Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Hum Mol Genet ; 33(2): 103-109, 2024 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-37721535

RESUMEN

Erythromelalgia (EM), is a familial pain syndrome characterized by episodic 'burning' pain, warmth, and erythema. EM is caused by monoallelic variants in SCN9A, which encodes the voltage-gated sodium channel (NaV) NaV1.7. Over 25 different SCN9A mutations attributed to EM have been described to date, all identified in the SCN9A transcript utilizing exon 6N. Here we report a novel SCN9A missense variant identified in seven related individuals with stereotypic episodes of bilateral lower limb pain presenting in childhood. The variant, XM_011511617.3:c.659G>C;p.(Arg220Pro), resides in the exon 6A of SCN9A, an exon previously shown to be selectively incorporated by developmentally regulated alternative splicing. The mutation is located in the voltage-sensing S4 segment of domain I, which is important for regulating channel activation. Functional analysis showed the p.Arg220Pro mutation altered voltage-dependent activation and delayed channel inactivation, consistent with a NaV1.7 gain-of-function molecular phenotype. These results demonstrate that alternatively spliced isoforms of SCN9A should be included in all genomic testing of EM.


Asunto(s)
Eritromelalgia , Humanos , Eritromelalgia/genética , Mutación Missense/genética , Canal de Sodio Activado por Voltaje NAV1.7/genética , Dolor/genética , Mutación , Exones/genética
2.
Brain ; 147(1): 224-239, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-37647766

RESUMEN

Genetic variants associated with developmental and epileptic encephalopathies have been identified in the GABRB3 gene that encodes the ß3 subunit of GABAA receptors. Typically, variants alter receptor sensitivity to GABA resulting in either gain- or loss-of-function, which correlates with patient phenotypes. However, it is unclear how another important receptor property, desensitization, contributes to the greater clinical severity of gain-of-function variants. Desensitization properties of 20 gain-of-function GABRB3 variant receptors were evaluated using two-electrode voltage-clamp electrophysiology. The parameters measured included current decay rates and steady-state currents. Selected variants with increased or reduced desensitization were also evaluated using whole-cell electrophysiology in transfected mammalian cell lines. Of the 20 gain-of-function variants assessed, 13 were found to alter receptor desensitization properties. Seven variants reduced desensitization at equilibrium, which acts to worsen gain-of-function traits. Six variants accelerated current decay kinetics, which limits gain-of-function traits. All affected patients displayed severe clinical phenotypes with intellectual disability and difficult-to-treat epilepsy. Nevertheless, variants that reduced desensitization at equilibrium were associated with more severe clinical outcomes. This included younger age of first seizure onset (median 0.5 months), movement disorders (dystonia and dyskinesia), epilepsy of infancy with migrating focal seizures (EIMFS) and risk of early mortality. Variants that accelerated current decay kinetics were associated with slightly milder phenotypes with later seizure onset (median 4 months), unclassifiable developmental and epileptic encephalopathies or Lennox-Gastaut syndrome and no movement disorders. Our study reveals that gain-of-function GABRB3 variants can increase or decrease receptor desensitization properties and that there is a correlation with the degree of disease severity. Variants that reduced the desensitization at equilibrium were clustered in the transmembrane regions that constitute the channel pore and correlated with greater disease severity, while variants that accelerated current decay were clustered in the coupling loops responsible for receptor activation and correlated with lesser severity.


Asunto(s)
Epilepsia Generalizada , Epilepsia , Trastornos del Movimiento , Animales , Humanos , Recién Nacido , Mutación con Ganancia de Función , Mutación/genética , Epilepsia/genética , Convulsiones , Mamíferos/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo
3.
J Neurosci ; 42(47): 8758-8766, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36216503

RESUMEN

GABAA receptors (GABAARs) mediate the majority of fast inhibitory transmission throughout the brain. Although it is widely known that pore-forming subunits critically determine receptor function, it is unclear whether their single-channel properties are modulated by GABAAR-associated transmembrane proteins. We previously identified Shisa7 as a GABAAR auxiliary subunit that modulates the trafficking, pharmacology, and deactivation properties of these receptors. However, whether Shisa7 also regulates GABAAR single-channel properties has yet to be determined. Here, we performed single-channel recordings of α2ß3γ2L GABAARs cotransfected with Shisa7 in HEK293T cells and found that while Shisa7 does not change channel slope conductance, it reduced the frequency of receptor openings. Importantly, Shisa7 modulates GABAAR gating by decreasing the duration and open probability within bursts. Through kinetic analysis of individual dwell time components, activation modeling, and macroscopic simulations, we demonstrate that Shisa7 accelerates GABAAR deactivation by governing the time spent between close and open states during gating. Together, our data provide a mechanistic basis for how Shisa7 controls GABAAR gating and reveal for the first time that GABAAR single-channel properties can be modulated by an auxiliary subunit. These findings shed light on processes that shape the temporal dynamics of GABAergic transmission.SIGNIFICANCE STATEMENT Although GABAA receptor (GABAAR) single-channel properties are largely determined by pore-forming subunits, it remains unknown whether they are also controlled by GABAAR-associated transmembrane proteins. Here, we show that Shisa7, a recently identified GABAAR auxiliary subunit, modulates GABAAR activation by altering single-channel burst kinetics. These results reveal that Shisa7 primarily decreases the duration and open probability of receptor burst activity during gating, leading to accelerated GABAAR deactivation. These experiments are the first to assess the gating properties of GABAARs in the presence of an auxiliary subunit and provides a kinetic basis for how Shisa7 modifies temporal attributes of GABAergic transmission at the single-channel level.


Asunto(s)
Proteínas de la Membrana , Receptores de GABA-A , Humanos , Receptores de GABA-A/metabolismo , Cinética , Células HEK293 , Proteínas de la Membrana/metabolismo , Proteínas Portadoras/metabolismo , Ácido gamma-Aminobutírico/metabolismo
4.
Epilepsia ; 64(12): 3377-3388, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37734923

RESUMEN

OBJECTIVE: N-methyl-d-aspartate (NMDA) receptors are expressed at synaptic sites, where they mediate fast excitatory neurotransmission. NMDA receptors are critical to brain development and cognitive function. Natural variants to the GRIN1 gene, which encodes the obligatory GluN1 subunit of the NMDA receptor, are associated with severe neurological disorders that include epilepsy, intellectual disability, and developmental delay. Here, we investigated the pathogenicity of three missense variants to the GRIN1 gene, p. Ile148Val (GluN1-3b[I481V]), p.Ala666Ser (GluN1-3b[A666S]), and p.Tyr668His (GluN1-3b[Y668H]). METHODS: Wild-type and variant-containing NMDA receptors were expressed in HEK293 cells and primary hippocampal neurons. Patch-clamp electrophysiology and pharmacology were used to profile the functional properties of the receptors. Receptor surface expression was evaluated using fluorescently tagged receptors and microscopy. RESULTS: Our data demonstrate that the GluN1(I481V) variant is inhibited by the open pore blockers ketamine and memantine with reduce potency but otherwise has little effect on receptor function. By contrast, the other two variants exhibit gain-of-function molecular phenotypes. Glycine sensitivity was enhanced in receptors containing the GluN1(A666S) variant and the potency of pore block by memantine and ketamine was reduced, whereas that for MK-801 was increased. The most pronounced functional deficits, however, were found in receptors containing the GluN1(Y668H) variant. GluN1(Y668H)/2A receptors showed impaired surface expression, were more sensitive to glycine and glutamate by an order of magnitude, and exhibited impaired block by extracellular magnesium ions, memantine, ketamine, and MK-801. These variant receptors were also activated by either glutamate or glycine alone. Single-receptor recordings revealed that this receptor variant opened to several conductance levels and activated more frequently than wild-type GluN1/2A receptors. SIGNIFICANCE: Our study reveals a critical functional locus of the receptor (GluN1[Y668]) that couples receptor gating to ion channel conductance, which when mutated may be associated with neurological disorder.


Asunto(s)
Ketamina , Trastornos del Neurodesarrollo , Humanos , Memantina/farmacología , Maleato de Dizocilpina/farmacología , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Células HEK293 , Glutamatos , Trastornos del Neurodesarrollo/genética , Glicina , Proteínas del Tejido Nervioso/metabolismo
5.
J Neurosci ; 40(25): 4954-4969, 2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-32354853

RESUMEN

Glycine receptors (GlyRs) are the major mediators of fast synaptic inhibition in the adult human spinal cord and brainstem. Hereditary mutations to GlyRs can lead to the rare, but potentially fatal, neuromotor disorder hyperekplexia. Most mutations located in the large intracellular domain (TM3-4 loop) of the GlyRα1 impair surface expression levels of the receptors. The novel GLRA1 mutation P366L, located in the TM3-4 loop, showed normal surface expression but reduced chloride currents, and accelerated whole-cell desensitization observed in whole-cell recordings. At the single-channel level, we observed reduced unitary conductance accompanied by spontaneous opening events in the absence of extracellular glycine. Using peptide microarrays and tandem MS-based analysis methods, we show that the proline-rich stretch surrounding P366 mediates binding to syndapin I, an F-BAR domain protein involved in membrane remodeling. The disruption of the noncanonical Src homology 3 recognition motif by P366L reduces syndapin I binding. These data suggest that the GlyRα1 subunit interacts with intracellular binding partners and may therefore play a role in receptor trafficking or synaptic anchoring, a function thus far only ascribed to the GlyRß subunit. Hence, the P366L GlyRα1 variant exhibits a unique set of properties that cumulatively affect GlyR functionality and thus might explain the neuropathological mechanism underlying hyperekplexia in the mutant carriers. P366L is the first dominant GLRA1 mutation identified within the GlyRα1 TM3-4 loop that affects GlyR physiology without altering protein expression at the whole-cell and surface levels.SIGNIFICANCE STATEMENT We show that the intracellular domain of the inhibitory glycine receptor α1 subunit contributes to trafficking and synaptic anchoring. A proline-rich stretch in this receptor domain forms a noncanonical recognition motif important for the interaction with syndapin I (PACSIN1). The disruption of this motif, as present in a human patient with hyperekplexia led to impaired syndapin I binding. Functional analysis revealed that the altered proline-rich stretch determines several functional physiological parameters of the ion channel (e.g., faster whole-cell desensitization) reduced unitary conductance and spontaneous opening events. Thus, the proline-rich stretch from the glycine receptor α1 subunit represents a multifunctional intracellular protein motif.


Asunto(s)
Receptores de Glicina/genética , Receptores de Glicina/metabolismo , Síndrome de la Persona Rígida/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencias de Aminoácidos , Animales , Humanos , Mutación , Unión Proteica/genética , Estructura Cuaternaria de Proteína , Transporte de Proteínas/genética , Receptores de Glicina/química
6.
PLoS Pathog ; 15(1): e1007570, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30695069

RESUMEN

Glutamate-gated chloride channel receptors (GluClRs) mediate inhibitory neurotransmission at invertebrate synapses and are primary targets of parasites that impact drastically on agriculture and human health. Ivermectin (IVM) is a broad-spectrum pesticide that binds and potentiates GluClR activity. Resistance to IVM is a major economic and health concern, but the molecular and synaptic mechanisms of resistance are ill-defined. Here we focus on GluClRs of the agricultural endoparasite, Haemonchus contortus. We demonstrate that IVM potentiates inhibitory input by inducing a tonic current that plateaus over 15 minutes and by enhancing post-synaptic current peak amplitude and decay times. We further demonstrate that IVM greatly enhances the active durations of single receptors. These effects are greatly attenuated when endogenous IVM-insensitive subunits are incorporated into GluClRs, suggesting a mechanism of IVM resistance that does not affect glutamate sensitivity. We discovered functional groups of IVM that contribute to tuning its potency at different isoforms and show that the dominant mode of access of IVM is via the cell membrane to the receptor.


Asunto(s)
Canales de Cloruro/metabolismo , Haemonchus/efectos de los fármacos , Ivermectina/farmacología , Animales , Canales de Cloruro/antagonistas & inhibidores , Antagonistas de Aminoácidos Excitadores/metabolismo , Ácido Glutámico/farmacología , Células HEK293 , Haemonchus/metabolismo , Humanos , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Técnicas de Placa-Clamp/métodos , Receptores de Glutamato/metabolismo , Xenopus laevis/embriología
7.
Neurobiol Dis ; 140: 104850, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32247039

RESUMEN

Mutations in synaptic NMDA receptors (NMDARs) are associated with epilepsy and neurodevelopmental disorders. The effects of several such mutations have been investigated in recombinantly-expressed NMDARs under conditions of steady-state activation. Such experiments provide only limited insight into how mutations affect NMDAR-mediated excitatory synaptic currents (EPSCs). The present study aimed to characterize the effects of the GluN2AN615K, GluN2BN615I and GluN2BV618G gain-of-function mutations on EPSCs mediated by diheteromeric GluN1/2A and GluN1/2B receptors and triheteromeric GluN1/2A/2B receptors, as these are the most abundant synaptic NMDARs in vivo. Subunit composition was controlled by studying 'artificial' synapses formed between cultured neurons (which provide presynaptic terminals) and HEK293 cells that express the NMDAR subunits of interest plus the synapse-promoting molecule, neuroligin-1B. When incorporated into diheteromeric receptors, all three mutations ablated voltage-dependent Mg2+ block of EPSCs, as previously shown. In addition, we were surprised to find that increasing external Mg2+ from 0 to 1 mM strongly enhanced the magnitude of EPSCs mediated by mutant diheteromers. In contrast, triheteromeric receptors exhibited normal voltage-dependent Mg2+ block. The GluN2AN615K mutation also slowed the decay of GluN1/2A/2B- but not GluN1/2A-mediated EPSCs. The GluN2BN615I mutation enhanced the magnitude of both GluN1/2B- and GluN1/2A/2B-mediated EPSCs. The GluN2BV618G mutation enhanced the magnitude of both GluN1/2B- and GluN1/2A/2B-mediated EPSCs, although these effects were partly compensated by a faster EPSC decay rate. The mutations also diminished the potency of the anti-epileptic pore-blocker, memantine, thus explaining the lack of memantine efficacy in patients with GluN2BN615I or GluN2BV618G mutations. Given these effects, the three mutations would be expected to enhance the cation influx rate and thereby contribute to epilepsy phenotypes.


Asunto(s)
Epilepsia/genética , Mutación con Ganancia de Función , Receptores de N-Metil-D-Aspartato/genética , Sinapsis/fisiología , Animales , Femenino , Células HEK293 , Humanos , Masculino , Neuronas/fisiología , Técnicas de Placa-Clamp , Ratas
8.
Proc Natl Acad Sci U S A ; 114(14): 3750-3755, 2017 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-28320941

RESUMEN

Stroke is the second-leading cause of death worldwide, yet there are no drugs available to protect the brain from stroke-induced neuronal injury. Acid-sensing ion channel 1a (ASIC1a) is the primary acid sensor in mammalian brain and a key mediator of acidosis-induced neuronal damage following cerebral ischemia. Genetic ablation and selective pharmacologic inhibition of ASIC1a reduces neuronal death following ischemic stroke in rodents. Here, we demonstrate that Hi1a, a disulfide-rich spider venom peptide, is highly neuroprotective in a focal model of ischemic stroke. Nuclear magnetic resonance structural studies reveal that Hi1a comprises two homologous inhibitor cystine knot domains separated by a short, structurally well-defined linker. In contrast with known ASIC1a inhibitors, Hi1a incompletely inhibits ASIC1a activation in a pH-independent and slowly reversible manner. Whole-cell, macropatch, and single-channel electrophysiological recordings indicate that Hi1a binds to and stabilizes the closed state of the channel, thereby impeding the transition into a conducting state. Intracerebroventricular administration to rats of a single small dose of Hi1a (2 ng/kg) up to 8 h after stroke induction by occlusion of the middle cerebral artery markedly reduced infarct size, and this correlated with improved neurological and motor function, as well as with preservation of neuronal architecture. Thus, Hi1a is a powerful pharmacological tool for probing the role of ASIC1a in acid-mediated neuronal injury and various neurological disorders, and a promising lead for the development of therapeutics to protect the brain from ischemic injury.


Asunto(s)
Bloqueadores del Canal Iónico Sensible al Ácido/administración & dosificación , Canales Iónicos Sensibles al Ácido/metabolismo , Fármacos Neuroprotectores/administración & dosificación , Venenos de Araña/administración & dosificación , Accidente Cerebrovascular/tratamiento farmacológico , Bloqueadores del Canal Iónico Sensible al Ácido/química , Bloqueadores del Canal Iónico Sensible al Ácido/farmacología , Animales , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Espectroscopía de Resonancia Magnética , Masculino , Fármacos Neuroprotectores/farmacología , Ratas , Venenos de Araña/química , Venenos de Araña/farmacología , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/metabolismo
9.
PLoS Pathog ; 13(10): e1006663, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28968469

RESUMEN

Ivermectin (IVM) is a widely-used anthelmintic that works by binding to and activating glutamate-gated chloride channel receptors (GluClRs) in nematodes. The resulting chloride flux inhibits the pharyngeal muscle cells and motor neurons of nematodes, causing death by paralysis or starvation. IVM resistance is an emerging problem in many pest species, necessitating the development of novel drugs. However, drug optimisation requires a quantitative understanding of GluClR activation and modulation mechanisms. Here we investigated the biophysical properties of homomeric α (avr-14b) GluClRs from the parasitic nematode, H. contortus, in the presence of glutamate and IVM. The receptor proved to be highly responsive to low nanomolar concentrations of both compounds. Analysis of single receptor activations demonstrated that the GluClR oscillates between multiple functional states upon the binding of either ligand. The G36'A mutation in the third transmembrane domain, which was previously thought to hinder access of IVM to its binding site, was found to decrease the duration of active periods and increase receptor desensitisation. On an ensemble macropatch level the mutation gave rise to enhanced current decay and desensitisation rates. Because these responses were common to both glutamate and IVM, and were observed under conditions where agonist binding sites were likely saturated, we infer that G36'A affects the intrinsic properties of the receptor with no specific effect on IVM binding mechanisms. These unexpected results provide new insights into the activation and modulatory mechanisms of the H. contortus GluClRs and provide a mechanistic framework upon which the actions of drugs can be reliably interpreted.


Asunto(s)
Antihelmínticos/farmacología , Canales de Cloruro/metabolismo , Haemonchus , Ivermectina/farmacología , Animales , Caenorhabditis elegans/genética , Ácido Glutámico/metabolismo , Células HEK293 , Humanos , Mutación/genética
10.
J Biol Chem ; 291(29): 15332-41, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27226610

RESUMEN

Hyperekplexia is a rare human neuromotor disorder caused by mutations that impair the efficacy of glycinergic inhibitory neurotransmission. Loss-of-function mutations in the GLRA1 or GLRB genes, which encode the α1 and ß glycine receptor (GlyR) subunits, are the major cause. Paradoxically, gain-of-function GLRA1 mutations also cause hyperekplexia, although the mechanism is unknown. Here we identify two new gain-of-function mutations (I43F and W170S) and characterize these along with known gain-of-function mutations (Q226E, V280M, and R414H) to identify how they cause hyperekplexia. Using artificial synapses, we show that all mutations prolong the decay of inhibitory postsynaptic currents (IPSCs) and induce spontaneous GlyR activation. As these effects may deplete the chloride electrochemical gradient, hyperekplexia could potentially result from reduced glycinergic inhibitory efficacy. However, we consider this unlikely as the depleted chloride gradient should also lead to pain sensitization and to a hyperekplexia phenotype that correlates with mutation severity, neither of which is observed in patients with GLRA1 hyperekplexia mutations. We also rule out small increases in IPSC decay times (as caused by W170S and R414H) as a possible mechanism given that the clinically important drug, tropisetron, significantly increases glycinergic IPSC decay times without causing motor side effects. A recent study on cultured spinal neurons concluded that an elevated intracellular chloride concentration late during development ablates α1ß glycinergic synapses but spares GABAergic synapses. As this mechanism satisfies all our considerations, we propose it is primarily responsible for the hyperekplexia phenotype.


Asunto(s)
Neuronas GABAérgicas/metabolismo , Hiperekplexia , Mutación Missense , Receptores de Glicina , Sinapsis , Transmisión Sináptica/genética , Sustitución de Aminoácidos , Animales , Células HEK293 , Humanos , Hiperekplexia/genética , Hiperekplexia/metabolismo , Hiperekplexia/fisiopatología , Ratas , Receptores de Glicina/genética , Receptores de Glicina/metabolismo , Sinapsis/genética , Sinapsis/metabolismo
11.
Neurobiol Dis ; 108: 213-224, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28870844

RESUMEN

Epilepsy is a spectrum of neurological disorders with many causal factors. The GABA type-A receptor (GABAAR) is a major genetic target for heritable human epilepsies. Here we examine the functional effects of three epilepsy-causing mutations to the α1 subunit (α1T10'I, α1D192N and α1A295D) on inhibitory postsynaptic currents (IPSCs) mediated by the major synaptic GABAAR isoform, α1ß2γ2L. We employed a neuron - HEK293 cell heterosynapse preparation to record IPSCs mediated by mutant-containing GABAARs in isolation from other GABAAR isoforms. IPSCs were recorded in the presence of the anticonvulsant drugs, carbamazepine and midazolam, and at elevated temperatures (22, 37 and 40°C) to gain insight into mechanisms of febrile seizures. The mutant subunits were also transfected into cultured cortical neurons to investigate changes in synapse formation and neuronal morphology using fluorescence microscopy. We found that IPSCs mediated by α1T10'Iß2γ2L, α1D192Nß2γ2L GABAARs decayed faster than those mediated by α1ß2γ2L receptors. IPSCs mediated by α1D192Nß2γ2L and α1A295Dß2γ2L receptors also exhibited a heightened temperature sensitivity. In addition, the α1T10'Iß2γ2L GABAARs were refractory to modulation by carbamazepine or midazolam. In agreement with previous studies, we found that α1A295Dß2γ2L GABAARs were retained intracellularly in HEK293 cells and neurons. However, pre-incubation with 100nM suberanilohydroxamic acid (SAHA) induced α1A295Dß2γ2L GABAARs to mediate IPSCs that were indistinguishable in magnitude and waveform from those mediated by α1ß2γ2L receptors. Finally, mutation-specific changes to synaptic bouton size, synapse number and neurite branching were also observed. These results provide new insights into the mechanisms of epileptogenesis of α1 epilepsy mutations and suggest possible leads for improving treatments for patients harbouring these mutations.


Asunto(s)
Epilepsia/metabolismo , Inhibición Neural/fisiología , Neuronas/metabolismo , Receptores de GABA-A/metabolismo , Sinapsis/metabolismo , Animales , Anticonvulsivantes/farmacología , Carbamazepina/farmacología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Técnicas de Cocultivo , Epilepsia/tratamiento farmacológico , Epilepsia/genética , Epilepsia/patología , Células HEK293 , Humanos , Ácidos Hidroxámicos/farmacología , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/fisiología , Midazolam/farmacología , Inhibición Neural/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/patología , Técnicas de Placa-Clamp , Pliegue de Proteína/efectos de los fármacos , Ratas , Receptores de GABA-A/genética , Sinapsis/efectos de los fármacos , Sinapsis/patología , Temperatura , Vorinostat
12.
J Biol Chem ; 290(9): 5621-34, 2015 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-25572390

RESUMEN

Pentameric ligand-gated ion channels (pLGICs) mediate fast chemoelectrical transduction in the nervous system. The mechanism by which the energy of ligand binding leads to current-conducting receptors is poorly understood and may vary among family members. We addressed these questions by correlating the structural and energetic mechanisms by which a naturally occurring M1 domain mutation (α1(Q-26'E)) enhances receptor activation in homo- and heteromeric glycine receptors. We systematically altered the charge of spatially clustered residues at positions 19' and 24', in the M2 and M2-M3 linker domains, respectively, which are known to be critical to efficient receptor activation, on a background of α1(Q-26'E). Changes in the durations of single receptor activations (clusters) and conductance were used to determine interaction coupling energies, which we correlated with conformational displacements as measured in pLGIC crystal structures. Presence of the α1(Q-26'E) enhanced cluster durations and reduced channel conductance in homo- and heteromeric receptors. Strong coupling between α1(-26') and α1(19') across the subunit interface suggests an important role in receptor activation. A lack of coupling between α1(-26') and α1(24') implies that 24' mutations disrupt activation via other interactions. A similar lack of energetic coupling between α1(-26') and reciprocal mutations in the ß subunit suggests that this subunit remains relatively static during receptor activation. However, the channel effects of α1(Q-26'E) on α1ß receptors suggests at least one α1-α1 interface per pentamer. The coupling-energy change between α1(-26') and α1(19') correlates with a local structural rearrangement essential for pLGIC activation, implying it comprises a key energetic pathway in activating glycine receptors and other pLGICs.


Asunto(s)
Multimerización de Proteína , Estructura Cuaternaria de Proteína , Receptores de Glicina/química , Receptores de Glicina/fisiología , Algoritmos , Secuencia de Aminoácidos , Sitios de Unión/genética , Transferencia de Energía , Células HEK293 , Humanos , Activación del Canal Iónico/genética , Activación del Canal Iónico/fisiología , Potenciales de la Membrana/genética , Potenciales de la Membrana/fisiología , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Técnicas de Placa-Clamp , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/fisiología , Receptores de Glicina/genética , Homología de Secuencia de Aminoácido
13.
J Biol Chem ; 289(9): 5399-411, 2014 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-24425869

RESUMEN

Synaptic GABAA receptors (GABAARs) mediate most of the inhibitory neurotransmission in the brain. The majority of these receptors are comprised of α1, ß2, and γ2 subunits. The amygdala, a structure involved in processing emotional stimuli, expresses α2 and γ1 subunits at high levels. The effect of these subunits on GABAAR-mediated synaptic transmission is not known. Understanding the influence of these subunits on GABAAR-mediated synaptic currents may help in identifying the roles and locations of amygdala synapses that contain these subunits. Here, we describe the biophysical and synaptic properties of pure populations of α1ß2γ2, α2ß2γ2, α1ß2γ1 and α2ß2γ1 GABAARs. Their synaptic properties were examined in engineered synapses, whereas their kinetic properties were studied using rapid agonist application, and single channel recordings. All macropatch currents activated rapidly (<1 ms) and deactivated as a function of the α-subunit, with α2-containing GABAARs consistently deactivating ∼10-fold more slowly. Single channel analysis revealed that the slower current decay of α2-containing GABAARs was due to longer burst durations at low GABA concentrations, corresponding to a ∼4-fold higher affinity for GABA. Synaptic currents revealed a different pattern of activation and deactivation to that of macropatch data. The inclusion of α2 and γ1 subunits slowed both the activation and deactivation rates, suggesting that receptors containing these subunits cluster more diffusely at synapses. Switching the intracellular domains of the γ2 and γ1 subunits substantiated this inference. Because this region determines post-synaptic localization, we hypothesize that GABAARs containing γ1 and γ2 use different mechanisms for synaptic clustering.


Asunto(s)
Receptores de GABA-A/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica/fisiología , Animales , Agonistas de Receptores de GABA-A/farmacología , Células HEK293 , Humanos , Subunidades de Proteína/agonistas , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Ratas , Receptores de GABA-A/genética , Sinapsis/genética
14.
J Biol Chem ; 288(47): 33745-33759, 2013 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-24108130

RESUMEN

Hyperekplexia is a syndrome of readily provoked startle responses, alongside episodic and generalized hypertonia, that presents within the first month of life. Inhibitory glycine receptors are pentameric ligand-gated ion channels with a definitive and clinically well stratified linkage to hyperekplexia. Most hyperekplexia cases are caused by mutations in the α1 subunit of the human glycine receptor (hGlyR) gene (GLRA1). Here we analyzed 68 new unrelated hyperekplexia probands for GLRA1 mutations and identified 19 mutations, of which 9 were novel. Electrophysiological analysis demonstrated that the dominant mutations p.Q226E, p.V280M, and p.R414H induced spontaneous channel activity, indicating that this is a recurring mechanism in hGlyR pathophysiology. p.Q226E, at the top of TM1, most likely induced tonic activation via an enhanced electrostatic attraction to p.R271 at the top of TM2, suggesting a structural mechanism for channel activation. Receptors incorporating p.P230S (which is heterozygous with p.R65W) desensitized much faster than wild type receptors and represent a new TM1 site capable of modulating desensitization. The recessive mutations p.R72C, p.R218W, p.L291P, p.D388A, and p.E375X precluded cell surface expression unless co-expressed with α1 wild type subunits. The recessive p.E375X mutation resulted in subunit truncation upstream of the TM4 domain. Surprisingly, on the basis of three independent assays, we were able to infer that p.E375X truncated subunits are incorporated into functional hGlyRs together with unmutated α1 or α1 plus ß subunits. These aberrant receptors exhibit significantly reduced glycine sensitivity. To our knowledge, this is the first suggestion that subunits lacking TM4 domains might be incorporated into functional pentameric ligand-gated ion channel receptors.


Asunto(s)
Regulación de la Expresión Génica , Rigidez Muscular/metabolismo , Mutación Missense , Receptores de Glicina/metabolismo , Sustitución de Aminoácidos , Femenino , Humanos , Masculino , Rigidez Muscular/genética , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Receptores de Glicina/genética
15.
Cell Mol Life Sci ; 70(7): 1241-53, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22936353

RESUMEN

Pentameric ligand-gated ion channel (pLGIC) receptors exhibit desensitization, the progressive reduction in ionic flux in the prolonged presence of agonist. Despite its pathophysiological importance and the fact that it was first described over half a century ago, surprisingly little is known about the structural basis of desensitization in this receptor family. Here, we explain how desensitization is defined using functional criteria. We then review recent progress into reconciling the structural and functional basis of this phenomenon. The extracellular-transmembrane domain interface is a key locus. Activation is well known to involve conformational changes at this interface, and several lines of evidence suggest that desensitization involves a distinct conformational change here that is incompatible with activation. However, major questions remain unresolved, including the structural basis of the desensitization-induced agonist affinity increase and the mechanism of pore closure during desensitization.


Asunto(s)
Resistencia a Medicamentos , Activación del Canal Iónico/fisiología , Canales Iónicos Activados por Ligandos/metabolismo , Canales Iónicos Activados por Ligandos/fisiología , Animales , Resistencia a Medicamentos/genética , Resistencia a Medicamentos/fisiología , Humanos , Activación del Canal Iónico/genética , Canales Iónicos Activados por Ligandos/química , Canales Iónicos Activados por Ligandos/genética , Modelos Biológicos , Modelos Moleculares , Multimerización de Proteína/genética , Multimerización de Proteína/fisiología , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína
16.
Neurobiol Dis ; 52: 137-49, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23238346

RESUMEN

Startle disease is a rare, potentially fatal neuromotor disorder characterized by exaggerated startle reflexes and hypertonia in response to sudden unexpected auditory, visual or tactile stimuli. Mutations in the GlyR α(1) subunit gene (GLRA1) are the major cause of this disorder, since remarkably few individuals with mutations in the GlyR ß subunit gene (GLRB) have been found to date. Systematic DNA sequencing of GLRB in individuals with hyperekplexia revealed new missense mutations in GLRB, resulting in M177R, L285R and W310C substitutions. The recessive mutation M177R results in the insertion of a positively-charged residue into a hydrophobic pocket in the extracellular domain, resulting in an increased EC(50) and decreased maximal responses of α(1)ß GlyRs. The de novo mutation L285R results in the insertion of a positively-charged side chain into the pore-lining 9' position. Mutations at this site are known to destabilize the channel closed state and produce spontaneously active channels. Consistent with this, we identified a leak conductance associated with spontaneous GlyR activity in cells expressing α(1)ß(L285R) GlyRs. Peak currents were also reduced for α(1)ß(L285R) GlyRs although glycine sensitivity was normal. W310C was predicted to interfere with hydrophobic side-chain stacking between M1, M2 and M3. We found that W310C had no effect on glycine sensitivity, but reduced maximal currents in α(1)ß GlyRs in both homozygous (α(1)ß(W310C)) and heterozygous (α(1)ßß(W310C)) stoichiometries. Since mild startle symptoms were reported in W310C carriers, this may represent an example of incomplete dominance in startle disease, providing a potential genetic explanation for the 'minor' form of hyperekplexia.


Asunto(s)
Hipertonía Muscular/genética , Mutación Missense , Receptores de Glicina/genética , Reflejo Anormal/genética , Reflejo de Sobresalto/genética , Femenino , Humanos , Masculino , Análisis de Secuencia de ADN
17.
Nat Commun ; 14(1): 2977, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37221205

RESUMEN

Stings of certain ant species (Hymenoptera: Formicidae) can cause intense, long-lasting nociception. Here we show that the major contributors to these symptoms are venom peptides that modulate the activity of voltage-gated sodium (NaV) channels, reducing their voltage threshold for activation and inhibiting channel inactivation. These peptide toxins are likely vertebrate-selective, consistent with a primarily defensive function. They emerged early in the Formicidae lineage and may have been a pivotal factor in the expansion of ants.


Asunto(s)
Venenos de Hormiga , Hormigas , Toxinas Biológicas , Animales , Dolor , Canales de Sodio , Vertebrados
18.
Neuropharmacology ; 221: 109295, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36257447

RESUMEN

Genetic sequencing is identifying an expanding number of variants of GABAA receptors associated with human epilepsies. We identified a new de novo variant of the ß2 subunit (ß2L51M) of the inhibitory GABAA receptor associated with seizures. Our analysis determined the pathogenicity of the variant and the effects of anti-seizure medications. Our data demonstrates that the variant reduced cell surface trafficking and peak GABA-gated currents. Synaptic currents mediated by variant-containing receptors decayed faster than wild-type and single receptor currents showed that the variant shortened the duration of receptor activity by decreasing receptor open times. We tested the effects of the anti-seizure medications, midazolam, carbamazepine and valproate and found that all three enhance variant receptor surface expression. Additionally, midazolam restored receptor function by increasing single receptor active periods and synaptic current decay times towards wild-type levels. By contrast, valproate increased synaptic peak currents, event frequency and promoted synaptic bursting. Our study identifies a new disease-causing variant to the GABAA receptor, profiles its pathogenic effects and demonstrates how anti-seizure drugs correct its functional deficits.


Asunto(s)
Epilepsia , Receptores de GABA-A , Humanos , Receptores de GABA-A/metabolismo , Ácido Valproico/farmacología , Ácido Valproico/uso terapéutico , Midazolam/farmacología , Midazolam/uso terapéutico , Epilepsia/tratamiento farmacológico , Ácido gamma-Aminobutírico/uso terapéutico
19.
Cell Biosci ; 12(1): 48, 2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35477478

RESUMEN

BACKGROUND: Genetic variants in the subunits of the gamma-aminobutyric acid type A (GABAA) receptors are implicated in the onset of multiple pathologic conditions including genetic epilepsy. Previous work showed that pathogenic GABAA subunits promote misfolding and inefficient assembly of the GABAA receptors, limiting receptor expression and activity at the plasma membrane. However, GABAA receptors containing variant subunits can retain activity, indicating that enhancing the folding, assembly, and trafficking of these variant receptors offers a potential opportunity to mitigate pathology associated with genetic epilepsy. RESULTS: Here, we demonstrate that pharmacologically enhancing endoplasmic reticulum (ER) proteostasis using small molecule activators of the ATF6 (Activating Transcription Factor 6) signaling arm of the unfolded protein response (UPR) increases the assembly, trafficking, and surface expression of variant GABAA receptors. These improvements are attributed to ATF6-dependent remodeling of the ER proteostasis environment, which increases protein levels of pro-folding ER proteostasis factors including the ER chaperone BiP (Immunoglobulin Binding Protein) and trafficking receptors, such as LMAN1 (Lectin Mannose-Binding 1) and enhances their interactions with GABAA receptors. Importantly, we further show that pharmacologic ATF6 activators increase the activity of GABAA receptors at the cell surface, revealing the potential for this strategy to restore receptor activity to levels that could mitigate disease pathogenesis. CONCLUSIONS: These results indicate that pharmacologic ATF6 activators offer an opportunity to restore GABAA receptor activity in diseases including genetic epilepsy and point to the potential for similar pharmacologic enhancement of ER proteostasis to improve trafficking of other disease-associated variant ion channels implicated in etiologically-diverse diseases.

20.
Cell Chem Biol ; 28(1): 46-59.e7, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-32888501

RESUMEN

Proteostasis deficiency in mutated ion channels leads to a variety of ion channel diseases that are caused by excessive endoplasmic reticulum-associated degradation (ERAD) and inefficient membrane trafficking. We investigated proteostasis maintenance of γ-aminobutyric acid type A (GABAA) receptors, the primary mediators of neuronal inhibition in the mammalian central nervous system. We screened a structurally diverse, Food and Drug Administration-approved drug library and identified dinoprost (DNP) and dihydroergocristine (DHEC) as highly efficacious enhancers of surface expression of four epilepsy-causing trafficking-deficient mutant receptors. Furthermore, DNP and DHEC restore whole-cell and synaptic currents by incorporating mutated subunits into functional receptors. Mechanistic studies revealed that both drugs reduce subunit degradation by attenuating the Grp94/Hrd1/Sel1L/VCP-mediated ERAD pathway and enhance the subunit folding by promoting subunit interactions with major GABAA receptors-interacting chaperones, BiP and calnexin. In summary, we report that DNP and DHEC remodel the endoplasmic reticulum proteostasis network to restore the functional surface expression of mutant GABAA receptors.


Asunto(s)
Dihidroergocristina/farmacología , Dinoprost/farmacología , Epilepsia/tratamiento farmacológico , Proteostasis/efectos de los fármacos , Receptores de GABA-A/metabolismo , Línea Celular , Degradación Asociada con el Retículo Endoplásmico/efectos de los fármacos , Epilepsia/metabolismo , Femenino , Humanos , Masculino , Receptores de GABA-A/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA