baseline in sexual function 6 months after completion of ADT. Conclusions: After 6 months of ADT, sexual and hormonal domains returned to baseline 6 months after completion of treatment for men with intermediate-risk prostate cancer.

10.
Med Phys ; 50(6): 3359-3367, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36959772

RESUMEN

BACKGROUND: Mechanical accuracy should be verified before implementing a proton stereotactic radiosurgery (SRS) program. Linear accelerator (Linac)-based SRS systems often use electronic portal imaging devices (EPIDs) to verify beam isocentricity. Because proton therapy systems do not have EPID, beam isocentricity tests of proton SRS may still rely on films, which are not efficient. PURPOSE: To validate that our proton SRS system meets mechanical precision requirements and to present an efficient method to evaluate the couch and gantry's rotational isocentricity for our proton SRS system. METHODS: A dedicated applicator to hold brass aperture for proton SRS system was designed. The mechanical precision of the system was tested using a metal ball and film for 11 combinations of gantry and couch angles. A more efficient quality assurance (QA) procedure was developed, which used a scintillator device to replace the film. The couch rotational isocentricity tests were performed using orthogonal kV x-rays with the couch rotated isocentrically to five positions (0°, 315°, 270°, 225°, and 180°). At each couch position, the distance between the metal ball in kV images and the imaging isocenter was measured. The gantry isocentricity tests were performed using a cone-shaped scintillator and proton beams at five gantry angles (0°, 45°, 90°, 135°, and 180°), and the isocenter position and the distance of each beam path to the isocenter were obtained. Daily QA procedure was performed for 1 month to test the robustness and reproducibility of the procedure. RESULTS: The gantry and couch rotational isocentricity exhibited sub-mm precision, with most measurements within ±0.5 mm. The 1-month QA results showed that the procedure was robust and highly reproducible to within ±0.2 mm. The gantry isocentricity test using the cone-shaped scintillator was accurate and sensitive to variations of ±0.2 mm. The QA procedure was efficient enough to be completed within 30 min. The 1-month isocentricity position variations were within 0.5 mm, which demonstrating that the overall proton SRS system was stable and precise. CONCLUSION: The proton SRS Winston-Lutz QA procedure using a cone-shaped scintillator was efficient and robust. We were able to verify radiation delivery could be performed with sub-mm mechanical precision.


Asunto(s)
Radiocirugia , Protones , Rotación , Reproducibilidad de los Resultados , Diagnóstico por Imagen , Aceleradores de Partículas , Fantasmas de Imagen
11.
Pract Radiat Oncol ; 13(4): 351-362, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37030538

RESUMEN

PURPOSE: To assess the clinical acceptability of a commercial deep-learning-based auto-segmentation (DLAS) prostate model that was retrained using institutional data for delineation of the clinical target volume (CTV) and organs-at-risk (OARs) for postprostatectomy patients, accounting for clinical and imaging protocol variations. METHODS AND MATERIALS: CTV and OARs of 109 prostate-bed patients were used to evaluate the performance of the vendor-trained model and custom retrained DLAS models using different training quantities. Two new models for OAR structures were retrained (n = 30, 60 data sets), while separate models were trained for a new CTV structure (n = 30, 60, 90 data sets), with the remaining data sets used for testing (n = 49, 19). The dice similarity coefficient (DSC), Hausdorff distance, and mean surface distance were evaluated. Six radiation oncologists performed a qualitative evaluation scoring both preference and clinical utility for blinded structure sets. Physician consensus data sets identified from the qualitative evaluation were used toward a separate CTV model. RESULTS: Both the 30- and 60-case retrained OAR models had median DSC values between 0.91 to 0.97, improving significantly over the vendor-trained model for all OARs except the penile bulb. The brand new 60-case CTV model had a median DSC of 0.70 improving significantly over the 30-case model. DLAS (60-case model) and manual contours were blinded and evaluated by physicians with contours deemed acceptable or precise for 87% and 94% of cases for DLAS and manual delineations, respectively. DLAS-generated CTVs were scored precise or acceptable in 54% of cases, compared with the manual delineation value of 73%. The 30-case physician consensus CTV model did not show a significant difference compared with the randomly selected models. CONCLUSIONS: Custom retraining using institutional data leads to performance improvement in the clinical utility and accuracy of DLAS for postprostatectomy patients. A small number of data sets are sufficient for building an institutional site-specific DLAS OAR model, as well as for training new structures. Data indicates the workload for identifying training data sets could be shared among groups for the male pelvic region, making it accessible to clinics of all sizes.


Asunto(s)
Inteligencia Artificial , Aprendizaje Profundo , Humanos , Masculino , Planificación de la Radioterapia Asistida por Computador/métodos , Órganos en Riesgo , Prostatectomía
12.
Adv Radiat Oncol ; 8(2): 101143, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36845611

RESUMEN

Purpose: There are limited data regarding using stereotactic body radiation therapy (SBRT) in the postprostatectomy setting. Here, we present a preliminary analysis of a prospective phase II trial that aimed to evaluate the safety and efficacy of postprostatectomy SBRT for adjuvant or early salvage therapy. Materials and Methods: Between May 2018 and May 2020, 41 patients fulfilled inclusion criteria and were stratified into 3 groups: group I (adjuvant), prostate-specific antigen (PSA) < 0.2 ng/mL with high-risk features including positive surgical margins, seminal vesicle invasion, or extracapsular extension; group II (salvage), with PSA ≥ 0.2 ng/mL but < 2 ng/mL; or group III (oligometastatic), with PSA ≥ 0.2 ng/mL but < 2 ng/mL and up to 3 sites of nodal or bone metastases. Androgen deprivation therapy was not offered to group I. Androgen deprivation therapy was offered for 6 months for group II and 18 months for group III patients. SBRT dose to the prostate bed was 30 to 32 Gy in 5 fractions. Baseline-adjusted physician reported toxicities (Common Terminology Criteria for Adverse Events), patient reported quality-of-life (Expanded Prostate Index Composite, Patient-Reported Outcome Measurement Information System), and American Urologic Association scores were evaluated for all patients. Results: The median follow-up was 23 months (range, 10-37). SBRT was adjuvant in 8 (20%) patients, salvage in 28 (68%), and salvage with the presence of oligometastases in 5 (12%) patients. Urinary, bowel, and sexual quality of life domains remained high after SBRT. Patients tolerated SBRT with no grade 3 or higher (3+) gastrointestinal or genitourinary toxicities. The baseline adjusted acute and late toxicity grade 2 genitourinary (urinary incontinence) rate was 2.4% (1/41) and 12.2% (5/41). At 2 years, clinical disease control was 95%, and biochemical control was 73%. Among the 2 clinical failures, 1 was a regional node and the other a bone metastasis. Oligometastatic sites were salvaged successfully with SBRT. There were no in-target failures. Conclusions: Postprostatectomy SBRT was very well tolerated in this prospective cohort, with no significant effect on quality of life metrics postirradiation, while providing excellent clinical disease control.

13.
ArXiv ; 2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37396612

RESUMEN

PURPOSE: To develop a DL-based PBSPT dose prediction workflow with high accuracy and balanced complexity to support on-line adaptive proton therapy clinical decision and subsequent replanning. METHODS: PBSPT plans of 103 prostate cancer patients and 83 lung cancer patients previously treated at our institution were included in the study, each with CTs, structure sets, and plan doses calculated by the in-house developed Monte-Carlo dose engine. For the ablation study, we designed three experiments corresponding to the following three methods: 1) Experiment 1, the conventional region of interest (ROI) method. 2) Experiment 2, the beam mask (generated by raytracing of proton beams) method to improve proton dose prediction. 3) Experiment 3, the sliding window method for the model to focus on local details to further improve proton dose prediction. A fully connected 3D-Unet was adopted as the backbone. Dose volume histogram (DVH) indices, 3D Gamma passing rates, and dice coefficients for the structures enclosed by the iso-dose lines between the predicted and the ground truth doses were used as the evaluation metrics. The calculation time for each proton dose prediction was recorded to evaluate the method's efficiency. RESULTS: Compared to the conventional ROI method, the beam mask method improved the agreement of DVH indices for both targets and OARs and the sliding window method further improved the agreement of the DVH indices. For the 3D Gamma passing rates in the target, OARs, and BODY (outside target and OARs), the beam mask method can improve the passing rates in these regions and the sliding window method further improved them. A similar trend was also observed for the dice coefficients. In fact, this trend was especially remarkable for relatively low prescription isodose lines. The dose predictions for all the testing cases were completed within 0.25s.

14.
Radiat Oncol ; 18(1): 157, 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37736727

RESUMEN

BACKGROUND: Setup reproducibility of the tissue in the proton beam path is critical in maintaining the planned clinical target volume (CTV) dose coverage and sparing the organs at risk (OAR). In this study, we retrospectively evaluated radiation therapy dose reproducibility for proton pencil beam scanning (PBS) treatment of breast cancer patients with and without mask immobilization. METHODS: Ninety-four patients treated between January 2019 and September 2022 with at least one verification CT scan (V-CT) in treatment position were included for this study. All patients were set up with arms up using the Orfit AIO patient positioning system, with (69 patients) or without (25 patients) mask immobilization in chin, neck, shoulder, upper arm, and chest areas. Two to three enface or near enface single field uniform dose PBS beams were optimized using a commercial treatment planning system. Prescription doses were 25 to 60 GyRBE in 5 to 45 fractions. Treatment plan doses re-calculated on V-CTs were compared to the corresponding planned doses. Cumulative doses were also calculated for patients with at least 3 V-CTs by deform and weighted sum doses from V-CTs to corresponding P-CTs. CTV D95%, ipsilateral-lung V40%, esophagus D0.01cc, and heart mean dose were evaluated and reported as percentages of prescription doses. Differences were large dose deteriorations (LDD) if: (1) CTV (V-CT/cumulative D95%) - (Planned D95%) < - 5%; or (2) Ipsilateral-lung (V-CT/cumulative V40%) - (Planned V40%) > 5%; or (3) Esophagus (V-CT/cumulative D0.01cc) - (Planned D0.01cc) > 10%; or (4) Heart (V-CT/cumulative mean) - (Planned mean) > 1.5%. RESULTS: On average, V-CT/cumulative and planned CTV/OAR dose parameter differences were less than 2.2%/1.7% and 3.4%/3.7% for masked and maskless patients, respectively. The percentages of patients with at least one CTV or OAR V-CT/cumulative dose LDD were 20.3%/25.0% and 72.0%/54.0% for masked and maskless patients, respectively. CONCLUSIONS: On average, masked/maskless setups achieved delivered and planned CTV/OAR dose parameters agreed within 2.2%/3.7% for PBS treatment of breast cancer patients in this study. Maskless patients had higher rate of CTV/OAR LDDs compared to masked patients. Dosimetric differences large enough to raise clinical concerns in either group were able to be addressed with replannings.


Asunto(s)
Neoplasias de la Mama , Terapia de Protones , Humanos , Femenino , Protones , Neoplasias de la Mama/radioterapia , Reproducibilidad de los Resultados , Estudios Retrospectivos
15.
Cancers (Basel) ; 15(6)2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36980545

RESUMEN

Surgical treatment of pelvic sarcoma involving the bone is the standard of care but is associated with several sequelae and reduced functional quality of life (QOL). Treatment with photon and proton radiotherapy is associated with relapse. Carbon ion radiotherapy (CIRT) may reduce both relapse rates and treatment sequelae. The PROSPER study is a tricontinental, nonrandomized, prospective, three-arm, pragmatic trial evaluating treatments of pelvic sarcoma involving the bone. Patients aged at least 15 years are eligible for inclusion. Participants must have an Eastern Cooperative Oncology Group Performance Status score of two or less, newly diagnosed disease, and histopathologic confirmation of pelvic chordoma, chondrosarcoma, osteosarcoma, Ewing sarcoma with bone involvement, rhabdomyosarcoma (RMS) with bone involvement, or non-RMS soft tissue sarcoma with bone involvement. Treatment arms include (1) CIRT (n = 30) delivered in Europe and Asia, (2) surgical treatment with or without adjuvant radiotherapy (n = 30), and (3) proton therapy (n = 30). Arms two and three will be conducted at Mayo Clinic campuses in Arizona, Florida, and Minnesota. The primary end point is to compare the 1-year change in functional QOL between CIRT and surgical treatment. Additional comparisons among the three arms will be made between treatment sequelae, local control, and other QOL measures.

16.
Front Oncol ; 12: 921465, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36033460

RESUMEN

Purpose/objectives: This retrospective study demonstrates the long-term outcomes of treating prostate cancer using intensity modulated (IMRT) with incorporation of MRI-directed boost. Materials/methods: From February 2009 to February 2013, 78 men received image-guided IMRT delivering 77.4 Gy in 44 fractions with simultaneously integrated boost to 81-83 Gy to an MRI-identified lesion. Patients with intermediate-risk or high-risk prostate cancer were recommended to receive 6 and 24-36 months of adjuvant hormonal therapy, respectively. Results: Median follow-up was 113 months (11-147). There were 18 low-risk, 43 intermediate-risk, and 17 high-risk patients per NCCN risk stratification included in this study. Adjuvant hormonal therapy was utilized in 32 patients (41%). The 10-year biochemical control rate for all patients was 77%. The 10-year biochemical control rates for low-risk, intermediate-risk, and high-risk diseases were 94%, 81%, and 88%, respectively (p = 0.35). The 10-year rates of local control, distant control, and survival were 99%, 88%, and 66%, respectively. Of 25 patients who died, only four (5%) died of prostate cancer. On univariate analysis, T-category and pretreatment PSA level were associated with distant failure rate (p = 0.02). There was no grade =3 genitourinary and gastrointestinal toxicities that persisted at the last follow-up. Conclusions: This study demonstrated the long-term efficacy of using MRI to define an intra-prostatic lesion for SIB to 81-83Gy while treating the entire prostate gland to 77.4 Gy with IMRT. Our study confirms that modern MRI can be used to locally intensify dose to prostate tumors providing high long-term disease control while maintaining favorable long-term toxicity.

17.
Med Phys ; 49(12): 7428-7437, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36208196

RESUMEN

BACKGROUND: Parallel-opposed lateral beams are the conventional beam arrangements in proton therapy for prostate cancer. However, when considering linear energy transfer (LET) and RBE effects, alternative beam arrangements should be investigated. PURPOSE: To investigate the dose and dose averaged LET (LETd ) impact of using new beam arrangements rotating beams 5°-15° posteriorly to the laterals in prostate cancer treated with pencil-beam-scanning (PBS) proton therapy. METHODS: Twenty patients with localized prostate cancer were included in this study. Four proton treatment plans for each patient were generated utilizing 0°, 5°, 10°, and 15° posterior oblique beam pairs relative to parallel-opposed lateral beams. Dose-volume histograms (DVHs) from posterior oblique beams were analyzed. Dose-LETd -volume histogram (DLVH) was employed to study the difference in dose and LETd with each beam arrangement. DLVH indices, V ( d , l ) $V( {d,l} )$ , defined as the cumulative absolute volume that has a dose of at least d (Gy[RBE]) and a LETd of at least l (keV/µm), were calculated for both the rectum and bladder to the whole group of patients and two-sub groups with and without hydrogel spacer. These metrics were tested using Wilcoxon signed-rank test. RESULTS: Rotating beam angles from laterals to slightly posterior by 5°-15° reduced high LETd volumes while it increased the dose volume in the rectum and increased LETd in bladders. Beam angles rotated five degrees posteriorly from laterals (i.e., gantry in 95° and 265°) are proposed since they achieved the optimal balance of better LETd sparing and minimal dose increase in the rectum. A reduction of V(50 Gy[RBE], 2.6 keV/µm) from 7.41 to 3.96 cc (p < 0.01), and a slight increase of V(50 Gy[RBE], 0 keV/µm) from 20.1 to 21.6 cc (p < 0.01) were observed for the group without hydrogel spacer. The LETd sparing was less effective for the group with hydrogel spacer, which achieved the reduction of V(50 Gy[RBE], 2.6 keV/µm) from 4.28 to 2.10 cc (p < 0.01). CONCLUSIONS: Posterior oblique angle plans improved LETd sparing of the rectum while sacrificing LETd sparing in the bladder in the treatment of prostate cancer with PBS. Beam angle modification from laterals to slightly posterior may be a strategy to redistribute LETd and perhaps reduce rectal toxicity risks in prostate cancer patients treated with PBS. However, the effect is reduced for patients with hydrogel spacer.


Asunto(s)
Neoplasias de la Próstata , Terapia de Protones , Masculino , Humanos , Recto , Vejiga Urinaria , Transferencia Lineal de Energía , Terapia de Protones/efectos adversos , Neoplasias de la Próstata/radioterapia , Dosificación Radioterapéutica , Hidrogeles , Planificación de la Radioterapia Asistida por Computador
18.
Cancers (Basel) ; 15(1)2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36612040

RESUMEN

Purpose: Planning target volume (PTV) expansion for post-prostatectomy radiotherapy is typically ≥5 mm. Recent clinical trials have proved the feasibility of a reduced margin of 2−3 mm for treatments on MRI-linac. We aim to study the minimum PTV margin needed using iterative cone-beam CT (iCBCT) as image guidance on conventional linacs. Materials/Methods: Fourteen patients who received post-prostatectomy irradiation (8 with an endorectal balloon and 6 without a balloon) were included in this study. Treatment was delivered with volumetric modulated radiation therapy (VMAT). Fractional dose delivery was evaluated in 165 treatment fractions. The bladder, rectal wall, femoral heads, and prostate bed clinical tumor volume (CTV) were contoured and verified on daily iCBCT. PTV margins (0 mm, 2 mm, and 4 mm) were evaluated on daily iCBCT. CTV coverage and OAR dose parameters were assessed with each PTV margin. Results: CTV D100% was underdosed with a 0 mm margin in 32% of fractions in comparison with 2 mm (6%) and 4 mm (6%) PTV margin (p ≤ 0.001). CTV D95% > 95% was met in 93−94% fractions for all PTV expansions. CTV D95% > 95% was achieved in more patients with an endorectal balloon than those without: 0 mm­90/91 (99%) vs. 63/74 (85%); 2 mm­90/91 (99%) vs. 65/75 (87%); 4 mm­90/90 (100%) vs. 63/73 (86%). There was no difference in absolute median change in CTV D95% (0.32%) for 0-, 2-, and 4 mm margins. The maximum dose remained under 108% for 100% (0 mm), 97% (2 mm), and 98% (4 mm) of images. Rectal wall maximum dose remained under 108% for 100% (0 mm), 100% (2 mm), and 98% (4 mm) of images. Conclusions: With high-quality iCBCT image guidance, PTV margin accounting for inter-fractional uncertainties can be safely reduced for post-prostatectomy radiotherapy. For fractionated radiotherapy, an isotropic expansion of 2 mm and 4 mm may be considered for margin expansion with and without the endorectal balloon. Future application for margin reduction needs to be further evaluated and considered with the advent of shorter post-prostatectomy radiation courses.

19.
Int J Part Ther ; 8(4): 37-46, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35530190

RESUMEN

Purpose and Objectives: With increasing use of hypofractionation and extreme hypofractionation for prostate cancer, rectal dose-volume histogram (DVH) parameters that apply across dose fractionations may be helpful for treatment planning in clinical practice. We present an exploratory analysis of biologically effective rectal dose (BED) and equivalent rectal dose in 2 Gy fractions (EQD2) for rectal bleeding in patients treated with proton therapy across dose fractionations. Materials and Methods: From 2016 to 2018, 243 patients with prostate cancer were treated with definitive proton therapy. Rectal DVH parameters were obtained from treatment plans, and rectal bleeding events were recorded. The BED and EQD2 transformations were applied to each rectal DVH parameter. Univariate analysis using logistic regression was used to determine DVH parameters that were significant predictors of grade ≥ 2 rectal bleeding. Youden index was used to determine optimum cutoffs for clinically meaningful DVH constraints. Stepwise model-selection criteria were then applied to fit a "best" multivariate logistic model for predicting Common Terminology Criteria for Adverse Events grade ≥ 2 rectal bleeding. Results: Conventional fractionation, hypofractionation, and extreme hypofractionation were prescribed to 117 (48%), 84 (34%), and 42 (17.3%) patients, respectively. With a median follow-up of 20 (2.5-40) months, 10 (4.1%) patients experienced rectal bleeding. On univariate analysis, multiple rectal DVH parameters were significantly associated with rectal bleeding across BED, EQD2, and nominal doses. The BED volume receiving 55 Gy > 13.91% was found to be statistically and clinically significant. The BED volume receiving 55 Gy remained statistically significant for an association with rectal bleeding in the multivariate model (odds ratio, 9.81; 95% confidence interval, 2.4-40.5; P = .002). Conclusion: In patients undergoing definitive proton therapy for prostate cancer, dose to the rectum and volume of the rectum receiving the dose were significantly associated with rectal bleeding across conventional fractionation, hypofractionation, and extreme hypofractionation when using BED and EQD2 transformations.

20.
Pract Radiat Oncol ; 12(5): e453-e459, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35272078

RESUMEN

PURPOSE: A successful proton beam therapy (PBT) center relies heavily on the proper function and maintenance of a proton beam therapy machine. However, when a PBT machine is non-operational, a proton facility is hindered with delays that can potentially lead to inferior treatment outcome due to treatment interruption. This article reports a viable solution for a photon back-up plan in a proton down event. METHODS AND MATERIALS: The implementation of a workflow for which proton plans are converted to photon plans so that patients can be treated using photons has been a successful strategy to reduce delays and mitigate its effect on patient care. This workflow was established through collaboration of physicians, physicists, dosimetrists, therapists, nurses, and schedulers. RESULTS AND CONCLUSIONS: A tiered system established by disease site, number of fractions, and individualized circumstances is used to prioritize patients. Proton-photon backup planning strategy and physics check details were described. This article provides an overview of workflow of conversion of PBT to photon when the PBT machine is down. Specific needs of patients undergoing proton beam therapy are addressed.


Asunto(s)
Terapia de Protones , Humanos , Fotones/uso terapéutico , Terapia de Protones/métodos , Protones , Planificación de la Radioterapia Asistida por Computador/métodos , Flujo de Trabajo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA