RESUMEN
Serratia marcescens is an opportunistic human pathogen involved in antibiotic-resistant hospital acquired infections. Upon contact with the host epithelial cell and prior to internalization, Serratia induces an early autophagic response that is entirely dependent on the ShlA toxin. Once Serratia invades the eukaryotic cell and multiples inside an intracellular vacuole, ShlA expression also promotes an exocytic event that allows bacterial egress from the host cell without compromising its integrity. Several toxins, including ShlA, were shown to induce ATP efflux from eukaryotic cells. Here, we demonstrate that ShlA triggered a nonlytic release of ATP from Chinese hamster ovary (CHO) cells. Enzymatic removal of accumulated extracellular ATP (eATP) or pharmacological blockage of the eATP-P2Y2 purinergic receptor inhibited the ShlA-promoted autophagic response in CHO cells. Despite the intrinsic ecto-ATPase activity of CHO cells, the effective concentration and kinetic profile of eATP was consistent with the established affinity of the P2Y2 receptor and the known kinetics of autophagy induction. Moreover, eATP removal or P2Y2 receptor inhibition also suppressed the ShlA-induced exocytic expulsion of the bacteria from the host cell. Blocking α5ß1 integrin highly inhibited ShlA-dependent autophagy, a result consistent with α5ß1 transactivation by the P2Y2 receptor. In sum, eATP operates as the key signaling molecule that allows the eukaryotic cell to detect the challenge imposed by the contact with the ShlA toxin. Stimulation of P2Y2-dependent pathways evokes the activation of a defensive response to counteract cell damage and promotes the nonlytic clearance of the pathogen from the infected cell.
Asunto(s)
Autofagia , Interacciones Huésped-Patógeno , Integrina alfa5beta1 , Receptores Purinérgicos P2Y2 , Serratia , Toxinas Biológicas , Animales , Cricetinae , Adenosina Trifosfato/metabolismo , Autofagia/efectos de los fármacos , Células CHO , Cricetulus , Exocitosis/efectos de los fármacos , Interacciones Huésped-Patógeno/efectos de los fármacos , Integrina alfa5beta1/antagonistas & inhibidores , Integrina alfa5beta1/metabolismo , Receptores Purinérgicos P2Y2/metabolismo , Serratia/química , Serratia/efectos de los fármacos , Serratia/fisiología , Toxinas Biológicas/farmacología , HumanosRESUMEN
Receptor-selective peptides are widely used as smart carriers for specific tumor-targeted delivery. A remarkable example is the cyclic nonapeptide iRGD (CRGDKPGDC, 1) that couples intrinsic cytotoxic effects with striking tumor-homing properties. These peculiar features are based on a rather complex multistep mechanism of action, where the primary event is the recognition of RGD integrins. Despite the high number of preclinical studies and the recent success of a phase I trial for the treatment of pancreatic ductal adenocarcinoma (PDAC), there is little information available about the iRGD three-dimensional (3D) structure and integrin binding properties. Here, we re-evaluate the peptide's affinity for cancer-related integrins including not only the previously known targets αvß3 and αvß5 but also the αvß6 isoform, which is known to drive cell growth, migration, and invasion in many malignancies including PDAC. Furthermore, we use parallel tempering in the well-tempered ensemble (PT-WTE) metadynamics simulations to characterize the in-solution conformation of iRGD and extensive molecular dynamics calculations to fully investigate its binding mechanism to integrin partners. Finally, we provide clues for fine-tuning the peptide's potency and selectivity profile, which, in turn, may further improve its tumor-homing properties.
Asunto(s)
Integrinas , Oligopéptidos , Línea Celular Tumoral , Oligopéptidos/química , Péptidos/química , Neoplasias PancreáticasRESUMEN
Tony Keller, a pioneer in the field of Nuclear Magnetic Resonance (NMR) spectroscopy, passed away on October 27, 2023, at the age of 86 in Spiez, Switzerland. His work and vision were essential to the development and commercialization of NMR spectrometers for many areas of scientific research.
RESUMEN
The major fibronectin (FN)-binding α5ß1 and αvß3 integrins exhibit cooperativity during cell adhesion, migration and mechanosensing, through mechanisms that are not yet fully resolved. Exploiting mechanically tunable nano-patterned substrates, and peptidomimetic ligands designed to selectively bind corresponding integrins, we report that focal adhesions (FAs) of endothelial cells assembled on α5ß1 integrin-selective substrates rapidly recruit αvß3 integrins, but not vice versa. Blocking of αvß3 integrin hindered FA maturation and cell spreading on α5ß1 integrin-selective substrates, indicating a mechanism dependent on extracellular ligand binding and highlighting the requirement of αvß3 integrin engagement for efficient adhesion. Recruitment of αvß3 integrins additionally occurred on hydrogel substrates of varying mechanical properties, above a threshold stiffness that supports FA formation. Mechanistic studies revealed the need for soluble factors present in serum to allow recruitment, and excluded exogenous, or endogenous, FN as the ligand responsible for αvß3 integrin accumulation to adhesion clusters. Our findings highlight a novel mechanism of integrin cooperation and a critical role for αvß3 integrins in promoting cell adhesion on α5ß1 integrin-selective substrates.
Asunto(s)
Adhesiones Focales/metabolismo , Integrina alfa5beta1/metabolismo , Integrina alfaVbeta3/metabolismo , HumanosRESUMEN
PURPOSE: Increased angiogenesis after myocardial infarction is considered an important favorable prognostic parameter. The αvß3 integrin is a key mediator of cell-cell and cell-matrix interactions and an important molecular target for imaging of neovasculature and repair processes after MI. Thus, imaging of αvß3 expression might provide a novel biomarker for assessment of myocardial angiogenesis as a prognostic marker of left ventricular remodeling after MI. Currently, there is limited data available regarding the association of myocardial blood flow and αvß3 integrin expression after myocardial infarction in humans. METHODS: Twelve patients were examined 31 ± 14 days after MI with PET/CT using [18F]Galacto-RGD and [13N]NH3 and with cardiac MRI including late enhancement on the same day. Normal myocardium (remote) and areas of infarction (lesion) were identified on the [18F]Galacto-RGD PET/CT images by correlation with [13N]NH3 PET and cardiac MRI. Lesion/liver-, lesion/blood-, and lesion/remote ratios were calculated. Blood flow and [18F]Galacto-RGD uptake were quantified and correlated for each myocardial segment (AHA 17-segment model). RESULTS: In 5 patients, increased [18F]Galacto-RGD uptake was notable within or adjacent to the infarction areas with a lesion/remote ratio of 46% (26-83%; lesion/blood 1.15 ± 0.06; lesion/liver 0.61 ± 0.18). [18F]Galacto-RGD uptake correlated significantly with infarct size (R = 0.73; p = 0.016). Moreover, it correlated significantly with restricted blood flow for all myocardial segments (R = - 0.39; p < 0.0001) and even stronger in severely hypoperfused areas (R = - 0.75; p < 0.0001). CONCLUSION: [18F]Galacto-RGD PET/CT allows the visualization and quantification of myocardial αvß3 expression as a key player in angiogenesis in a subset of patients after MI. αvß3 expression was more pronounced in patients with larger infarcts and was generally more intense but not restricted to areas with more impaired blood flow, proving that tracer uptake was largely independent of unspecific perfusion effects. Based on these promising results, larger prospective studies are warranted to evaluate the potential of αvß3 imaging for assessment of myocardial angiogenesis and prediction of ventricular remodeling.
Asunto(s)
Integrina alfaVbeta3 , Infarto del Miocardio , Humanos , Imagen por Resonancia Magnética , Infarto del Miocardio/diagnóstico por imagen , Miocardio , Tomografía Computarizada por Tomografía de Emisión de Positrones , Tomografía de Emisión de Positrones , Estudios ProspectivosRESUMEN
Cancer cell-matrix interactions have been shown to enhance cancer cell survival via the activation of pro-survival signaling pathways. These pathways are initiated at the site of interaction, i.e., integrins, and thus, their inhibition has been the target of therapeutic strategies. Individual roles for fibronectin-binding integrin subtypes αvß3 and α5ß1 have been shown for various cellular processes; however, a systematic comparison of their function in adhesion-dependent chemoresistance is lacking. Here, we utilize integrin subtype-specific peptidomimetics for αvß3 and α5ß1, both as blocking agents on fibronectin-coated surfaces and as surface-immobilized adhesion sites, in order to parse out their role in breast cancer cell survival. Block copolymer micelle nanolithography is utilized to immobilize peptidomimetics onto highly ordered gold nanoparticle arrays with biologically relevant interparticle spacings (35, 50, or 70 nm), thereby providing a platform for ascertaining the dependence of ligand spacing in chemoprotection. We show that several cellular properties-morphology, focal adhesion formation, and migration-are intricately linked to both the integrin subtype and their nanospacing. Importantly, we show that chemotherapeutic drug sensitivity is highly dependent on both parameters, with smaller ligand spacing generally hindering survival. Furthermore, we identify ligand type-specific patterns of drug sensitivity, with enhanced chemosurvival when cells engage αvß3 vs α5ß1 on fibronectin; however, this is heavily reliant on nanoscale spacing, as the opposite is observed when ligands are spaced at 70 nm. These data imply that even nanoscale alterations in extracellular matrix properties have profound effects on cancer cell survival and can thus inform future therapies and drug testing platforms.
Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Adhesión Celular/genética , Integrina alfa5beta1/genética , Integrina alfaVbeta3/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Adhesión Celular/efectos de los fármacos , Movimiento Celular/genética , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Femenino , Fibronectinas/química , Fibronectinas/genética , Oro/química , Humanos , Integrina alfa5beta1/química , Integrina alfaVbeta3/química , Ligandos , Nanopartículas del Metal/química , Unión Proteica/efectos de los fármacos , Transducción de Señal/efectos de los fármacosRESUMEN
Neoatherosclerosis is defined as foamy macrophage infiltration into the peri-strut or neointimal area after stent implantation, potentially leading to late stent failure through progressive atherosclerotic changes including calcification, fibroatheroma, thin-cap fibroatheroma, and rupture with stent thrombosis (ST) in advanced stages. Human autopsy as well as intravascular imaging studies have led to the understanding of neoatherosclerosis formation as a similar but significantly accelerated pathophysiology as compared to native atherosclerosis. This acceleration is mainly based on disrupted endothelial integrity with insufficient barrier function and augmented transmigration of lipids following vascular injury after coronary intervention and especially after implantation of drug-eluting stents. In this review, we summarize translational insights into disease pathophysiology and discuss therapeutic approaches to tackle this novel disease entity. We introduce a novel animal model of neoatherosclerosis alongside accompanying in vitro experiments, which show impaired endothelial integrity causing increased permeability for low-density lipoprotein cholesterol resulting in foam cell transformation of human monocytes. In addition, we discuss novel intravascular imaging surrogates to improve reliable diagnosis of early stage neoatherosclerosis. Finally, a therapeutic approach to prevent in-stent neoatherosclerosis with magnesium-based bioresorbable scaffolds and systemic statin treatment demonstrated the potential to improve arterial healing and re-endothelialization, leading to significantly mitigated neoatherosclerosis formation in an animal model of neoatherosclerosis.
La neoateroesclerosis se define como infiltración de macrófagos espumosos en la zona periprotésica o de la neoíntima tras una implantación de stent, lo cual posiblemente derive en un fracaso tardío del stent mediante cambios ateroescleróticos progresivos, incluidos la calcificación, fibroateromas, fibroateromas de cápsula fina (FACF) y trombosis del stent (TS). Gracias a los estudios de autopsia humana y de imagen intravascular se ha podido comprender la formación de la neoateroesclerosis de una manera fisiopatológica similar a la ateroesclerosis nativa pero significativamente acelerada. Esta aceleración se basa principalmente en la alteración de la integridad endotelial con una función de barrera insuficiente y una mayor transmigración de lípidos a consecuencia de una lesión vascular tras una intervención coronaria y, especialmente, tras la implantación de stents farmacoactivos. En este artículo ofrecemos un resumen de las perspectivas translacionales sobre la fisiopatología de la enfermedad y analizamos los enfoques terapéuticos para abordar esta nueva enfermedad. Presentamos un modelo animal de neoateroesclerosis innovador junto con experimentos in vitro complementarios, en los cuales se pone de manifiesto que la integridad endotelial dañada causa una mayor permeabilidad para el colesterol de las LDL (LDL), lo que da lugar a que los monocitos se transformen en células espumosas. Asimismo, comentamos los criterios indirectos de valoración de imagen intravascular a fin de mejorar el diagnóstico fiable de la neoateroesclerosis en fase inicial. Por último, en un enfoque terapéutico para prevenir la neoateroesclerosis del stent con andamios de magnesio biorreabsorbibles (BRS) y un tratamiento sistémico con estatinas se demostró la posibilidad de mejorar la cicatrización y la reendotelización arteriales, lo que derivó en la formación de neoateroesclerosis significativamente más lenta en un modelo animal de neoateroesclerosis.
RESUMEN
Platelets play a major role in hemostasis and thrombosis, by binding to the underlying extracellular matrix around injured blood vessels, via integrin receptors. In this study, we investigated the effects of adhesive ligand spacing on the stability of platelets' adhesion and the mode of their spreading on extracellular surfaces. Toward this end, we have examined the differential adhesion and spreading of human platelets onto nanogold-patterned surfaces, functionalized with the αIIbß3 integrin ligand, SN528. Combining light- and scanning electron-microscopy, we found that interaction of platelets with surfaces coated with SN528 at spacing of 30-60 nm induces the extension of filopodia through which the platelets stably attach to the nanopatterned surface and spread on it. Increasing the nanopattern-gold spacing to 80-100 nm resulted in a dramatic reduction (>95%) in the number of adhering platelets. Surprisingly, a further increase in ligand spacing to 120 nm resulted in platelet binding to the surface at substantially larger numbers, yet these platelets remained discoid and were essentially devoid of filopodia and lamellipodia. These results indicate that the stimulation of filopodia extension by adhering platelets, and the consequent spreading on these surfaces depend on different ligand densities. Thus, the extension of filopodia occurs on surfaces with a ligand spacing of 100 nm or less, while the sustainability and growth of these initial adhesions and induction of extensive platelet adhesion and spreading requires lower ligand-to-ligand spacing (≤60 nm). The mechanisms underlying this differential ligand-density sensing by platelets, as well as the unexpected retention of discoid platelets on surfaces with even larger spacing (120 nm) are discussed.
RESUMEN
Adoptive cell therapies are showing very promising results in the fight against cancer. However, these therapies are expensive and technically challenging in part due to the need of a large number of specific T cells, which must be activated and expanded in vitro. Here we describe a method to activate primary human T cells using a combination of nanostructured surfaces functionalized with the stimulating anti-CD3 antibody and the peptidic sequence arginine-glycine-aspartic acid, as well as costimulatory agents (anti-CD28 antibody and a cocktail of phorbol 12-myristate 13-acetate, ionomycin, and protein transport inhibitors). Thus, we propose a method that combines nanotechnology with cell biology procedures to efficiently produce T cells in the laboratory, challenging the current state-of-the-art expansion methodologies.
Asunto(s)
Materiales Biocompatibles Revestidos/química , Activación de Linfocitos , Nanoestructuras/química , Linfocitos T/inmunología , Anticuerpos Inmovilizados/química , Anticuerpos Inmovilizados/inmunología , Antígenos CD28/inmunología , Complejo CD3/inmunología , Adhesión Celular , Células Cultivadas , Oro/química , Humanos , Inmunoterapia Adoptiva , Ionomicina/química , Ionomicina/inmunología , Nanoestructuras/ultraestructura , Oligopéptidos/química , Oligopéptidos/inmunología , Propiedades de Superficie , Linfocitos T/citología , Acetato de Tetradecanoilforbol/química , Acetato de Tetradecanoilforbol/inmunología , Titanio/químicaRESUMEN
Cisplatin occupies a crucial role in the treatment of various malignant tumors. However, its efficacy and applicability are heavily restricted by severe systemic toxicities and drug resistance. Our study exploits the active targeting of supramolecular metallacages to enhance the activity of cisplatin in cancer cells while reducing its toxicity. Thus, Pd2L4 cages (L = ligand) have been conjugated to four integrin ligands with different binding affinity and selectivity. Cage formation and encapsulation of cisplatin was proven by NMR spectroscopy. Upon encapsulation, cisplatin showed increased cytotoxicity in vitro, in melanoma A375 cells overexpressing αvß3 integrins. Moreover, ex vivo studies in tissue slices indicated reduced toxicity toward healthy liver and kidney tissues for cage-encapsulated cisplatin. Analysis of metal content by ICP-MS demonstrated that the encapsulated drug is less accumulated in these organs compared to the "free" cisplatin.
Asunto(s)
Antineoplásicos/administración & dosificación , Cisplatino/administración & dosificación , Portadores de Fármacos/metabolismo , Integrina alfaVbeta3/metabolismo , Melanoma/tratamiento farmacológico , Estructuras Metalorgánicas/metabolismo , Paladio/metabolismo , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Cisplatino/farmacología , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Humanos , Ligandos , Masculino , Melanoma/metabolismo , Estructuras Metalorgánicas/química , Paladio/química , Ratas WistarRESUMEN
Hydrophilic peptides constitute most of the active peptides. They mostly permeate via tight junctions (paracellular pathway) in the intestine. This permeability mechanism restricts the magnitude of their oral absorption and bioavailability. We hypothesized that concealing the hydrophilic residues of the peptide using the lipophilic prodrug charge masking approach (LPCM) can improve the bioavailability of hydrophilic peptides. To test this hypothesis, a cyclic N-methylated hexapeptide containing Arg-Gly-Asp (RGD) and its prodrug derivatives, masking the Arg and Asp charged side chains, were synthesized. The library was evaluated for intestinal permeability in vitro using the Caco-2 model. Further investigation of metabolic stability ex vivo models in rat plasma, brush border membrane vesicles (BBMVs), and isolated CYP3A4 microsomes and pharmacokinetic studies was performed on a selected peptide and its prodrug (peptide 12). The parent drug analogues were found to have a low permeability rate in vitro, corresponding to atenolol, a marker for paracellular permeability. Moreover, palmitoyl carnitine increased the Papp of peptide 12 by 4-fold, indicating paracellular permeability. The Papp of the prodrug derivatives was much higher than that of their parent peptides. For instance, the Papp of the prodrug 12P was 20-fold higher than the Papp of peptide 12 in the apical to basolateral (AB) direction. Whereas the permeability in the opposite direction (BA of the Caco-2 model) was significantly faster than the Papp AB, indicating the involvement of an efflux system. These results were corroborated when verapamil, a P-gp inhibitor, was added to the Caco-2 model and increased the Papp AB of prodrug 12P by 3-fold. The prodrug 12P was stable in the BBMVs environment, yet degraded quickly (less than 5 min) in the plasma into the parent peptide 12. Pharmacokinetic studies in rats showed an increase in the bioavailability of peptide 12 > 70-fold (from 0.58 ± 0.11% to 43.8 ± 14.9%) after applying the LPCM method to peptide 12 and converting it to the prodrug 12P. To conclude, the LPCM approach converted the absorption mechanism of the polar peptides from a paracellular to transcellular pathway that tremendously affects their oral bioavailability. The LPCM method provides a solution for the poor bioavailability of RGD cyclohexapeptides and paves the way for other active hydrophilic and charged peptides with poor oral bioavailability.
Asunto(s)
Mucosa Intestinal/metabolismo , Péptidos Cíclicos/farmacocinética , Profármacos/farmacocinética , Administración Oral , Animales , Área Bajo la Curva , Disponibilidad Biológica , Células CACO-2 , Permeabilidad de la Membrana Celular/efectos de los fármacos , Química Farmacéutica , Ciclización , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Absorción Intestinal/efectos de los fármacos , Masculino , Modelos Animales , Biblioteca de Péptidos , Péptidos Cíclicos/administración & dosificación , Péptidos Cíclicos/química , Profármacos/administración & dosificación , Profármacos/química , Ratas , Ratas WistarRESUMEN
The renaissance of peptides in pharmaceutical industry results from their importance in many biological functions. However, low metabolic stability and the lack of oral availability of most peptides is a certain limitation. Whereas metabolic instability may be often overcome by development of small cyclic peptides containing d-amino acids, the very low oral availability of most peptides is a serious limitation for some medicinal applications. The situation is complicated because a twofold optimization - biological activity and oral availability - is required to overcome this problem. Moreover, most simple "rules" for achieving oral availability are not general and are applicable only to limited cases. Many structural modifications for increasing biological activities and metabolic stabilities of cyclic peptides have been described, of which N-alkylation is probably the most common. This mini-review focuses on the effects of N-methylation of cyclic peptides in strategies to optimize bioavailabilities.
Asunto(s)
Péptidos Cíclicos/química , Péptidos Cíclicos/farmacocinética , Animales , Disponibilidad Biológica , Permeabilidad de la Membrana Celular , Descubrimiento de Drogas/métodos , Humanos , Metilación , Peptidomiméticos/química , Peptidomiméticos/farmacocinéticaRESUMEN
The chaperone Hsp90 is an ATP-dependent, dimeric molecular machine regulated by several cochaperones, including inhibitors and the unique ATPase activator Aha1. Here, we analyzed the mechanism of the Aha1-mediated acceleration of Hsp90 ATPase activity and identified the interaction surfaces of both proteins using multidimensional NMR techniques. For maximum activation of Hsp90, the two domains of Aha1 bind to sites in the middle and N-terminal domains of Hsp90 in a sequential manner. This binding induces the kinetically unfavored N terminally dimerized state of Hsp90, which primes for the hydrolysis-competent conformation. Surprisingly, this activation mechanism is asymmetric. The presence of one Aha1 molecule per Hsp90 dimer is sufficient to bridge the two subunits and to fully stimulate Hsp90 ATPase activity. This seems to functionalize the two subunits of the Hsp90 dimer in different ways, in that one subunit can be used for conformational ATPase regulation and the other for substrate protein processing.
Asunto(s)
Chaperoninas/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Chaperoninas/química , Chaperoninas/genética , Dimerización , Transferencia Resonante de Energía de Fluorescencia , Proteínas HSP90 de Choque Térmico/química , Proteínas HSP90 de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Cinética , Chaperonas Moleculares/metabolismo , Resonancia Magnética Nuclear Biomolecular , Mapeo de Interacción de Proteínas , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genéticaRESUMEN
Hsp12 of S. cerevisiae is upregulated several 100-fold in response to stress. Our phenotypic analysis showed that this protein is important for survival of a variety of stress conditions, including high temperature. In the absence of Hsp12, we observed changes in cell morphology under stress conditions. Surprisingly, in the cell, Hsp12 exists both as a soluble cytosolic protein and associated to the plasma membrane. The in vitro analysis revealed that Hsp12, unlike all other Hsps studied so far, is completely unfolded; however, in the presence of certain lipids, it adopts a helical structure. The presence of Hsp12 does not alter the overall lipid composition of the plasma membrane but increases membrane stability.
Asunto(s)
Membrana Celular/metabolismo , Proteínas de Choque Térmico/genética , Fluidez de la Membrana , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Membrana Celular/ultraestructura , Citosol/metabolismo , Regulación Fúngica de la Expresión Génica , Genotipo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Respuesta al Choque Térmico , Lípidos de la Membrana/metabolismo , Presión Osmótica , Estrés Oxidativo , Fenotipo , Pliegue de Proteína , Estructura Secundaria de Proteína , Transporte de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Eliminación de Secuencia , Estrés Fisiológico , Relación Estructura-ActividadRESUMEN
For decades, the development of peptides as potential drugs was aimed solely at peptides with the highest affinity, receptor selectivity, or stability against enzymatic degradation. However, optimization of their oral availability is highly desirable to establish orally active peptides as potential drug candidates for everyday use. A twofold optimization process is necessary to produce orally active peptides: 1)â optimization of the affinity and selectivity and 2)â optimization of the oral availability. These two steps must be performed sequentially for the rational design of orally active peptides. Nevertheless, additional knowledge is required to understand which structural changes increase oral availability, followed by incorporation of these elements into a peptide without changing its other biological properties. Considerable efforts have been made to understand the influence of these modifications on oral availability. One approach is to improve the oral availability of a peptide that has been previously optimized for biological activity, as described in (1) above. The second approach is to first identify an intestinally permeable, metabolically stable peptide scaffold and then introduce the functional groups necessary for the desired biological function. Previous approaches to achieving peptide oral availability have been claimed to have general applicability but, thus far, most of these solutions have not been successful in other cases. This Review discusses diverse chemical modifications, model peptides optimized for bioavailability, and orally active peptides to summarize the state of the research on the oral activity of peptides. We explain why no simple and straightforward strategy (i.e. a "magic bullet") exists for the design of an orally active peptide with a druglike biological function.
Asunto(s)
Péptidos/farmacología , Administración Oral , Disponibilidad Biológica , Péptidos/administración & dosificación , Péptidos/farmacocinética , PermeabilidadRESUMEN
The RGD-recognizing αvß6 integrin has only recently emerged as a major target for cancer diagnosis and therapy. Thus, the development of selective, low-molecular-weight ligands of this receptor is still in great demand. Here, a metadynamics-driven design strategy allowed us to successfully convert a helical nonapeptide into a cyclic pentapeptide (6) showing remarkable potency and αvß6 specificity. NMR and docking studies elucidated the reasons for the high affinity and selectivity of this compound, setting the ground for the rational design of new αvß6-specific small peptides or even peptidomimetics. In vivo PET imaging studies demonstrated the potential use of 6 for medical applications.
Asunto(s)
Antígenos de Neoplasias/química , Integrinas/química , Humanos , Simulación del Acoplamiento Molecular , Resonancia Magnética Nuclear BiomolecularRESUMEN
Systematic N-methylated derivatives of the melanocortin receptor ligand, SHU9119, lead to multiple binding and functional selectivity toward melanocortin receptors. However, the relationship between N-methylation-induced conformational changes in the peptide backbone and side chains and melanocortin receptor selectivity is still unknown. We conducted comprehensive conformational studies in solution of two selective antagonists of the third isoform of the melanocortin receptor (hMC3R), namely, Ac-Nle-c[Asp-NMe-His6-d-Nal(2')7-NMe-Arg8-Trp9-Lys]-NH2 (15) and Ac-Nle-c[Asp-His6-d-Nal(2')7-NMe-Arg8-NMe-Trp9-NMe-Lys]-NH2 (17). It is known that the pharmacophore (His6-DNal7-Arg8-Trp9) of the SHU-9119 peptides occupies a ß II-turn-like region with the turn centered about DNal7-Arg8. The analogues with hMC3R selectivity showed distinct differences in the spatial arrangement of the Trp9 side chains. In addition to our NMR studies, we also carried out molecular-level interaction studies of these two peptides at the homology model of hMC3R. Earlier chimeric human melanocortin 3 receptor studies revealed insights regarding the binding and functional sites of hMC3R selectivity. Upon docking of peptides 15 and 17 to the binding pocket of hMC3R, it was revealed that Arg8 and Trp9 side chains are involved in a majority of the interactions with the receptor. While Arg8 forms polar contacts with D154 and D158 of hMC3R, Trp9 utilizes π-π stacking interactions with F295 and F298, located on the transmembrane domain of hMC3R. It is hypothesized that as the frequency of Trp9-hMC3R interactions decrease, antagonistic activity increases. The absence of any interactions of the N-methyl groups with hMC3R suggests that their primary function is to modulate backbone conformations of the ligands.
Asunto(s)
Hormonas Estimuladoras de los Melanocitos/química , Simulación del Acoplamiento Molecular , Receptor de Melanocortina Tipo 3/antagonistas & inhibidores , Receptor de Melanocortina Tipo 3/química , Sitios de Unión , Humanos , Receptor de Melanocortina Tipo 3/genética , Receptor de Melanocortina Tipo 3/metabolismo , Relación Estructura-ActividadRESUMEN
The formation of new types of sensitive conductive surfaces for the detection and transduction of cell-extracellular matrix recognition events in a real time, label-free manner is of great interest in the field of biomedical research. To study molecularly defined cell functions, biologically inspired materials that mimic the nanoscale order of extracellular matrix protein fibers and yield suitable electrical charge transfer characteristics are highly desired. Our strategy to achieve this goal is based on the spatial self-organization of patches of cell-adhesive molecules onto a gold-nanoparticle-patterned indium tin oxide electrode. Fibroblast adhesion response to selective ligands for integrins α5ß1 and αvß3, which are both relevant in cancer progression, is investigated by simultaneous electrochemical impedance spectroscopy and optical microscopy. Adhesive cells on α5ß1-selective nanopatterns showed enhanced membrane dynamics and tighter binding, compared with cells on αvß3-selective nanopatterns. The surface of the electrode exhibits high sensitivity to small changes in surface properties, because of the constitution of specific cell-surface interactions. Moreover, such sensitivity enables differentiation between cell types. This is exemplified by analyzing distinct features in the electrochemical readout of MCF-7 breast cancer cells versus MCF-10A mammary epithelial cells, when subjected to individual adhesive nanopatches.
Asunto(s)
Técnicas Electroquímicas , Oro/química , Nanopartículas del Metal/química , Imagen Óptica , Compuestos de Estaño/química , Animales , Adhesión Celular , Células Cultivadas , Humanos , Integrina alfa5beta1/antagonistas & inhibidores , Integrina alfa5beta1/metabolismo , Integrina alfaVbeta3/antagonistas & inhibidores , Integrina alfaVbeta3/metabolismo , Ligandos , Células MCF-7 , Microelectrodos , Tamaño de la Partícula , Ratas , Propiedades de SuperficieRESUMEN
A prerequisite for antibody secretion and function is their assembly into a defined quaternary structure, composed of two heavy and two light chains for IgG. Unassembled heavy chains are actively retained in the endoplasmic reticulum (ER). Here, we show that the C(H)1 domain of the heavy chain is intrinsically disordered in vitro, which sets it apart from other antibody domains. It folds only upon interaction with the light-chain C(L) domain. Structure formation proceeds via a trapped intermediate and can be accelerated by the ER-specific peptidyl-prolyl isomerase cyclophilin B. The molecular chaperone BiP recognizes incompletely folded states of the C(H)1 domain and competes for binding to the C(L) domain. In vivo experiments demonstrate that requirements identified for folding the C(H)1 domain in vitro, including association with a folded C(L) domain and isomerization of a conserved proline residue, are essential for antibody assembly and secretion in the cell.
Asunto(s)
Inmunoglobulina G/metabolismo , Pliegue de Proteína , Animales , Células COS , Chlorocebus aethiops , Cricetinae , Retículo Endoplásmico/metabolismo , Chaperón BiP del Retículo Endoplásmico , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/fisiología , Humanos , Inmunoglobulina G/química , Ratones , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Prolina/metabolismo , Estructura Cuaternaria de ProteínaRESUMEN
A highly systematic approach for the development of both orally bioavailable and bioactive cyclic N-methylated hexapeptides as high affinity ligands for the integrinâ αvß3 is based on two concepts: a)â screening of systematically designed libraries with spatial diversity and b)â masking of the peptide charge with a lipophilic protecting group. The key steps of the method are 1)â initial design of a combinatorial library of N-methylated analogues of the stem peptide cyclo(d-Ala-Ala5 ); 2)â selection of cyclic peptides with the highest intestinal permeability; 3)â design of sublibraries with the bioactive RGD sequence in all possible positions; 4)â selection of the best ligands for RGD-recognizing integrin subtypes; 5)â fine-tuning of the affinity and selectivity by additional Ala to Xaa substitutions; 6)â protection of the charged functional groups according to the prodrug concept to regain intestinal and oral permeability; 7)â proof of biological effects in mice after oral administration.