RESUMEN
Launched in January 2015, the National Aeronautics and Space Administration (NASA) Soil Moisture Active Passive (SMAP) observatory was designed to provide frequent global mapping of high-resolution soil moisture and freeze-thaw state every two to three days using a radar and a radiometer operating at L-band frequencies. Despite a hardware mishap that rendered the radar inoperable shortly after launch, the radiometer continues to operate nominally, returning more than two years of science data that have helped to improve existing hydrological applications and foster new ones. Beginning in late 2016 the SMAP project launched a suite of new data products with the objective of recovering some high-resolution observation capability loss resulting from the radar malfunction. Among these new data products are the SMAP Enhanced Passive Soil Moisture Product that was released in December 2016, followed by the SMAP/Sentinel-1 Active-Passive Soil Moisture Product in April 2017. This article covers the development and assessment of the SMAP Level 2 Enhanced Passive Soil Moisture Product (L2_SM_P_E). The product distinguishes itself from the current SMAP Level 2 Passive Soil Moisture Product (L2_SM_P) in that the soil moisture retrieval is posted on a 9 km grid instead of a 36 km grid. This is made possible by first applying the Backus-Gilbert optimal interpolation technique to the antenna temperature (TA) data in the original SMAP Level 1B Brightness Temperature Product to take advantage of the overlapped radiometer footprints on orbit. The resulting interpolated TA data then go through various correction/calibration procedures to become the SMAP Level 1C Enhanced Brightness Temperature Product (LiC_TB_E). The LiC_TB_E product, posted on a 9 km grid, is then used as the primary input to the current operational SMAP baseline soil moisture retrieval algorithm to produce L2_SM_P_E as the final output. Images of the new product reveal enhanced visual features that are not apparent in the standard product. Based on in situ data from core validation sites and sparse networks representing different seasons and biomes all over the world, comparisons between L2_SM_P_E and in situ data were performed for the duration of April 1, 2015 - October 30, 2016. It was found that the performance of the enhanced 9 km L2_SM_P_E is equivalent to that of the standard 36 km L2_SM_P, attaining a retrieval uncertainty below 0.040 m3/m3 unbiased root-mean-square error (ubRMSE) and a correlation coefficient above 0.800. This assessment also affirmed that the Single Channel Algorithm using the V-polarized TB channel (SCA-V) delivered the best retrieval performance among the various algorithms implemented for L2_SM_P_E, a result similar to a previous assessment for L2_SM_P.
RESUMEN
The NASA Soil Moisture Active Passive (SMAP) satellite mission was launched on January 31, 2015 to provide global mapping of high-resolution soil moisture and freeze-thaw state every 2-3 days using an L-band (active) radar and an L-band (passive) radiometer. The Level 2 radiometer-only soil moisture product (L2_SM_P) provides soil moisture estimates posted on a 36-km Earth-fixed grid using brightness temperature observations from descending passes. This paper provides the first comparison of the validated-release L2_SM_P product with soil moisture products provided by the Soil Moisture and Ocean Salinity (SMOS), Aquarius, Advanced Scatterometer (ASCAT), and Advanced Microwave Scanning Radiometer 2 (AMSR2) missions. This comparison was conducted as part of the SMAP calibration and validation efforts. SMAP and SMOS appear most similar among the five soil moisture products considered in this paper, overall exhibiting the smallest unbiased root-mean-square difference and highest correlation. Overall, SMOS tends to be slightly wetter than SMAP, excluding forests where some differences are observed. SMAP and Aquarius can only be compared for a little more than two months; they compare well, especially over low to moderately vegetated areas. SMAP and ASCAT show similar overall trends and spatial patterns with ASCAT providing wetter soil moistures than SMAP over moderate to dense vegetation. SMAP and AMSR2 largely disagree in their soil moisture trends and spatial patterns; AMSR2 exhibits an overall dry bias, while desert areas are observed to be wetter than SMAP.
RESUMEN
A data-driven approach insensitive to the initial conditions was developed to extract governing equations for the concentration of CO2 in the Altamira cave (Spain) and its two main drivers: the outside temperature and the soil moisture. This model was then reformulated in order to use satellite observations and meteorological predictions, as a forcing. The concentration of CO2 inside the cave was then investigated from 1950 to 2100 under various scenarios. It is found that extreme levels of CO2 were reached during the period 1950-1972 due to the massive affluence of visitors. It is demonstrated that it is possible to monitor the CO2 in the cave in real time using satellite information as an external forcing. For the future, it is shown that the maximum values of CO2 will exceed the levels reached during the 1980s and the 1990s when the CO2 introduced by the touristic visits, although intentionally reduced, still enhanced considerably the micro corrosion of walls and pigments.
RESUMEN
The Soil Moisture Ocean Salinity (SMOS) was the first mission providing L-band multi-angular brightness temperature (TB) at the global scale. However, radio frequency interferences (RFI) and aliasing effects degrade, when present SMOS TBs, and thus affect the retrieval of land parameters. To alleviate this, a refined SMOS multi-angular TB dataset was generated based on a two-step regression approach. This approach smooths the TBs and reconstructs data at the incidence angle with large TB uncertainties. Compared with Centre Aval de Traitement des Données SMOS (CATDS) TB product, this dataset shows a better relationship with the Soil Moisture Active Passive (SMAP) TB and enhanced correlation with in-situ measured soil moisture. This RFI-suppressed SMOS TB dataset, spanning more than a decade (since 2010), is expected to provide opportunities for better retrieval of land parameters and scientific applications.
RESUMEN
The "Cooperative Airborne Radiometer for Ocean and Land Studies" (CAROLS) L-Band radiometer was designed and built as a copy of the EMIRAD II radiometer constructed by the Technical University of Denmark team. It is a fully polarimetric and direct sampling correlation radiometer. It is installed on board a dedicated French ATR42 research aircraft, in conjunction with other airborne instruments (C-Band scatterometer-STORM, the GOLD-RTR GPS system, the infrared CIMEL radiometer and a visible wavelength camera). Following initial laboratory qualifications, three airborne campaigns involving 21 flights were carried out over South West France, the Valencia site and the Bay of Biscay (Atlantic Ocean) in 2007, 2008 and 2009, in coordination with in situ field campaigns. In order to validate the CAROLS data, various aircraft flight patterns and maneuvers were implemented, including straight horizontal flights, circular flights, wing and nose wags over the ocean. Analysis of the first two campaigns in 2007 and 2008 leads us to improve the CAROLS radiometer regarding isolation between channels and filter bandwidth. After implementation of these improvements, results show that the instrument is conforming to specification and is a useful tool for Soil Moisture and Ocean Salinity (SMOS) satellite validation as well as for specific studies on surface soil moisture or ocean salinity.
RESUMEN
Microwave radiometry has provided valuable spaceborne observations of Earth's geophysical properties for decades. The recent SMOS, Aquarius, and SMAP satellites have demonstrated the value of measurements at 1400 MHz for observing surface soil moisture, sea surface salinity, sea ice thickness, soil freeze/thaw state, and other geophysical variables. However, the information obtained is limited by penetration through the subsurface at 1400 MHz and by a reduced sensitivity to surface salinity in cold or wind-roughened waters. Recent airborne experiments have shown the potential of brightness temperature measurements from 500-1400 MHz to address these limitations by enabling sensing of soil moisture and sea ice thickness to greater depths, sensing of temperature deep within ice sheets, improved sensing of sea salinity in cold waters, and enhanced sensitivity to soil moisture under vegetation canopies. However, the absence of significant spectrum reserved for passive microwave measurements in the 500-1400 MHz band requires both an opportunistic sensing strategy and systems for reducing the impact of radio-frequency interference. Here, we summarize the potential advantages and applications of 500-1400 MHz microwave radiometry for Earth observation and review recent experiments and demonstrations of these concepts. We also describe the remaining questions and challenges to be addressed in advancing to future spaceborne operation of this technology along with recommendations for future research activities.
RESUMEN
Satellite precipitation products have been largely improved in the recent years particularly with the launch of the global precipitation measurement (GPM) core satellite. Moreover, the development of techniques for exploiting the information provided by satellite soil moisture to complement/enhance precipitation products have improved the accuracy of accumulated rainfall estimates over land. Such satellite enhanced precipitation products, available with a short latency (< 1 day), represent an important and new source of information for river flow prediction and water resources management, particularly in developing countries in which ground observations are scarcely available and the access to such data is not always ensured. In this study, three recently developed rainfall products obtained from the integration of GPM rainfall and satellite soil moisture products have been used; namely GPM+SM2RAIN, PRISM-SMOS, and PRISM-SMAP. The prediction of observed daily river discharge at 10 basins located in Europe (4), West Africa (3) and South Africa (3) is carried out. For comparison, we have also considered three rainfall products based on: (1) GPM only, i.e., the Early Run version of the Integrated Multi-Satellite Retrievals for GPM (GPM-ER), (2) rain gauges, i.e., the Global Precipitation Climatology Centre, and (3) the latest European Centre for Medium-Range Weather Forecasts reanalysis, ERA5. Three different conceptual and lumped rainfall-runoff models are employed to obtain robust and reliable results over the 3-year data period 2015-2017. Results indicate that, particularly over scarcely gauged areas (West Africa), the integrated products outperform both ground- and reanalysis-based rainfall estimates. For all basins, the GPM+SM2RAIN product is performing the best among the short latency products with mean Kling-Gupta Efficiency (KGE) equal to 0.87, and significantly better than GPM-ER (mean KGE = 0.77). The integrated products are found to reproduce particularly well the high flows. These results highlight the strong need to disseminate such integrated satellite rainfall products for hydrological (and agricultural) applications in poorly gauged areas such as Africa and South America.
RESUMEN
Changes in terrestrial tropical carbon stocks have an important role in the global carbon budget. However, current observational tools do not allow accurate and large-scale monitoring of the spatial distribution and dynamics of carbon stocks1. Here, we used low-frequency L-band passive microwave observations to compute a direct and spatially explicit quantification of annual aboveground carbon (AGC) fluxes and show that the tropical net AGC budget was approximately in balance during 2010 to 2017, the net budget being composed of gross losses of -2.86 PgC yr-1 offset by gross gains of -2.97 PgC yr-1 between continents. Large interannual and spatial fluctuations of tropical AGC were quantified during the wet 2011 La Niña year and throughout the extreme dry and warm 2015-2016 El Niño episode. These interannual fluctuations, controlled predominantly by semiarid biomes, were shown to be closely related to independent global atmospheric CO2 growth-rate anomalies (Pearson's r = 0.86), highlighting the pivotal role of tropical AGC in the global carbon budget.
Asunto(s)
Ciclo del Carbono , Carbono/análisis , Tecnología de Sensores Remotos , Clima Tropical , Nave EspacialRESUMEN
The African continent is facing one of the driest periods in the past three decades as well as continued deforestation. These disturbances threaten vegetation carbon (C) stocks and highlight the need for improved capabilities of monitoring large-scale aboveground carbon stock dynamics. Here we use a satellite dataset based on vegetation optical depth derived from low-frequency passive microwaves (L-VOD) to quantify annual aboveground biomass-carbon changes in sub-Saharan Africa between 2010 and 2016. L-VOD is shown not to saturate over densely vegetated areas. The overall net change in drylands (53% of the land area) was -0.05 petagrams of C per year (Pg C yr-1) associated with drying trends, and a net change of -0.02 Pg C yr-1 was observed in humid areas. These trends reflect a high inter-annual variability with a very dry year in 2015 (net change, -0.69 Pg C) with about half of the gross losses occurring in drylands. This study demonstrates, first, the applicability of L-VOD to monitor the dynamics of carbon loss and gain due to weather variations, and second, the importance of the highly dynamic and vulnerable carbon pool of dryland savannahs for the global carbon balance, despite the relatively low carbon stock per unit area.
Asunto(s)
Ciclo del Carbono , Cambio Climático , África del Sur del Sahara , Biomasa , Microondas , Tecnología de Sensores Remotos , Nave EspacialRESUMEN
Plant water storage is fundamental to the functioning of terrestrial ecosystems by participating in plant metabolism, nutrient and sugar transport, and maintenance of the integrity of the hydraulic system of the plant. However, a global view of the size and dynamics of the water pools stored in plant tissues is still lacking. Here, we report global patterns of seasonal variations in ecosystem-scale plant water storage and their relationship with leaf phenology, based on space-borne measurements of L-band vegetation optical depth. We find that seasonal variations in plant water storage are highly synchronous with leaf phenology for the boreal and temperate forests, but asynchronous for the tropical woodlands, where the seasonal development of plant water storage lags behind leaf area by up to 180 days. Contrasting patterns of the time lag between plant water storage and terrestrial groundwater storage are also evident in these ecosystems. A comparison of the water cycle components in seasonally dry tropical woodlands highlights the buffering effect of plant water storage on the seasonal dynamics of water supply and demand. Our results offer insights into ecosystem-scale plant water relations globally and provide a basis for an improved parameterization of eco-hydrological and Earth system models.
Asunto(s)
Ecosistema , Hojas de la Planta/metabolismo , Estaciones del Año , Agua/metabolismo , Imágenes SatelitalesRESUMEN
We present a physical model describing the radiance acquired by an infrared sensor over a rugged heterogeneous surface. This model predicts the radiance seen over complex landscapes like urban areas and provides an accurate analysis of the signal, as each component is available at ground and sensor level. Plus, it allows data comparison from different instruments. Two representative cases (natural and urban) are analysed to show the composition and the construction of the sensor signal and to highlight the importance of having a 3D model, especially for rugged surfaces where environment weights in the overall spectral domain.