Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 293(46): 17829-17837, 2018 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-30262668

RESUMEN

Androgens such as testosterone and dihydrotestosterone are a critical driver of prostate cancer progression. Cancer resistance to androgen deprivation therapies ensues when tumors engage metabolic processes that produce sustained androgen levels in the tissue. However, the molecular mechanisms involved in this resistance process are unclear, and functional imaging modalities that predict impending resistance are lacking. Here, using the human LNCaP and C4-2 cell line models of prostate cancer, we show that castration treatment-sensitive prostate cancer cells that normally have an intact glucuronidation pathway that rapidly conjugates and inactivates dihydrotestosterone and thereby limits androgen signaling, become glucuronidation deficient and resistant to androgen deprivation. Mechanistically, using CRISPR/Cas9-mediated gene ablation, we found that loss of UDP glucuronosyltransferase family 2 member B15 (UGT2B15) and UGT2B17 is sufficient to restore free dihydrotestosterone, sustained androgen signaling, and development of castration resistance. Furthermore, loss of glucuronidation enzymatic activity was also detectable with a nonsteroid glucuronidation substrate. Of note, glucuronidation-incompetent cells and the resultant loss of intracellular conjugated dihydrotestosterone were detectable in vivo by 18F-dihydrotestosterone PET. Together, these findings couple a mechanism with a functional imaging modality to identify impending castration resistance in prostate cancers.


Asunto(s)
Dihidrotestosterona/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/diagnóstico por imagen , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Testosterona/metabolismo , Animales , Línea Celular Tumoral , Dihidrotestosterona/química , Radioisótopos de Flúor , Glucuronosiltransferasa/genética , Glucuronosiltransferasa/metabolismo , Glicosilación , Humanos , Masculino , Ratones , Antígenos de Histocompatibilidad Menor/genética , Antígenos de Histocompatibilidad Menor/metabolismo , Tomografía de Emisión de Positrones , Radiofármacos/química , Receptores Androgénicos/fisiología , Transducción de Señal , Testosterona/química
2.
J Physiol ; 596(13): 2473-2489, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29707805

RESUMEN

KEY POINTS: The goal was to determine the importance of the sodium-glucose cotransporter SGLT1 and the glucose uniporter GLUT2 in intestinal glucose absorption during oral glucose tolerance tests (OGTTs) in mice. Glucose absorption was determined in mice using positron emission tomography and three non-metabolizable glucose probes: one specific for SGLTs, one specific for GLUTs, and one a substrate for both SGLTs and GLUTs. Absorption was determined in wild-type, Sglt1-/- and Glut2-/- mice. Gastric emptying was a rate-limiting step in absorption. SGLT1, but not GLUT2, was important in fast glucose absorption. In the absence of SGLT1 or GLUT2, the oral glucose load delivered to the small intestine was slowly absorbed. Oral phlorizin only inhibited the fast component of glucose absorption, but it contributed to decreasing blood glucose levels by inhibiting renal reabsorption. ABSTRACT: The current model of intestinal absorption is that SGLT1 is responsible for transport of glucose from the lumen into enterocytes across the brush border membrane, and GLUT2 for the downhill transport from the epithelium into blood across the basolateral membrane. Nevertheless, questions remain about the importance of these transporters in vivo. To address these questions, we have developed a non-invasive imaging method, positron emission tomography (PET), to monitor intestinal absorption of three non-metabolized glucose tracers during standard oral glucose tolerance tests (OGTTs) in mice. One tracer is specific for SGLTs (α-methyl-4-[18 F]fluoro-4-deoxy-d-glucopyranoside; Me-4FDG), one is specific for GLUTs (2-deoxy-2-[18 F]fluoro-d-glucose; 2-FDG), and one is a substrate for both SGLTs and GLUTs (4-deoxy-4-[18 F]fluoro-d-glucose; 4-FDG). OGTTs were conducted on adult wild-type, Sglt1-/- and Glut2-/- mice. In conscious mice, OGTTs resulted in the predictable increase in blood glucose that was blocked by phlorizin in both wild-type and Glut2-/- animals. The blood activity of both Me-4FDG and 4-FDG, but not 2-FDG, accompanied the changes in glucose concentration. PET imaging during OGTTs further shows that: (i) intestinal absorption of the glucose load depends on gastric emptying; (ii) SGLT1 is important for the fast absorption; (iii) GLUT2 is not important in absorption; and (iv) oral phlorizin reduces absorption by SGLT1, but is absorbed and blocks glucose reabsorption in the kidney. We conclude that in standard OGTTs in mice, SGLT1 is essential in fast absorption, GLUT2 does not play a significant role, and in the absence of SGLT1 the total load of glucose is slowly absorbed.


Asunto(s)
Glucosa/metabolismo , Absorción Intestinal , Intestino Delgado/metabolismo , Tomografía de Emisión de Positrones/métodos , Animales , Transporte Biológico , Femenino , Prueba de Tolerancia a la Glucosa , Transportador de Glucosa de Tipo 2/metabolismo , Intestino Delgado/diagnóstico por imagen , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transportador 1 de Sodio-Glucosa/metabolismo
3.
J Neurooncol ; 138(3): 557-569, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29525972

RESUMEN

A novel glucose transporter, the sodium glucose cotransporter 2 (SGLT2), has been demonstrated to contribute to the demand for glucose by pancreatic and prostate tumors, and its functional activity has been imaged using a SGLT specific PET imaging probe, α-methyl-4-[F-18]fluoro-4-deoxy-D-glucopyaranoside (Me-4FDG). In this study, Me-4FDG PET was extended to evaluate patients with high-grade astrocytic tumors. Me-4FDG PET scans were performed in four patients diagnosed with WHO Grade III or IV astrocytomas and control subjects, and compared with 2-deoxy-2-[F-18]fluoro-D-glucose (2-FDG) PET and magnetic resonance imaging (MRI) of the same subjects. Immunocytochemistry was carried out on Grade IV astrocytomas to determine the cellular location of SGLT proteins within the tumors. Me-4FDG retention was pronounced in astrocytomas in dramatic contrast to the lack of uptake into the normal brain, resulting in a high signal-to-noise ratio. Macroscopically, the distribution of Me-4FDG within the tumors overlapped with that of 2-FDG uptake and tumor definition using contrast-enhanced MRI images. Microscopically, the SGLT2 protein was found to be expressed in neoplastic glioblastoma cells and endothelial cells of the proliferating microvasculature. This preliminary study shows that Me-4FDG is a highly sensitive probe for visualization of high-grade astrocytomas by PET. The distribution of Me-4FDG within tumors overlapped that for 2-FDG, but the absence of background brain Me-4FDG resulted in superior imaging sensitivity. Furthermore, the presence of SGLT2 protein in astrocytoma cells and the proliferating microvasculature may offer a novel therapy using the SGLT2 inhibitors already approved by the FDA to treat type 2 diabetes mellitus.


Asunto(s)
Astrocitoma/diagnóstico por imagen , Neoplasias Encefálicas/diagnóstico por imagen , Glucósidos , Tomografía de Emisión de Positrones , Radiofármacos , Transportador 2 de Sodio-Glucosa/metabolismo , Adulto , Anciano , Astrocitoma/metabolismo , Astrocitoma/patología , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Encéfalo/patología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Femenino , Humanos , Inmunohistoquímica , Imagen por Resonancia Magnética , Masculino , Microvasos/metabolismo , Microvasos/patología , Persona de Mediana Edad , Clasificación del Tumor , Datos Preliminares
4.
Proc Natl Acad Sci U S A ; 112(16): E2039-47, 2015 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-25848027

RESUMEN

Chronic traumatic encephalopathy (CTE) is an acquired primary tauopathy with a variety of cognitive, behavioral, and motor symptoms linked to cumulative brain damage sustained from single, episodic, or repetitive traumatic brain injury (TBI). No definitive clinical diagnosis for this condition exists. In this work, we used [F-18]FDDNP PET to detect brain patterns of neuropathology distribution in retired professional American football players with suspected CTE (n = 14) and compared results with those of cognitively intact controls (n = 28) and patients with Alzheimer's dementia (AD) (n = 24), a disease that has been cognitively associated with CTE. [F-18]FDDNP PET imaging results in the retired players suggested the presence of neuropathological patterns consistent with models of concussion wherein brainstem white matter tracts undergo early axonal damage and cumulative axonal injuries along subcortical, limbic, and cortical brain circuitries supporting mood, emotions, and behavior. This deposition pattern is distinctively different from the progressive pattern of neuropathology [paired helical filament (PHF)-tau and amyloid-ß] in AD, which typically begins in the medial temporal lobe progressing along the cortical default mode network, with no or minimal involvement of subcortical structures. This particular [F-18]FDDNP PET imaging pattern in cases of suspected CTE also is primarily consistent with PHF-tau distribution observed at autopsy in subjects with a history of mild TBI and autopsy-confirmed diagnosis of CTE.


Asunto(s)
Lesión Encefálica Crónica/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Nitrilos , Tomografía de Emisión de Positrones , Adulto , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/diagnóstico por imagen , Amígdala del Cerebelo/microbiología , Amígdala del Cerebelo/patología , Autopsia , Estudios de Casos y Controles , Demografía , Humanos , Masculino , Mesencéfalo/microbiología , Mesencéfalo/patología , Persona de Mediana Edad
5.
Proc Natl Acad Sci U S A ; 112(30): E4111-9, 2015 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-26170283

RESUMEN

Glucose is a major metabolic substrate required for cancer cell survival and growth. It is mainly imported into cells by facilitated glucose transporters (GLUTs). Here we demonstrate the importance of another glucose import system, the sodium-dependent glucose transporters (SGLTs), in pancreatic and prostate adenocarcinomas, and investigate their role in cancer cell survival. Three experimental approaches were used: (i) immunohistochemical mapping of SGLT1 and SGLT2 distribution in tumors; (ii) measurement of glucose uptake in fresh isolated tumors using an SGLT-specific radioactive glucose analog, α-methyl-4-deoxy-4-[(18)F]fluoro-D-glucopyranoside (Me4FDG), which is not transported by GLUTs; and (iii) measurement of in vivo SGLT activity in mouse models of pancreatic and prostate cancer using Me4FDG-PET imaging. We found that SGLT2 is functionally expressed in pancreatic and prostate adenocarcinomas, and provide evidence that SGLT2 inhibitors block glucose uptake and reduce tumor growth and survival in a xenograft model of pancreatic cancer. We suggest that Me4FDG-PET imaging may be used to diagnose and stage pancreatic and prostate cancers, and that SGLT2 inhibitors, currently in use for treating diabetes, may be useful for cancer therapy.


Asunto(s)
Neoplasias Pancreáticas/metabolismo , Neoplasias de la Próstata/metabolismo , Transportador 2 de Sodio-Glucosa/metabolismo , Adenocarcinoma/metabolismo , Animales , Transporte Biológico , Femenino , Radioisótopos de Flúor/química , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Glucósidos/química , Humanos , Inmunohistoquímica , Riñón/metabolismo , Masculino , Ratones , Necrosis , Trasplante de Neoplasias , Neoplasias Pancreáticas/tratamiento farmacológico , Tomografía de Emisión de Positrones , Neoplasias de la Próstata/tratamiento farmacológico , Inhibidores del Cotransportador de Sodio-Glucosa 2
6.
J Am Soc Nephrol ; 28(3): 802-810, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27620988

RESUMEN

Kidneys contribute to glucose homeostasis by reabsorbing filtered glucose in the proximal tubules via sodium-glucose cotransporters (SGLTs). Reabsorption is primarily handled by SGLT2, and SGLT2-specific inhibitors, including dapagliflozin, canagliflozin, and empagliflozin, increase glucose excretion and lower blood glucose levels. To resolve unanswered questions about these inhibitors, we developed a novel approach to map the distribution of functional SGLT2 proteins in rodents using positron emission tomography with 4-[18F]fluoro-dapagliflozin (F-Dapa). We detected prominent binding of intravenously injected F-Dapa in the kidney cortexes of rats and wild-type and Sglt1-knockout mice but not Sglt2-knockout mice, and injection of SGLT2 inhibitors prevented this binding. Furthermore, imaging revealed only low levels of F-Dapa in the urinary bladder, even after displacement of kidney binding with dapagliflozin. Microscopic ex vitro autoradiography of kidney showed F-Dapa binding to the apical surface of early proximal tubules. Notably, in vivo imaging did not show measureable specific binding of F-Dapa in heart, muscle, salivary glands, liver, or brain. We propose that F-Dapa is freely filtered by the kidney, binds to SGLT2 in the apical membranes of the early proximal tubule, and is subsequently reabsorbed into blood. The high density of functional SGLT2 transporters detected in the apical membrane of the proximal tubule but not detected in other organs likely accounts for the high kidney specificity of SGLT2 inhibitors. Overall, these data are consistent with data from clinical studies on SGLT2 inhibitors and provide a rationale for the mode of action of these drugs.


Asunto(s)
Compuestos de Bencidrilo/metabolismo , Glucósidos/metabolismo , Túbulos Renales Proximales/metabolismo , Transportador 2 de Sodio-Glucosa/metabolismo , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley
7.
J Physiol ; 594(15): 4425-38, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27018980

RESUMEN

KEY POINTS: Glucose transporters are central players in glucose homeostasis. There are two major classes of glucose transporters in the body, the passive facilitative glucose transporters (GLUTs) and the secondary active sodium-coupled glucose transporters (SGLTs). In the present study, we report the use of a non-invasive imaging technique, positron emission tomography, in mice aiming to evaluate the role of GLUTs and SGLTs in controlling glucose distribution and utilization. We show that GLUTs are most significant for glucose uptake into the brain and liver, whereas SGLTs are important in glucose recovery in the kidney. This work provides further support for the use of SGLT imaging in the investigation of the role of SGLT transporters in human physiology and diseases such as diabetes and cancer. ABSTRACT: The importance of sodium-coupled glucose transporters (SGLTs) and facilitative glucose transporters (GLUTs) in glucose homeostasis was studied in mice using fluorine-18 labelled glucose molecular imaging probes and non-invasive positron emission tomography (PET) imaging. The probes were: α-methyl-4-[F-18]-fluoro-4-deoxy-d-glucopyranoside (Me-4FDG), a substrate for SGLTs; 4-deoxy-4-[F-18]-fluoro-d-glucose (4-FDG), a substrate for SGLTs and GLUTs; and 2-deoxy-2-[F-18]-fluoro-d-glucose (2-FDG), a substrate for GLUTs. These radiolabelled imaging probes were injected i.v. into wild-type, Sglt1(-/-) , Sglt2(-/-) and Glut2(-/-) mice and their dynamic whole-body distribution was determined using microPET. The distribution of 2-FDG was similar to that reported earlier (i.e. it accumulated in the brain, heart, liver and kidney, and was excreted into the urinary bladder). There was little change in the distribution of 2-FDG in Glut2(-/-) mice, apart from a reduction in the rate of uptake into liver. The major differences between Me-4FDG and 2-FDG were that Me-4FDG did not enter the brain and was not excreted into the urinary bladder. There was urinary excretion of Me-4FDG in Sglt1(-/-) and Sglt2(-/-) mice. However, Me-4FDG was not reabsorbed in the kidney in Glut2(-/-) mice. There were no differences in Me-4FDG uptake into the heart of wild-type, Sglt1(-/-) and Sglt2(-/-) mice. We conclude that GLUT2 is important in glucose liver transport and reabsorption of glucose in the kidney along with SGLT2 and SGLT1. Complete reabsorption of Me-4FDG from the glomerular filtrate in wild-type mice and the absence of reabsorption in the kidney in Glut2(-/-) mice confirm the importance of GLUT2 in glucose absorption across the proximal tubule.


Asunto(s)
Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Proteínas de Transporte de Sodio-Glucosa/metabolismo , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Desoxiglucosa/análogos & derivados , Femenino , Radioisótopos de Flúor , Glucosa/farmacocinética , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Glucósidos , Corazón/diagnóstico por imagen , Riñón/diagnóstico por imagen , Riñón/metabolismo , Hígado/diagnóstico por imagen , Hígado/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Músculos/diagnóstico por imagen , Músculos/metabolismo , Miocardio/metabolismo , Tomografía de Emisión de Positrones , Proteínas de Transporte de Sodio-Glucosa/genética , Vejiga Urinaria/diagnóstico por imagen , Vejiga Urinaria/metabolismo
8.
Proc Natl Acad Sci U S A ; 109(41): 16492-7, 2012 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-23012452

RESUMEN

The positron-emission tomography (PET) probe 2-(1-[6-[(2-fluoroethyl)(methyl)amino]-2-naphthyl]ethylidene) (FDDNP) is used for the noninvasive brain imaging of amyloid-ß (Aß) and other amyloid aggregates present in Alzheimer's disease and other neurodegenerative diseases. A series of FDDNP analogs has been synthesized and characterized using spectroscopic and computational methods. The binding affinities of these molecules have been measured experimentally and explained through the use of a computational model. The analogs were created by systematically modifying the donor and the acceptor sides of FDDNP to learn the structural requirements for optimal binding to Aß aggregates. FDDNP and its analogs are neutral, environmentally sensitive, fluorescent molecules with high dipole moments, as evidenced by their spectroscopic properties and dipole moment calculations. The preferred solution-state conformation of these compounds is directly related to the binding affinities. The extreme cases were a nonplanar analog t-butyl-FDDNP, which shows low binding affinity for Aß aggregates (520 nM K(i)) in vitro and a nearly planar tricyclic analog cDDNP, which displayed the highest binding affinity (10 pM K(i)). Using a previously published X-ray crystallographic model of 1,1-dicyano-2-[6-(dimethylamino)naphthalen-2-yl]propene (DDNP) bound to an amyloidogenic Aß peptide model, we show that the binding affinity is inversely related to the distortion energy necessary to avoid steric clashes along the internal surface of the binding channel.


Asunto(s)
2-Naftilamina/análogos & derivados , Acrilonitrilo/análogos & derivados , Péptidos beta-Amiloides/química , Neuroimagen/métodos , Placa Amiloide/diagnóstico , 2-Naftilamina/química , 2-Naftilamina/metabolismo , Acrilonitrilo/química , Acrilonitrilo/metabolismo , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Sitios de Unión , Unión Competitiva , Cristalografía por Rayos X , Humanos , Cinética , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Placa Amiloide/metabolismo , Unión Proteica
9.
J Neurosci ; 33(15): 6245-56, 2013 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-23575824

RESUMEN

Alzheimer's disease (AD) is hallmarked by amyloid plaques, neurofibrillary tangles, and widespread cortical neuronal loss (Selkoe, 2001). The "amyloid cascade hypothesis" posits that cerebral amyloid sets neurotoxic events into motion that precipitate Alzheimer dementia (Hardy and Allsop, 1991). Yet, faithful recapitulation of all AD features in widely used transgenic (Tg) mice engineered to overproduce Aß peptides has been elusive. We have developed a Tg rat model (line TgF344-AD) expressing mutant human amyloid precursor protein (APPsw) and presenilin 1 (PS1ΔE9) genes, each independent causes of early-onset familial AD. TgF344-AD rats manifest age-dependent cerebral amyloidosis that precedes tauopathy, gliosis, apoptotic loss of neurons in the cerebral cortex and hippocampus, and cognitive disturbance. These results demonstrate progressive neurodegeneration of the Alzheimer type in these animals. The TgF344-AD rat fills a critical need for a next-generation animal model to enable basic and translational AD research.


Asunto(s)
Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Corteza Cerebral/patología , Trastornos del Conocimiento/patología , Hipocampo/patología , Degeneración Nerviosa/patología , Placa Amiloide/patología , Tauopatías/patología , Factores de Edad , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Conducta Animal , Angiopatía Amiloide Cerebral , Corteza Cerebral/metabolismo , Trastornos del Conocimiento/complicaciones , Trastornos del Conocimiento/genética , Trastornos del Conocimiento/metabolismo , Modelos Animales de Enfermedad , Femenino , Gliosis/genética , Gliosis/patología , Hipocampo/metabolismo , Humanos , Masculino , Degeneración Nerviosa/genética , Degeneración Nerviosa/metabolismo , Placa Amiloide/genética , Presenilina-1/genética , Ratas , Ratas Endogámicas F344 , Ratas Transgénicas , Tauopatías/metabolismo , Proteínas tau/metabolismo
10.
Am J Physiol Cell Physiol ; 304(3): C240-7, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23151803

RESUMEN

Na(+)-glucose cotransporter (SGLT) mRNAs have been detected in many organs of the body, but, apart from kidney and intestine, transporter expression, localization, and functional activity, as well as physiological significance, remain elusive. Using a SGLT-specific molecular imaging probe, α-methyl-4-deoxy-4-[(18)F]fluoro-D-glucopyranoside (Me-4-FDG) with ex vivo autoradiography and immunohistochemistry, we mapped in vivo the regional distribution of functional SGLTs in rat brain. Since Me-4-FDG is not a substrate for GLUT1 at the blood-brain barrier (BBB), in vivo delivery of the probe into the brain was achieved after opening of the BBB by an established procedure, osmotic shock. Ex vivo autoradiography showed that Me-4-FDG accumulated in regions of the cerebellum, hippocampus, frontal cortex, caudate nucleus, putamen, amygdala, parietal cortex, and paraventricular nucleus of the hypothalamus. Little or no Me-4-FDG accumulated in the brain stem. The regional accumulation of Me-4-FDG overlapped the distribution of SGLT1 protein detected by immunohistochemistry. In summary, after the BBB is opened, the specific substrate for SGLTs, Me-4-FDG, enters the brain and accumulates in selected regions shown to express SGLT1 protein. This localization and the sensitivity of these neurons to anoxia prompt the speculation that SGLTs may play an essential role in glucose utilization under stress such as ischemia. The expression of SGLTs in the brain raises questions about the potential effects of SGLT inhibitors under development for the treatment of diabetes.


Asunto(s)
Encéfalo/metabolismo , Transportador 1 de Sodio-Glucosa/metabolismo , Animales , Autorradiografía/métodos , Transporte Biológico , Barrera Hematoencefálica/metabolismo , Encéfalo/diagnóstico por imagen , Femenino , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Inmunohistoquímica/métodos , ARN Mensajero/genética , Cintigrafía , Ratas , Ratas Sprague-Dawley , Transportador 1 de Sodio-Glucosa/genética , Distribución Tisular
11.
Acta Neuropathol ; 126(5): 643-57, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24100688

RESUMEN

The devastating effects of the still incurable Alzheimer's disease (AD) project an ever increasing shadow of burden on the health care system and society in general. In this ominous context, amyloid (Aß) imaging is considered by many of utmost importance for progress towards earlier AD diagnosis and for potential development of effective therapeutic interventions. Amyloid imaging positron emission tomography procedures offer the opportunity for accurate mapping and quantification of amyloid-Aß neuroaggregate deposition in the living brain of AD patients. This review analyzes the perceived value of current Aß imaging probes and their clinical utilization and, based on amyloid imaging results, offers a hypothesis on the effects of amyloid deposition on the biology of AD and its progression. It also analyzes lingering questions permeating the field of amyloid imaging on the apparent contradictions between imaging results and known neuropathology brain regional deposition of Aß aggregates. As a result, the review also discusses literature evidence as to whether brain Aß deposition is truly visualized and measured with these amyloid imaging agents, which would have significant implications in the understanding of the biological AD cascade and in the monitoring of therapeutic interventions with these surrogate Aß markers.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico por imagen , Péptidos beta-Amiloides/metabolismo , Encéfalo/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/análisis , Encéfalo/patología , Progresión de la Enfermedad , Humanos , Tomografía de Emisión de Positrones
12.
Am J Geriatr Psychiatry ; 21(2): 138-44, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23343487

RESUMEN

OBJECTIVE: Mild traumatic brain injury due to contact sports may cause chronic behavioral, mood, and cognitive disturbances associated with pathological deposition of tau protein found at brain autopsy. To explore whether brain tau deposits can be detected in living retired players, we used positron emission tomography (PET) scans after intravenous injections of 2-(1-{6-[(2-[F-18]fluoroethyl)(methyl)amino]-2-naphthyl}ethylidene)malononitrile (FDDNP). METHODS: Five retired National Football League players (age range: 45 to 73 years) with histories of mood and cognitive symptoms received neuropsychiatric evaluations and FDDNP-PET. PET signals in subcortical (caudate, putamen, thalamus, subthalamus, midbrain, cerebellar white matter) and cortical (amygdala, frontal, parietal, posterior cingulate, medial and lateral temporal) regions were compared with those of five male controls of comparable age, education, and body mass index. RESULTS: FDDNP signals were higher in players compared with controls in all subcortical regions and the amygdala, areas that produce tau deposits following trauma. CONCLUSIONS: The small sample size and lack of autopsy confirmation warrant larger, more definitive studies, but if future research confirms these initial findings, FDDNP-PET may offer a means for premorbid identification of neurodegeneration in contact-sports athletes.


Asunto(s)
Lesiones Encefálicas/diagnóstico , Disfunción Cognitiva/etiología , Demencia/etiología , Fútbol Americano/lesiones , Trastornos del Humor/etiología , Proteínas tau/análisis , Traumatismos en Atletas/complicaciones , Traumatismos en Atletas/diagnóstico , Química Encefálica , Lesiones Encefálicas/complicaciones , Estudios de Casos y Controles , Disfunción Cognitiva/diagnóstico , Demencia/diagnóstico , Diagnóstico Precoz , Humanos , Masculino , Persona de Mediana Edad , Trastornos del Humor/diagnóstico , Pruebas Neuropsicológicas , Nitrilos , Tomografía de Emisión de Positrones/métodos , Puntaje de Propensión
13.
Proc Natl Acad Sci U S A ; 107(14): 6222-7, 2010 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-20304798

RESUMEN

This work focuses on the development of specific substrates for estrogen sulfotransferase (SULT1E1) to produce molecular imaging probes for this enzyme. SULT1E1 is a key enzyme in estrogen homeostasis, playing a central role in the prevention and development of human disease. In vitro sulfation assays showed alkyl and aryl substitutions to a fused heterocyclic system modeled after beta-naphthol (betaN), based on compounds that interact with the estrogen receptor, rendered several molecules with enhanced specificity for SULT1E1 over SULT1A1*1, SULT1A1*2, SULT1A3, and SULT2A1. Several 6-hydroxy-2-arylbenzothiazoles tested demonstrated excellent affinity--V(max)/K(m) ratios-and specificity for SULT1E1. K(m) values ranged from 0.12-2.36 microM. A strong correlation was observed between polarity of the 4'-sustituent on the 2-aryl moiety (Hammett sigma(p)) and the log(V(max)/K(m)) (r = 0.964). Substrate sensitivity is influenced by the acidity of the 6-phenolic group demonstrated by correlating its (1)H NMR chemical shift (delta(OH)) with the log(V(max)/K(m)) (r = 0.963). Acidity is mediated by the electron withdrawing capacity of the 4'-substituent outlined by the correlation of the C-2 (13)C NMR chemical shift (delta(C2)) with the log(V(max)/K(m)) (r = 0.987). 2-[4-(Methylamino)phenyl]-6-hydroxybenzothiazole (2b) was radiolabeled with carbon-11 ((11)C-(2b)) and used in vivo for microPET scanning and tissue metabolite identification. High PET signal was paralleled with the presence of radiolabeled (11)C-(2b)-6-O-sulfate and the SULT1E1 protein detected by western blot. Because this and other members of this family presenting specificity for SULT1E1 can be labeled with carbon-11 or fluorine-18, in vivo assays of SULT1E1 functional activity are now feasible in humans.


Asunto(s)
Sulfotransferasas/análisis , Animales , Línea Celular , Humanos , Ratones , Modelos Moleculares , Estructura Terciaria de Proteína , Ratas , Spodoptera , Especificidad por Sustrato , Sulfotransferasas/química , Sulfotransferasas/metabolismo , Tiazoles/química , Tiazoles/metabolismo
14.
Am J Physiol Cell Physiol ; 302(2): C373-82, 2012 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-21940664

RESUMEN

Human Na(+)-D-glucose cotransporter (hSGLT) inhibitors constitute the newest class of diabetes drugs, blocking up to 50% of renal glucose reabsorption in vivo. These drugs have potential for widespread use in the diabetes epidemic, but how they work at a molecular level is poorly understood. Here, we use electrophysiological methods to assess how they block Na(+)-D-glucose cotransporter SGLT1 and SGLT2 expressed in human embryonic kidney 293T (HEK-293T) cells and compared them to the classic SGLT inhibitor phlorizin. Dapagliflozin [(1S)-1,5,5-anhydro-1-C-{4-chloro-3-[(4-ethoxyphenyl)methyl]phenyl}-D-glucitol], two structural analogs, and the aglycones of phlorizin and dapagliflozin were investigated in detail. Dapagliflozin and fluoro-dapagliflozin [(1S)-1,5-anhydro-1-C-{4-chloro-3-[(4-ethoxyphenyl)methyl]phenyl}-4-F-4-deoxy-D-glucitol] blocked glucose transport and glucose-coupled currents with ≈100-fold specificity for hSGLT2 (K(i) = 6 nM) over hSGLT1 (K(i) = 400 nM). As galactose is a poor substrate for SGLT2, it was surprising that galacto-dapagliflozin [(1S)-1,5-anhydro-1-C-{4-chloro-3-[(4-ethoxyphenyl)methyl]phenyl}-D-galactitol] was a selective inhibitor of hSGLT2, but was less potent than dapagliflozin for both transporters (hSGLT2 K(i) = 25 nM, hSGLT1 K(i) = 25,000 nM). Phlorizin and galacto-dapagliflozin rapidly dissociated from SGLT2 [half-time off rate (t(1/2,Off)) ≈ 20-30 s], while dapagliflozin and fluoro-dapagliflozin dissociated from hSGLT2 at a rate 10-fold slower (t(1/2,Off) ≥ 180 s). Phlorizin was unable to exchange with dapagliflozin bound to hSGLT2. In contrast, dapagliflozin, fluoro-dapagliflozin, and galacto-dapagliflozin dissociated quickly from hSGLT1 (t(1/2,Off) = 1-2 s), and phlorizin readily exchanged with dapagliflozin bound to hSGLT1. The aglycones of phlorizin and dapagliflozin were poor inhibitors of both hSGLT2 and hSGLT1 with K(i) values > 100 µM. These results show that inhibitor binding to SGLTs is composed of two synergistic forces: sugar binding to the glucose site, which is not rigid, and so different sugars will change the orientation of the aglycone in the access vestibule; and the binding of the aglycone affects the binding affinity of the entire inhibitor. Therefore, the pharmacophore must include variations in both the structure of the sugar and the aglycone.


Asunto(s)
Glucósidos , Florizina , Transportador 1 de Sodio-Glucosa/antagonistas & inhibidores , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Compuestos de Bencidrilo , Transporte Biológico/fisiología , Diabetes Mellitus/metabolismo , Glucosa/metabolismo , Glucósidos/química , Glucósidos/metabolismo , Células HEK293 , Humanos , Riñón/metabolismo , Estructura Molecular , Técnicas de Placa-Clamp , Florizina/química , Florizina/metabolismo , Transportador 1 de Sodio-Glucosa/química , Transportador 1 de Sodio-Glucosa/metabolismo , Transportador 2 de Sodio-Glucosa/química , Transportador 2 de Sodio-Glucosa/metabolismo , Especificidad por Sustrato
15.
Neuroimage ; 60(1): 241-51, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22197787

RESUMEN

UNLABELLED: Logan graphical analysis with cerebellum as reference region has been widely used for the estimation of the distribution volume ratio (DVR) of [(18)F]FDDNP as a measure of amyloid burden and tau deposition in human brain because of its simplicity and computational ease. However, spurious parametric DVR images may be produced with shorter scanning times and when the noise level is high. In this work, we have characterized a relative-equilibrium-based (RE) graphical method against the Logan analysis for parametric imaging and region-of-interest (ROI) analysis. METHODS: Dynamic [(18)F]FDDNP PET scans were performed on 9 control subjects and 12 patients diagnosed with Alzheimer's disease. Using the cerebellum as reference input, regional DVR estimates were derived using both the Logan analysis and the RE plot approach. Effects on DVR estimates obtained at voxel and ROI levels by both graphical approaches using data in different time windows were investigated and compared with the standard values derived using the Logan analysis on a voxel-by-voxel basis for the time window of 35-125 min used in previous studies. RESULTS: Larger bias and variability were observed for DVR estimates obtained by the Logan graphical analysis at the voxel level when short time windows (85-125 and 45-65 min) were used, because of high noise levels in voxel-wise parametric imaging. However, when the Logan graphical analysis was applied at the ROI level over those short time windows, the DVR estimates did not differ significantly from the standard values derived using the Logan analysis on the voxel level for the time window of 35-125 min, and their bias and variability were remarkably lower. Conversely, the RE plot approach was more robust in providing DVR estimates with less bias and variability even when short time windows were used. The DVR estimates obtained at voxel and ROI levels were consistent. No significant differences were observed in DVR estimates obtained by the RE plot approach for all paired comparisons with the standard values. CONCLUSIONS: The RE plot approach provides less noisy parametric images and gives consistent and reliable regional DVR estimates at both voxel and ROI levels, indicating that it is preferred over the Logan graphical analysis for analyzing [(18)F]FDDNP PET data.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico por imagen , Radioisótopos de Flúor , Nitrilos , Tomografía de Emisión de Positrones , Radiofármacos , Anciano , Interpretación Estadística de Datos , Femenino , Humanos , Masculino
16.
Neuroimage ; 61(4): 749-60, 2012 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-22401755

RESUMEN

OBJECTIVES: A cross-sectional study to establish whether a subject's cognitive state can be predicted based on regional values obtained from brain cortical maps of FDDNP Distribution Volume Ratio (DVR), which shows the pattern of beta amyloid and neurofibrillary binding, along with those of early summed FDDNP PET images (reflecting the pattern of perfusion) was performed. METHODS: Dynamic FDDNP PET studies were performed in a group of 23 subjects (8 control (NL), 8 Mild Cognitive Impairment (MCI) and 7 Alzheimer's Disease (AD) subjects). FDDNP DVR images were mapped to the MR derived hemispheric cortical surface map warped into a common space. A set of Regions of Interest (ROI) values of FDDNP DVR and early summed FDDNP PET (0-6 min post tracer injection), were thus calculated for each subject which along with the MMSE score were used to construct a linear mathematical model relating ROI values to MMSE. After the MMSE prediction models were developed, the models' predictive ability was tested in a non-overlapping set of 8 additional individuals, whose cognitive status was unknown to the investigators who constructed the predictive models. RESULTS: Among all possible subsets of ROIs, we found that the standard deviation of the predicted MMSE was 1.8 by using only DVR values from medial and lateral temporal and prefrontal regions plus the early summed FDDNP value in the posterior cingulate gyrus. The root mean square prediction error for the eight new subjects was 1.6. CONCLUSION: FDDNP scans reflect progressive neuropathology accumulation and can potentially be used to predict the cognitive state of an individual.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico por imagen , Mapeo Encefálico/métodos , Encéfalo/diagnóstico por imagen , Disfunción Cognitiva/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Anciano , Estudios Transversales , Femenino , Radioisótopos de Flúor , Humanos , Masculino , Radioisótopos
17.
Int Psychogeriatr ; 24(7): 1076-84, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22335970

RESUMEN

BACKGROUND: Whether perceived changes in memory parallel changes in brain pathology is uncertain. Positron emission tomography (PET) scans using 2-(1-{6-[(2-[F-18]fluoroethyl)(methyl)amino]-2-naphthyl}ethylidene)malononitrile (FDDNP) can measure levels of amyloid plaques and tau neurofibrillary tangles in vivo. Here we investigate whether degree of self-reported memory impairment is associated with FDDNP-PET binding levels in persons without dementia. METHODS: Fifty-seven middle-aged and older adults without dementia (mean age ±standard deviation = 66.3 ± 10.6 years), including 25 with normal aging and 32 with mild cognitive impairment (MCI), were assessed. The outcome measures were the four factor scores of the Memory Functioning Questionnaire (MFQ) (frequency of forgetting, seriousness of forgetting, retrospective functioning, and mnemonics use) and FDDNP-PET binding levels in medial temporal, lateral temporal, posterior cingulate, parietal, frontal, and global (overall average) regions of interest. RESULTS: After controlling for age, higher reported frequency of forgetting was associated with greater medial temporal (r = -0.29, p = 0.05), parietal (r = -0.30, p = 0.03), frontal (r = -0.35, p = 0.01), and global FDDNP-PET binding levels (r = -0.33, p = 0.02). The remaining MFQ factor scores were not significantly associated with FDDNP-PET binding levels, and no significant differences were found between normal aging and MCI subjects. Item analysis of the frequency of forgetting factor revealed five questions that yielded similar results as the full 32-question scale (r = -0.52, p = 0.0002). CONCLUSIONS: These findings suggest that some forms of memory self-awareness, in particular the reported frequency of forgetting, may reflect the extent of cerebral amyloid and tau brain pathology.


Asunto(s)
Encéfalo/patología , Trastornos de la Memoria/patología , Placa Amiloide/patología , Proteínas tau/metabolismo , Anciano , Estudios de Casos y Controles , Disfunción Cognitiva/patología , Femenino , Radioisótopos de Flúor , Humanos , Masculino , Persona de Mediana Edad , Neuroimagen , Pruebas Neuropsicológicas , Nitrilos , Tomografía de Emisión de Positrones
18.
Neurobiol Dis ; 43(3): 565-75, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21605674

RESUMEN

In vivo detection of Alzheimer's disease (AD) neuropathology in living patients using positron emission tomography (PET) in conjunction with high affinity molecular imaging probes for ß-amyloid (Aß) and tau has the potential to assist with early diagnosis, evaluation of disease progression, and assessment of therapeutic interventions. Animal models of AD are valuable for exploring the in vivo binding of these probes, particularly their selectivity for specific neuropathologies, but prior PET experiments in transgenic mice have yielded conflicting results. In this work, we utilized microPET imaging in a transgenic rat model of brain Aß deposition to assess [F-18]FDDNP binding profiles in relation to age-associated accumulation of neuropathology. Cross-sectional and longitudinal imaging demonstrated that [F-18]FDDNP binding in the hippocampus and frontal cortex progressively increases from 9 to 18months of age and parallels age-associated Aß accumulation. Specificity of in vivo [F-18]FDDNP binding was assessed by naproxen pretreatment, which reversibly blocked [F-18]FDDNP binding to Aß aggregrates. Both [F-18]FDDNP microPET imaging and neuropathological analyses revealed decreased Aß burden after intracranial anti-Aß antibody administration. The combination of this non-invasive imaging method and robust animal model of brain Aß accumulation allows for future longitudinal in vivo assessments of potential therapeutics for AD that target Aß production, aggregation, and/or clearance. These results corroborate previous analyses of [F-18]FDDNP PET imaging in clinical populations.


Asunto(s)
Envejecimiento/patología , Enfermedad de Alzheimer/diagnóstico por imagen , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/inmunología , Anticuerpos Bloqueadores/farmacología , Nitrilos , Tomografía de Emisión de Positrones/métodos , Envejecimiento/inmunología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/inmunología , Precursor de Proteína beta-Amiloide/metabolismo , Amiloidosis/diagnóstico por imagen , Amiloidosis/genética , Amiloidosis/inmunología , Animales , Antiinflamatorios no Esteroideos/farmacología , Unión Competitiva/inmunología , Modelos Animales de Enfermedad , Radioisótopos de Flúor , Humanos , Naproxeno/farmacología , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas
19.
Am J Physiol Cell Physiol ; 299(6): C1277-84, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20826762

RESUMEN

This work provides evidence of previously unrecognized uptake of glucose via sodium-coupled glucose transporters (SGLTs) in specific regions of the brain. The current understanding of functional glucose utilization in brain is largely based on studies using positron emission tomography (PET) with the glucose tracer 2-deoxy-2-[F-18]fluoro-D-glucose (2-FDG). However, 2-FDG is only a good substrate for facilitated-glucose transporters (GLUTs), not for SGLTs. Thus, glucose accumulation measured by 2-FDG omits the role of SGLTs. We designed and synthesized two high-affinity tracers: one, α-methyl-4-[F-18]fluoro-4-deoxy-D-glucopyranoside (Me-4FDG), is a highly specific SGLT substrate and not transported by GLUTs; the other one, 4-[F-18]fluoro-4-deoxy-D-glucose (4-FDG), is transported by both SGLTs and GLUTs and will pass through the blood brain barrier (BBB). In vitro Me-4FDG autoradiography was used to map the distribution of uptake by functional SGLTs in brain slices with a comparable result from in vitro 4-FDG autoradiography. Immunohistochemical assays showed that uptake was consistent with the distribution of SGLT protein. Ex vivo 4-FDG autoradiography showed that SGLTs in these areas are functionally active in the normal in vivo brain. The results establish that SGLTs are a normal part of the physiology of specific areas of the brain, including hippocampus, amygdala, hypothalamus, and cerebral cortices. 4-FDG PET imaging also established that this BBB-permeable SGLT tracer now offers a functional imaging approach in humans to assess regulation of SGLT activity in health and disease.


Asunto(s)
Encéfalo/metabolismo , Glucosa/metabolismo , Proteínas de Transporte de Sodio-Glucosa/metabolismo , Animales , Barrera Hematoencefálica/metabolismo , Desoxiglucosa/análogos & derivados , Desoxiglucosa/síntesis química , Desoxiglucosa/metabolismo , Femenino , Glucósidos/síntesis química , Glucósidos/metabolismo , Proteínas de Transporte de Glutamato en la Membrana Plasmática/metabolismo , Tomografía de Emisión de Positrones , Ratas , Ratas Sprague-Dawley , Proteínas de Transporte de Sodio-Glucosa/análisis
20.
Acc Chem Res ; 42(7): 842-50, 2009 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-19281227

RESUMEN

Understanding the molecular mechanisms associated with the development of dementia is essential for designing successful interventions. Dementia, like cancer and cardiovascular disease, requires early detection to potentially arrest or prevent further disease progression. By the time a neurologist begins to manage clinical symptoms, the disease has often damaged the brain significantly. Because successful treatment is the logical goal, detecting the disease when brain damage is still limited is of the essence. The role of chemistry in this discovery process is critical. With the advent of molecular imaging, the understanding of molecular mechanisms in human neurodegenerative diseases has exploded. Traditionally, knowledge of enzyme and neurotransmitter function in humans has been extrapolated from animal studies, but now we can acquire data directly from both healthy and diseased human subjects. In this Account, we describe the use of molecular imaging probes to elucidate the biochemical and cellular bases of dementia (e.g., Alzheimer's disease) and the application of these discoveries to the design of successful therapeutic interventions. Molecular imaging permits observation and evaluation of the basic molecular mechanisms of disease progression in the living brains of patients. 2-Deoxy-2-[(18)F]fluoro-d-glucose is used to assess the effect of Alzheimer's disease progression on neuronal circuits projecting from and to the temporal lobe (one of the earliest metabolic signs of the disease). Recently, we have developed imaging probes for detection of amyloid neuropathology (both tau and beta-amyloid peptide deposits) and neuronal losses. These probes allow us to visualize the development of pathology in the living brain of dementia patients and its consequences, such as losses of critical neurons associated with memory deficits and other neuropsychiatric impairments. Because inflammatory processes are tightly connected to the brain degenerative processes, inflammation is now emerging as an important target for new molecular imaging probes. The combination of molecular probes targeting various processes of dementia is a useful tool for detailed monitoring of disease mechanism, progression, and diagnosis, as well as for the development of rational strategies for promising therapeutic interventions.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Nitrilos/química , Tomografía de Emisión de Positrones , Radiofármacos/química , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Encéfalo/patología , Progresión de la Enfermedad , Fluorodesoxiglucosa F18/química , Humanos , Proteínas tau/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA