Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
PLoS Biol ; 21(1): e3001688, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36693045

RESUMEN

Twelve-hour (12 h) ultradian rhythms are a well-known phenomenon in coastal marine organisms. While 12 h cycles are observed in human behavior and physiology, no study has measured 12 h rhythms in the human brain. Here, we identify 12 h rhythms in transcripts that either peak at sleep/wake transitions (approximately 9 AM/PM) or static times (approximately 3 PM/AM) in the dorsolateral prefrontal cortex, a region involved in cognition. Subjects with schizophrenia (SZ) lose 12 h rhythms in genes associated with the unfolded protein response and neuronal structural maintenance. Moreover, genes involved in mitochondrial function and protein translation, which normally peak at sleep/wake transitions, peak instead at static times in SZ, suggesting suboptimal timing of these essential processes.


Asunto(s)
Esquizofrenia , Ritmo Ultradiano , Humanos , Corteza Prefontal Dorsolateral , Esquizofrenia/genética , Sueño , Encéfalo , Corteza Prefrontal/metabolismo
2.
Mol Psychiatry ; 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678086

RESUMEN

Circadian rhythms are critical for human health and are highly conserved across species. Disruptions in these rhythms contribute to many diseases, including psychiatric disorders. Previous results suggest that circadian genes modulate behavior through specific cell types in the nucleus accumbens (NAc), particularly dopamine D1-expressing medium spiny neurons (MSNs). However, diurnal rhythms in transcript expression have not been investigated in NAc MSNs. In this study we identified and characterized rhythmic transcripts in D1- and D2-expressing neurons and compared rhythmicity results to homogenate as well as astrocyte samples taken from the NAc of male and female mice. We find that all cell types have transcripts with diurnal rhythms and that top rhythmic transcripts are largely core clock genes, which peak at approximately the same time of day in each cell type and sex. While clock-controlled rhythmic transcripts are enriched for protein regulation pathways across cell type, cell signaling and signal transduction related processes are most commonly enriched in MSNs. In contrast to core clock genes, these clock-controlled rhythmic transcripts tend to reach their peak in expression about 2-h later in females than males, suggesting diurnal rhythms in reward may be delayed in females. We also find sex differences in pathway enrichment for rhythmic transcripts peaking at different times of day. Protein folding and immune responses are enriched in transcripts that peak in the dark phase, while metabolic processes are primarily enriched in transcripts that peak in the light phase. Importantly, we also find that several classic markers used to categorize MSNs are rhythmic in the NAc. This is critical since the use of rhythmic markers could lead to over- or under-enrichment of targeted cell types depending on the time at which they are sampled. This study greatly expands our knowledge of how individual cell types contribute to rhythms in the NAc.

3.
Bioinformatics ; 39(1)2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36655766

RESUMEN

SUMMARY: Circadian oscillations of gene expression regulate daily physiological processes, and their disruption is linked to many diseases. Circadian rhythms can be disrupted in a variety of ways, including differential phase, amplitude and rhythm fitness. Although many differential circadian biomarker detection methods have been proposed, a workflow for systematic detection of multifaceted differential circadian characteristics with accurate false positive control is not currently available. We propose a comprehensive and interactive pipeline to capture the multifaceted characteristics of differentially rhythmic biomarkers. Analysis outputs are accompanied by informative visualization and interactive exploration. The workflow is demonstrated in multiple case studies and is extensible to general omics applications. AVAILABILITY AND IMPLEMENTATION: R package, Shiny app and source code are available in GitHub (https://github.com/DiffCircaPipeline) and Zenodo (https://doi.org/10.5281/zenodo.7507989). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Periodicidad , Programas Informáticos , Flujo de Trabajo
4.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33372142

RESUMEN

The human striatum can be subdivided into the caudate, putamen, and nucleus accumbens (NAc). Each of these structures have some overlapping and some distinct functions related to motor control, cognitive processing, motivation, and reward. Previously, we used a "time-of-death" approach to identify diurnal rhythms in RNA transcripts in human cortical regions. Here, we identify molecular rhythms across the three striatal subregions collected from postmortem human brain tissue in subjects without psychiatric or neurological disorders. Core circadian clock genes are rhythmic across all three regions and show strong phase concordance across regions. However, the putamen contains a much larger number of significantly rhythmic transcripts than the other two regions. Moreover, there are many differences in pathways that are rhythmic across regions. Strikingly, the top rhythmic transcripts in NAc (but not the other regions) are predominantly small nucleolar RNAs and long noncoding RNAs, suggesting that a completely different mechanism might be used for the regulation of diurnal rhythms in translation and/or RNA processing in the NAc versus the other regions. Further, although the NAc and putamen are generally in phase with regard to timing of expression rhythms, the NAc and caudate, and caudate and putamen, have several clusters of discordant rhythmic transcripts, suggesting a temporal wave of specific cellular processes across the striatum. Taken together, these studies reveal distinct transcriptome rhythms across the human striatum and are an important step in helping to understand the normal function of diurnal rhythms in these regions and how disruption could lead to pathology.


Asunto(s)
Relojes Circadianos/genética , Ritmo Circadiano/fisiología , Estriado Ventral/metabolismo , Encéfalo/metabolismo , Humanos , Núcleo Accumbens/metabolismo , Putamen/metabolismo , Transcriptoma
5.
J Proteome Res ; 22(7): 2377-2390, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37311105

RESUMEN

Substance use disorders are associated with disruptions in sleep and circadian rhythms that persist during abstinence and may contribute to relapse risk. Repeated use of substances such as psychostimulants and opioids may lead to significant alterations in molecular rhythms in the nucleus accumbens (NAc), a brain region central to reward and motivation. Previous studies have identified rhythm alterations in the transcriptome of the NAc and other brain regions following the administration of psychostimulants or opioids. However, little is known about the impact of substance use on the diurnal rhythms of the proteome in the NAc. We used liquid chromatography coupled to tandem mass spectrometry-based quantitative proteomics, along with a data-independent acquisition analysis pipeline, to investigate the effects of cocaine or morphine administration on diurnal rhythms of proteome in the mouse NAc. Overall, our data reveal cocaine and morphine differentially alter diurnal rhythms of the proteome in the NAc, with largely independent differentially expressed proteins dependent on time-of-day. Pathways enriched from cocaine altered protein rhythms were primarily associated with glucocorticoid signaling and metabolism, whereas morphine was associated with neuroinflammation. Collectively, these findings are the first to characterize the diurnal regulation of the NAc proteome and demonstrate a novel relationship between the phase-dependent regulation of protein expression and the differential effects of cocaine and morphine on the NAc proteome. The proteomics data in this study are available via ProteomeXchange with identifier PXD042043.


Asunto(s)
Cocaína , Ratones , Animales , Cocaína/farmacología , Núcleo Accumbens/metabolismo , Morfina/farmacología , Morfina/metabolismo , Proteoma/genética , Proteoma/metabolismo , Analgésicos Opioides/metabolismo , Analgésicos Opioides/farmacología
6.
Stat Med ; 42(18): 3236-3258, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37265194

RESUMEN

Circadian clocks are 24-h endogenous oscillators in physiological and behavioral processes. Though recent transcriptomic studies have been successful in revealing the circadian rhythmicity in gene expression, the power calculation for omics circadian analysis have not been fully explored. In this paper, we develop a statistical method, namely CircaPower, to perform power calculation for circadian pattern detection. Our theoretical framework is determined by three key factors in circadian gene detection: sample size, intrinsic effect size and sampling design. Via simulations, we systematically investigate the impact of these key factors on circadian power calculation. We not only demonstrate that CircaPower is fast and accurate, but also show its underlying cosinor model is robust against variety of violations of model assumptions. In real applications, we demonstrate the performance of CircaPower using mouse pan-tissue data and human post-mortem brain data, and illustrate how to perform circadian power calculation using mouse skeleton muscle RNA-Seq pilot as case study. Our method CircaPower has been implemented in an R package, which is made publicly available on GitHub ( https://github.com/circaPower/circaPower).


Asunto(s)
Ritmo Circadiano , Proyectos de Investigación , Humanos , Animales , Ratones , Ritmo Circadiano/genética , Perfilación de la Expresión Génica , Transcriptoma , Tamaño de la Muestra
7.
Eur J Neurosci ; 55(3): 675-693, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35001440

RESUMEN

Substance use disorders are associated with disruptions to both circadian rhythms and cellular metabolic state. At the molecular level, the circadian molecular clock and cellular metabolic state may be interconnected through interactions with the nicotinamide adenine dinucleotide (NAD+ )-dependent deacetylase, sirtuin 1 (SIRT1). In the nucleus accumbens (NAc), a region important for reward, both SIRT1 and the circadian transcription factor neuronal PAS domain protein 2 (NPAS2) are highly enriched, and both are regulated by the metabolic cofactor NAD+ . Substances of abuse, like cocaine, greatly disrupt cellular metabolism and promote oxidative stress; however, their effects on NAD+ in the brain remain unclear. Interestingly, cocaine also induces NAc expression of both NPAS2 and SIRT1, and both have independently been shown to regulate cocaine reward in mice. However, whether NPAS2 and SIRT1 interact in the NAc and/or whether together they regulate reward is unknown. Here, we demonstrate diurnal expression of Npas2, Sirt1 and NAD+ in the NAc, which is altered by cocaine-induced upregulation. Additionally, co-immunoprecipitation reveals NPAS2 and SIRT1 interact in the NAc, and cross-analysis of NPAS2 and SIRT1 chromatin immunoprecipitation sequencing reveals several reward-relevant and metabolic-related pathways enriched among shared gene targets. Notably, NAc-specific Npas2 knock-down or a functional Npas2 mutation in mice attenuates SIRT1-mediated increases in cocaine preference. Together, our data reveal an interaction between NPAS2 and SIRT1 in the NAc, which may serve to integrate cocaine's effects on circadian and metabolic factors, leading to regulation of drug reward.


Asunto(s)
Cocaína , Núcleo Accumbens , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/farmacología , Ritmo Circadiano/fisiología , Cocaína/farmacología , Ratones , Ratones Endogámicos C57BL , NAD/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Recompensa , Sirtuina 1/genética , Sirtuina 1/metabolismo , Factores de Transcripción/metabolismo
8.
Mol Psychiatry ; 26(8): 4066-4084, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33235333

RESUMEN

Valproate (VPA) has been used in the treatment of bipolar disorder since the 1990s. However, the therapeutic targets of VPA have remained elusive. Here we employ a preclinical model to identify the therapeutic targets of VPA. We find compounds that inhibit histone deacetylase proteins (HDACs) are effective in normalizing manic-like behavior, and that class I HDACs (e.g., HDAC1 and HDAC2) are most important in this response. Using an RNAi approach, we find that HDAC2, but not HDAC1, inhibition in the ventral tegmental area (VTA) is sufficient to normalize behavior. Furthermore, HDAC2 overexpression in the VTA prevents the actions of VPA. We used RNA sequencing in both mice and human induced pluripotent stem cells (iPSCs) derived from bipolar patients to further identify important molecular targets. Together, these studies identify HDAC2 and downstream targets for the development of novel therapeutics for bipolar mania.


Asunto(s)
Células Madre Pluripotentes Inducidas , Ácido Valproico , Animales , Histona Desacetilasa 2/genética , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Manía , Ratones , Ácido Valproico/farmacología
9.
Bipolar Disord ; 24(3): 232-263, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34850507

RESUMEN

AIM: Symptoms of bipolar disorder (BD) include changes in mood, activity, energy, sleep, and appetite. Since many of these processes are regulated by circadian function, circadian rhythm disturbance has been examined as a biological feature underlying BD. The International Society for Bipolar Disorders Chronobiology Task Force (CTF) was commissioned to review evidence for neurobiological and behavioral mechanisms pertinent to BD. METHOD: Drawing upon expertise in animal models, biomarkers, physiology, and behavior, CTF analyzed the relevant cross-disciplinary literature to precisely frame the discussion around circadian rhythm disruption in BD, highlight key findings, and for the first time integrate findings across levels of analysis to develop an internally consistent, coherent theoretical framework. RESULTS: Evidence from multiple sources implicates the circadian system in mood regulation, with corresponding associations with BD diagnoses and mood-related traits reported across genetic, cellular, physiological, and behavioral domains. However, circadian disruption does not appear to be specific to BD and is present across a variety of high-risk, prodromal, and syndromic psychiatric disorders. Substantial variability and ambiguity among the definitions, concepts and assumptions underlying the research have limited replication and the emergence of consensus findings. CONCLUSIONS: Future research in circadian rhythms and its role in BD is warranted. Well-powered studies that carefully define associations between BD-related and chronobiologically-related constructs, and integrate across levels of analysis will be most illuminating.


Asunto(s)
Trastorno Bipolar , Trastornos Cronobiológicos , Animales , Investigación Conductal , Trastorno Bipolar/diagnóstico , Trastornos Cronobiológicos/genética , Ritmo Circadiano/genética , Humanos , Sueño/fisiología
10.
J Neurosci ; 39(24): 4657-4667, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-30962277

RESUMEN

The circadian transcription factor neuronal PAS domain 2 (NPAS2) is linked to psychiatric disorders associated with altered reward sensitivity. The expression of Npas2 is preferentially enriched in the mammalian forebrain, including the nucleus accumbens (NAc), a major neural substrate of motivated and reward behavior. Previously, we demonstrated that downregulation of NPAS2 in the NAc reduces the conditioned behavioral response to cocaine in mice. We also showed that Npas2 is preferentially enriched in dopamine receptor 1 containing medium spiny neurons (D1R-MSNs) of the striatum. To extend these studies, we investigated the impact of NPAS2 disruption on accumbal excitatory synaptic transmission and strength, along with the behavioral sensitivity to cocaine reward in a cell-type-specific manner. Viral-mediated knockdown of Npas2 in the NAc of male and female C57BL/6J mice increased the excitatory drive onto MSNs. Using Drd1a-tdTomato mice in combination with viral knockdown, we determined these synaptic adaptations were specific to D1R-MSNs relative to non-D1R-MSNs. Interestingly, NAc-specific knockdown of Npas2 blocked cocaine-induced enhancement of synaptic strength and glutamatergic transmission specifically onto D1R-MSNs. Last, we designed, validated, and used a novel Cre-inducible short-hairpin RNA virus for MSN-subtype-specific knockdown of Npas2 Cell-type-specific Npas2 knockdown in D1R-MSNs, but not D2R-MSNs, in the NAc reduced cocaine conditioned place preference. Together, our results demonstrate that NPAS2 regulates excitatory synapses of D1R-MSNs in the NAc and cocaine reward-related behavior.SIGNIFICANCE STATEMENT Drug addiction is a widespread public health concern often comorbid with other psychiatric disorders. Disruptions of the circadian clock can predispose or exacerbate substance abuse in vulnerable individuals. We demonstrate a role for the core circadian protein, NPAS2, in mediating glutamatergic neurotransmission at medium spiny neurons (MSNs) in the nucleus accumbens (NAc), a region critical for reward processing. We find that NPAS2 negatively regulates functional excitatory synaptic plasticity in the NAc and is necessary for cocaine-induced plastic changes in MSNs expressing the dopamine 1 receptor (D1R). We further demonstrate disruption of NPAS2 in D1R-MSNs produces augmented cocaine preference. These findings highlight the significance of cell-type-specificity in mechanisms underlying reward regulation by NPAS2 and extend our knowledge of its function.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Trastornos Relacionados con Cocaína/genética , Cocaína/farmacología , Proteínas del Tejido Nervioso/genética , Plasticidad Neuronal/genética , Núcleo Accumbens/citología , Sinapsis , Animales , Femenino , Ácido Glutámico/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Plasticidad Neuronal/efectos de los fármacos , Núcleo Accumbens/efectos de los fármacos , Recompensa , Transmisión Sináptica/efectos de los fármacos
11.
Eur J Neurosci ; 51(1): 326-345, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-30402924

RESUMEN

Mood disorders, including major depression, bipolar disorder, and seasonal affective disorder, are debilitating disorders that affect a significant portion of the global population. Individuals suffering from mood disorders often show significant disturbances in circadian rhythms and sleep. Moreover, environmental disruptions to circadian rhythms can precipitate or exacerbate mood symptoms in vulnerable individuals. Circadian clocks exist throughout the central nervous system and periphery, where they regulate a wide variety of physiological processes implicated in mood regulation. These processes include monoaminergic and glutamatergic transmission, hypothalamic-pituitary-adrenal axis function, metabolism, and immune function. While there seems to be a clear link between circadian rhythm disruption and mood regulation, the mechanisms that underlie this association remain unclear. This review will touch on the interactions between the circadian system and each of these processes and discuss their potential role in the development of mood disorders. While clinical studies are presented, much of the review will focus on studies in animal models, which are attempting to elucidate the molecular and cellular mechanisms in which circadian genes regulate mood.


Asunto(s)
Relojes Circadianos , Sistema Hipotálamo-Hipofisario , Animales , Ritmo Circadiano , Humanos , Trastornos del Humor , Sistema Hipófiso-Suprarrenal
12.
J Neurosci ; 38(50): 10657-10671, 2018 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-30355627

RESUMEN

The ability of stress to trigger cocaine seeking in humans and rodents is variable and is determined by the amount and pattern of prior drug use. This study examined the role of a corticotropin releasing factor (CRF)-regulated dopaminergic projection from the ventral tegmental area (VTA) to the prelimbic cortex in shock-induced cocaine seeking and its recruitment under self-administration conditions that establish relapse vulnerability. Male rats with a history of daily long-access (LgA; 14 × 6 h/d) but not short-access (ShA; 14 × 2 h/d) self-administration showed robust shock-induced cocaine seeking. This was associated with a heightened shock-induced prelimbic cortex Fos response and activation of cholera toxin b retro-labeled VTA neurons that project to the prelimbic cortex. Chemogenetic inhibition of this pathway using a dual virus intersectional hM4Di DREADD (designer receptor exclusively activated by designer drug) based approach prevented shock-induced cocaine seeking. Both shock-induced reinstatement and the prelimbic cortex Fos response were prevented by bilateral intra-VTA injections of the CRF receptor 1 (CRFR1) antagonist, antalarmin. Moreover, pharmacological disconnection of the CRF-regulated dopaminergic projection to the prelimbic cortex by injection of antalarmin into the VTA in one hemisphere and the D1 receptor antagonist, SCH23390, into the prelimbic cortex of the contralateral hemisphere prevented shock-induced cocaine seeking. Finally, LgA, but not ShA, cocaine self-administration resulted in increased VTA CRFR1 mRNA levels as measured using in situ hybridization. Altogether, these findings suggest that excessive cocaine use may establish susceptibility to stress-induced relapse by recruiting CRF regulation of a stressor-responsive mesocortical dopaminergic pathway.SIGNIFICANCE STATEMENT Understanding the neural pathways and mechanisms through which stress triggers relapse to cocaine use is critical for the development of more effective treatment approaches. Prior work has demonstrated a critical role for the neuropeptide corticotropin releasing factor (CRF) in stress-induced cocaine seeking. Here we provide evidence that stress-induced reinstatement in a rat model of relapse is mediated by a CRF-regulated dopaminergic projection from the ventral tegmental area (VTA) that activates dopamine D1 receptors in the prelimbic cortex. Moreover, we report that this pathway may be recruited as a result of daily cocaine self-administration under conditions of extended drug access/heightened drug intake, likely as a result of increased CRFR1 expression in the VTA, thereby promoting susceptibility to stress-induced cocaine seeking.


Asunto(s)
Cocaína/administración & dosificación , Comportamiento de Búsqueda de Drogas/fisiología , Corteza Prefrontal/fisiología , Receptores de Hormona Liberadora de Corticotropina/biosíntesis , Estrés Psicológico/metabolismo , Área Tegmental Ventral/fisiología , Animales , Condicionamiento Operante/fisiología , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Masculino , Vías Nerviosas/química , Vías Nerviosas/fisiología , Corteza Prefrontal/química , Ratas , Ratas Sprague-Dawley , Receptores de Hormona Liberadora de Corticotropina/genética , Autoadministración , Estrés Psicológico/psicología , Área Tegmental Ventral/química
13.
Stress ; 20(5): 449-464, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28436309

RESUMEN

Corticotropin-releasing hormone (CRH) is a key regulator of the stress response. This peptide controls the hypothalamic-pituitary-adrenal (HPA) axis as well as a variety of behavioral and autonomic stress responses via the two CRH receptors, CRH-R1 and CRH-R2. The CRH system also includes an evolutionarily conserved CRH-binding protein (CRH-BP), a secreted glycoprotein that binds CRH with subnanomolar affinity to modulate CRH receptor activity. In this review, we discuss the current literature on CRH-BP and stress across multiple species, from insects to humans. We describe the regulation of CRH-BP in response to stress, as well as genetic mouse models that have been utilized to elucidate the in vivo role(s) of CRH-BP in modulating the stress response. Finally, the role of CRH-BP in the human stress response is examined, including single nucleotide polymorphisms in the human CRHBP gene that are associated with stress-related affective disorders and addiction. Lay summary The stress response is controlled by corticotropin-releasing hormone (CRH), acting via CRH receptors. However, the CRH system also includes a unique CRH-binding protein (CRH-BP) that binds CRH with an affinity greater than the CRH receptors. In this review, we discuss the role of this highly conserved CRH-BP in regulation of the CRH-mediated stress response from invertebrates to humans.


Asunto(s)
Proteínas Portadoras/genética , Hormona Liberadora de Corticotropina/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Receptores de Hormona Liberadora de Corticotropina/genética , Estrés Psicológico/metabolismo , Animales , Abejas , Proteínas Portadoras/metabolismo , Copépodos , Peces , Humanos , Invertebrados , Ratones , Receptores de Hormona Liberadora de Corticotropina/metabolismo
14.
Alcohol Clin Exp Res ; 40(8): 1641-50, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27374820

RESUMEN

BACKGROUND: Dysregulation of the corticotropin-releasing factor (CRF) system has been observed in rodent models of binge drinking, with a large focus on CRF receptor 1 (CRF-R1). The role of CRF-binding protein (CRF-BP), a key regulator of CRF activity, in binge drinking is less well understood. In humans, single-nucleotide polymorphisms in CRHBP are associated with alcohol use disorder and stress-induced alcohol craving, suggesting a role for CRF-BP in vulnerability to alcohol addiction. METHODS: The role and regulation of CRF-BP in binge drinking were examined in mice exposed to the drinking in the dark (DID) paradigm. Using in situ hybridization, the regulation of CRF-BP, CRF-R1, and CRF mRNA expression was determined in the stress and reward systems of C57BL/6J mice after repeated cycles of DID. To determine the functional role of CRF-BP in binge drinking, CRF-BP knockout (CRF-BP KO) mice were exposed to 6 cycles of DID, during which alcohol consumption was measured and compared to wild-type mice. RESULTS: CRF-BP mRNA expression was significantly decreased in the prelimbic (PL) and infralimbic medial prefrontal cortex (mPFC) of C57BL/6J mice after 3 cycles and in the PL mPFC after 6 cycles of DID. No significant changes in CRF or CRF-R1 mRNA levels were observed in mPFC, ventral tegmental area, bed nucleus of the stria terminalis, or amygdala after 3 cycles of DID. CRF-BP KO mice do not show significant alterations in drinking compared to wild-type mice across 6 cycles of DID. CONCLUSIONS: These results reveal that repeated cycles of binge drinking alter CRF-BP mRNA expression in the mPFC, a region responsible for executive function and regulation of emotion and behavior, including responses to stress. We observed a persistent decrease in CRF-BP mRNA expression in the mPFC after 3 and 6 DID cycles, which may allow for increased CRF signaling at CRF-R1 and contribute to excessive binge-like ethanol consumption.


Asunto(s)
Consumo Excesivo de Bebidas Alcohólicas/metabolismo , Proteínas Portadoras/biosíntesis , Corteza Prefrontal/metabolismo , Animales , Consumo Excesivo de Bebidas Alcohólicas/genética , Proteínas Portadoras/genética , Hormona Liberadora de Corticotropina/biosíntesis , Hormona Liberadora de Corticotropina/genética , Etanol/administración & dosificación , Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Corteza Prefrontal/efectos de los fármacos , Receptores de Hormona Liberadora de Corticotropina/biosíntesis , Receptores de Hormona Liberadora de Corticotropina/genética
15.
Dev Psychobiol ; 56(3): 435-47, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23532964

RESUMEN

The etiology of schizophrenia's cognitive symptoms may have its basis in prenatal alterations of glutamate N-methyl-D-aspartate (NMDA) receptor functioning. Therefore, the current study investigated the effects of ketamine (an NMDA receptor blocking drug) on both a conditioned taste aversion (CTA) and latent inhibition (LI; a model of attentional capacity) in rat fetuses. We first sought to determine if a CTA could be diminished by nonreinforced preexposure to a CS in fetal rats (i.e., LI). We injected E18 pregnant Sprague-Dawley rats with 100% allicin (garlic taste) or an equal volume of saline. Some of the pregnant dams also received ketamine (100 mg/kg, i.p.). One day later (E19), the dams received a second injection of the CS, followed by either lithium chloride (the US) or saline. Finally, on E21 pups received oral lavage with allicin and observations of ingestive orofacial motor responses were recorded. When allicin had been paired with LiCl in utero, E21 fetuses exhibited a conditioned suppression of orofacial movements, indicative of an aversion to this taste. Preexposure to the garlic taste on E18 produced a LI of this CTA. Ketamine significantly disrupted the formation of the CTA and had some impact on LI. However, the direct effect of ketamine on LI is less certain since the drug also blocked the original CTA.


Asunto(s)
Reacción de Prevención/efectos de los fármacos , Condicionamiento Clásico/efectos de los fármacos , Antagonistas de Aminoácidos Excitadores/farmacología , Inhibición Psicológica , Ketamina/farmacología , Ácidos Sulfínicos/farmacología , Animales , Reacción de Prevención/fisiología , Condicionamiento Clásico/fisiología , Disulfuros , Femenino , Embarazo , Ratas , Ratas Sprague-Dawley
16.
Biol Psychiatry ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38735357

RESUMEN

Circadian rhythms are approximate 24-hour rhythms present in nearly all aspects of human physiology, including proper brain function. These rhythms are produced at the cellular level through a transcriptional-translational feedback loop known as the molecular clock. Diurnal variation in gene expression has been demonstrated in brain tissue from multiple species, including humans, in both cortical and subcortical regions. Interestingly, these rhythms in gene expression have been shown to be disrupted across psychiatric disorders and may be implicated in their underlying pathophysiology. However, little is known regarding molecular rhythms in specific cell types in the brain and how they might be involved in psychiatric disease. Although glial cells (e.g., astrocytes, microglia, and oligodendrocytes) have been historically understudied compared to neurons, evidence of the molecular clock is found within each of these cell subtypes. Here, we review the current literature, which suggests that molecular rhythmicity is essential to functional physiologic outputs from each glial subtype. Furthermore, disrupted molecular rhythms within these cells and the resultant functional deficits may be relevant to specific phenotypes across psychiatric illnesses. Given that circadian rhythm disruptions have been so integrally tied to psychiatric disease, the molecular mechanisms governing these associations could represent exciting new avenues for future research and potential novel pharmacologic targets for treatment.

17.
Neuropsychopharmacology ; 49(5): 796-805, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38182777

RESUMEN

The human striatum can be subdivided into the caudate, putamen, and nucleus accumbens (NAc). In mice, this roughly corresponds to the dorsal medial striatum (DMS), dorsal lateral striatum (DLS), and ventral striatum (NAc). Each of these structures have some overlapping and distinct functions related to motor control, cognitive processing, motivation, and reward. Previously, we used a "time-of-death" approach to identify diurnal rhythms in RNA transcripts in these three human striatal subregions. Here, we identify molecular rhythms across similar striatal subregions collected from C57BL/6J mice across 6 times of day and compare results to the human striatum. Pathway analysis indicates a large degree of overlap between species in rhythmic transcripts involved in processes like cellular stress, energy metabolism, and translation. Notably, a striking finding in humans is that small nucleolar RNAs (snoRNAs) and long non-coding RNAs (lncRNAs) are among the most highly rhythmic transcripts in the NAc and this is not conserved in mice, suggesting the rhythmicity of RNA processing in this region could be uniquely human. Furthermore, the peak timing of overlapping rhythmic genes is altered between species, but not consistently in one direction. Taken together, these studies reveal conserved as well as distinct transcriptome rhythms across the human and mouse striatum and are an important step in understanding the normal function of diurnal rhythms in humans and model organisms in these regions and how disruption could lead to pathology.


Asunto(s)
Cuerpo Estriado , Estriado Ventral , Humanos , Ratones , Animales , Ratones Endogámicos C57BL , Cuerpo Estriado/metabolismo , Núcleo Accumbens , Perfilación de la Expresión Génica , Transcriptoma
18.
Biol Psychiatry ; 93(2): 137-148, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36302706

RESUMEN

BACKGROUND: Psychosis is a defining feature of schizophrenia and highly prevalent in bipolar disorder. Notably, individuals with these illnesses also have major disruptions in sleep and circadian rhythms, and disturbances of sleep and circadian rhythms can precipitate or exacerbate psychotic symptoms. Psychosis is associated with the striatum, though to our knowledge, no study to date has directly measured molecular rhythms and determined how they are altered in the striatum of subjects with psychosis. METHODS: We performed RNA sequencing and both differential expression and rhythmicity analyses to investigate diurnal alterations in gene expression in human postmortem striatal subregions (nucleus accumbens, caudate, and putamen) in subjects with psychosis (n = 36) relative to unaffected comparison subjects (n = 36). RESULTS: Across regions, we found differential expression of immune-related transcripts and a substantial loss of rhythmicity in core circadian clock genes in subjects with psychosis. In the nucleus accumbens, mitochondrial-related transcripts had decreased expression in subjects with psychosis, but only in those who died at night. Additionally, we found a loss of rhythmicity in small nucleolar RNAs and a gain of rhythmicity in glutamatergic signaling in the nucleus accumbens of subjects with psychosis. Between-region comparisons indicated that rhythmicity in the caudate and putamen was far more similar in subjects with psychosis than in matched comparison subjects. CONCLUSIONS: Together, these findings reveal differential and rhythmic gene expression differences across the striatum that may contribute to striatal dysfunction and psychosis in psychotic disorders.


Asunto(s)
Trastornos Psicóticos , Humanos , Trastornos Psicóticos/genética , Ritmo Circadiano/genética , Cuerpo Estriado , Putamen , Expresión Génica
19.
bioRxiv ; 2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36909659

RESUMEN

Substance use disorders (SUDs) are associated with disruptions in sleep and circadian rhythms that persist during abstinence and may contribute to relapse risk. Repeated use of substances such as psychostimulants and opioids may lead to significant alterations in molecular rhythms in the nucleus accumbens (NAc), a brain region central to reward and motivation. Previous studies have identified rhythm alterations in the transcriptome of the NAc and other brain regions following the administration of psychostimulants or opioids. However, little is known about the impact of substance use on the diurnal rhythms of the proteome in the NAc. We used liquid chromatography coupled to tandem mass spectrometry-based (LC-MS/MS) quantitative proteomics, along with a data-independent acquisition (DIA) analysis pipeline, to investigate the effects of cocaine or morphine administration on diurnal rhythms of proteome in the mouse NAc. Overall, our data reveals cocaine and morphine differentially alters diurnal rhythms of the proteome in the NAc, with largely independent differentially expressed proteins dependent on time-of-day. Pathways enriched from cocaine altered protein rhythms were primarily associated with glucocorticoid signaling and metabolism, whereas morphine was associated with neuroinflammation. Collectively, these findings are the first to characterize the diurnal regulation of the NAc proteome and demonstrate a novel relationship between phase-dependent regulation of protein expression and the differential effects of cocaine and morphine on the NAc proteome.

20.
bioRxiv ; 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37873436

RESUMEN

Parkinson's disease (PD) targets some dopamine (DA) neurons more than others. Sex differences offer insights, with females more protected from DA neurodegeneration. The mammalian vesicular glutamate transporter VGLUT2 and Drosophila ortholog dVGLUT have been implicated as modulators of DA neuron resilience. However, the mechanisms by which VGLUT2/dVGLUT protects DA neurons remain unknown. We discovered DA neuron dVGLUT knockdown increased mitochondrial reactive oxygen species in a sexually dimorphic manner in response to depolarization or paraquat-induced stress, males being especially affected. DA neuron dVGLUT also reduced ATP biosynthetic burden during depolarization. RNA sequencing of VGLUT+ DA neurons in mice and flies identified candidate genes that we functionally screened to further dissect VGLUT-mediated DA neuron resilience across PD models. We discovered transcription factors modulating dVGLUT-dependent DA neuroprotection and identified dj-1ß as a regulator of sex-specific DA neuron dVGLUT expression. Overall, VGLUT protects DA neurons from PD-associated degeneration by maintaining mitochondrial health.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA