Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Ecol ; 31(23): 6216-6223, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-33503312

RESUMEN

Reproductive investment often comes at a cost to longevity, but the mechanisms that underlie these long-term effects are not well understood. In male vertebrates, elevated testosterone has been shown to increase reproductive success, but simultaneously to decrease survival. One factor that may contribute to or serve as a biomarker of these long-term effects of testosterone on longevity is telomeres, which are often positively related to lifespan and have been shown to shorten in response to reproduction. In this longitudinal study, we measured the effects of experimentally elevated testosterone on telomere shortening in free-living, male dark-eyed juncos (Junco hyemalis carolinensis), a system in which the experimental elevation of testosterone has previously been shown to increase reproductive success and reduce survival. We found a small, significant effect of testosterone treatment on telomeres, with testosterone-treated males exhibiting significantly greater telomere shortening with age than controls. These results are consistent with the hypothesis that increased telomere shortening may be a long-term cost of elevated testosterone exposure. As both testosterone and telomeres are conserved physiological mechanisms, our results suggest that their interaction may apply broadly to the long-term costs of reproduction in male vertebrates.


Asunto(s)
Passeriformes , Pájaros Cantores , Animales , Masculino , Pájaros Cantores/genética , Estudios Longitudinales , Reproducción/fisiología , Testosterona , Telómero/genética
2.
Mol Ecol ; 31(9): 2625-2643, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35253305

RESUMEN

Colonization of a novel environment by a few individuals can lead to rapid evolutionary change, yet there is scarce evidence of the relative contributions of neutral and selective factors in promoting divergence during the early stages of colonization. Here we explore the role of neutral and selective forces in the divergence of a unique urban population of the dark-eyed junco (Junco hyemalis), which became established on the campus of the University of California at San Diego (UCSD) in the early 1980s. Previous studies based on microsatellite loci documented significant genetic differentiation of the urban population as well as divergence in phenotypic traits relative to nearby montane populations, yet the geographical origin of the colonization and the contributing factors remained uncertain. Our genome-wide single nucleotide polymorphism data set confirmed the marked genetic differentiation of the UCSD population, and we identified the coastal subspecies pinosus from central California as its sister group instead of the neighbouring mountain population. Demographic inference recovered a separation from pinosus as recent as 20-32 generations ago after a strong bottleneck, suggesting a role for drift in genetic differentiation. However, we also found significant associations between habitat variables and genome-wide variants linked to functional genes, some of which have been reported as potentially adaptive in birds inhabiting modified environments. These results suggest that the interplay between founder events and selection may result in rapid shifts in neutral and adaptive loci across the genome, and reveal the UCSD junco population as a case of contemporary evolutionary divergence in an anthropogenic environment.


Asunto(s)
Passeriformes , Pájaros Cantores , Animales , Evolución Biológica , Flujo Genético , Genética de Población , Fenotipo , Pájaros Cantores/genética
3.
J Anim Ecol ; 91(10): 1988-1998, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35819093

RESUMEN

Many species have shifted their breeding phenology in response to climate change. Identifying the magnitude of phenological shifts and whether climate-mediated selection drives these shifts is key for determining species' resilience to climate change. Birds are a strong model for studying phenological shifts due to numerous long-term research studies; however, generalities pertaining to drivers of phenological shifts will emerge only as we add study species that differ in life history and geography. We investigated 32 years of reproductive timing in a non-migratory population of dark-eyed juncos Junco hyemalis. We predicted that plasticity in reproductive timing would allow females to breed earlier in warmer springs. We also predicted that selection would favour earlier breeding and asked whether the temperatures throughout the breeding season would predict the strength of selection. To test these predictions, we examined temporal changes in the annual median date for reproductive onset (i.e. first egg date) and we used a sliding window analysis to identify spring temperatures driving these patterns. Next, we explored plasticity in reproductive timing and asked whether selection favoured earlier breeding. Lastly, we used a sliding window analysis to identify the time during the breeding season that temperature was most associated with selection favouring earlier breeding. First egg dates occurred earlier over time and strongly covaried with April temperatures. Furthermore, individual females that bred in at least 3 years typically bred earlier in warmer Aprils, exhibiting plastic responses to April temperature. We also found significant overall selection favouring earlier breeding (i.e. higher relative fitness with earlier first egg dates) and variation in selection for earlier breeding over time. However, temperature across diverse climatic windows did not predict the strength of selection. Our findings provide further evidence for the role of phenotypic plasticity in shifting phenology in response to earlier springs. We also provide evidence for the role of selection favouring earlier breeding, regardless of temperature, thus setting the stage for adaptive changes in female breeding phenology. We suggest for multi-brooded birds that advancing first egg dates likely increase the length of the breeding season, and therefore, reproductive success.


Asunto(s)
Passeriformes , Pájaros Cantores , Migración Animal , Animales , Cambio Climático , Femenino , América del Norte , Reproducción/fisiología , Estaciones del Año , Pájaros Cantores/fisiología
4.
Am Nat ; 196(2): 103-118, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32673095

RESUMEN

Biologists who publish in The American Naturalist are drawn to its unifying mission of covering research in the fields of ecology, evolution, behavior, and integrative biology. Presented here is one scientist's attempt to straddle these fields by focusing on a single organism. It is also an account of how time spent in the field stimulates a naturalist to wonder "why did that animal just do that?" and how research is guided by chance and intention interacting with the scientific literature and the people one meets along the way. With respect to the science, the examples come from bird migration, hormones and their connection to phenotypic integration, sexual and natural selection, and urban ecology. They also come from research on the impact of environmental change on the timing of reproduction and the potential for allochrony in migratory species to influence population divergence.


Asunto(s)
Conducta Animal , Evolución Biológica , Ecología , Migración Animal , Animales , Femenino , Masculino , Reproducción/fisiología , Pájaros Cantores/fisiología
5.
Proc Biol Sci ; 287(1935): 20201829, 2020 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-32933442

RESUMEN

Annual migration is common across animal taxa and can dramatically shape the spatial and temporal patterns of infectious disease. Although migration can decrease infection prevalence in some contexts, these energetically costly long-distance movements can also have immunosuppressive effects that may interact with transmission processes in complex ways. Here, we develop a mechanistic model for the reactivation of latent infections driven by physiological changes or energetic costs associated with migration (i.e. 'migratory relapse') and its effects on disease dynamics. We determine conditions under which migratory relapse can amplify or reduce infection prevalence across pathogen and host traits (e.g. infectious periods, virulence, overwinter survival, timing of relapse) and transmission phenologies. We show that relapse at either the start or end of migration can dramatically increase prevalence across the annual cycle and may be crucial for maintaining pathogens with low transmissibility and short infectious periods in migratory populations. Conversely, relapse at the start of migration can reduce the prevalence of highly virulent pathogens by amplifying culling of infected hosts during costly migration, especially for highly transmissible pathogens and those transmitted during migration or the breeding season. Our study provides a mechanistic foundation for understanding the spatio-temporal patterns of relapsing infections in migratory hosts, with implications for zoonotic surveillance and understanding how infection patterns will respond to shifts in migratory propensity associated with environmental change. Further, our work suggests incorporating within-host processes into population-level models of pathogen transmission may be crucial for reconciling the range of migration-infection relationships observed across migratory species.


Asunto(s)
Migración Animal/fisiología , Enfermedades Transmisibles/epidemiología , Animales , Dinámica Poblacional , Prevalencia
6.
Proc Biol Sci ; 287(1935): 20201831, 2020 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-32962545

RESUMEN

Urban habitats can shape interactions between hosts and parasites by altering not only exposure rates but also within-host processes. Artificial light at night (ALAN) is common in urban environments, and chronic exposure can impair host immunity in ways that may increase infection. However, studies of causal links between this stressor, immunity, and infection dynamics are rare, particularly in migratory animals. Here, we experimentally tested how ALAN affects cellular immunity and haemosporidian parasite intensity across the annual cycle of migrant and resident subspecies of the dark-eyed junco (Junco hyemalis). We monitored an experimental group exposed to light at night and a control group under natural light/dark cycles as they passed through short days simulating early spring to longer days simulating the breeding season, followed by autumn migration. Using generalized additive mixed models, we show that ALAN increased inflammation, and leucocyte counts were greatest in early spring and autumn. At the start of the experiment, few birds had active infections based on microscopy, but PCR revealed many birds had chronic infections. ALAN increased parasitaemia across the annual cycle, with strong peaks in spring and autumn that were largely absent in control birds. As birds were kept in indoor aviaries to prevent vector exposure, this increased parasitaemia indicates relapse of chronic infection during costly life-history stages (i.e. reproduction). Although the immunological and parasitological time series were in phase for control birds, cross-correlation analyses also revealed ALAN desynchronized leucocyte profiles and parasitaemia, which could suggest a general exaggerated inflammatory response. Our study shows how a common anthropogenic influence can shape within-host processes to affect infection dynamics.


Asunto(s)
Migración Animal , Pájaros Cantores/parasitología , Animales , Cruzamiento , Parasitemia , Parásitos , Recurrencia , Estaciones del Año
7.
Gen Comp Endocrinol ; 293: 113469, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32220572

RESUMEN

Timing of seasonal reproduction is driven by environmental cues acting on the hypothalamic-pituitary-gonadal (HPG) axis. Groups of individuals, or populations, of the same species can exhibit different phenology despite facing similar environmental cues or living in the same habitat (i.e., seasonal sympatry). The mechanisms giving rise to population-level differences in reproductive timing are not fully understood, particularly for females. We studied the dark-eyed junco, a songbird with migratory and sedentary (i.e., resident) populations that live in overlapping distributions during winter. In early spring, residents initiate breeding and associated behaviors, including territory establishment and formation of pair bonds, while migrants prepare to depart for their breeding grounds. We tested whether migrant and resident hormonal response to upstream hormonal stimulation differed during this time period. We collected blood from free-living females in early spring, and challenged them with repeated gonadotropin-releasing hormone (GnRH) injections to measure testosterone (T) response. We predicted that if migrants are less sensitive to upstream stimulation than residents, then they would exhibit lower response to the repeated GnRH challenges in migrants. We found that migrant and resident females both responded to an initial challenge by elevating T, but residents responded more robustly, indicating that the ovary plays a role in population-level differences in reproductive timing. We also found that migrants and residents attenuated their response to repeated challenges, and did not differ from one another in final T levels. We speculate that the explanation for the generally reduced T response after repeated GnRH injections need not be the same for migrants and residents, but possible explanations include suppression of upstream stimulation owing to negative feedback after the initial injection oraromatization of T to estradiol between sampling time points. We suggest that future studies experimentally explore how the ovarian response to upstream stimulation changes during the transition to reproduction.


Asunto(s)
Migración Animal/fisiología , Gónadas/fisiología , Estaciones del Año , Pájaros Cantores/fisiología , Simpatría , Animales , Femenino , Hormona Liberadora de Gonadotropina/metabolismo , Masculino , Pájaros Cantores/anatomía & histología , Pájaros Cantores/sangre , Testosterona/sangre
8.
Gen Comp Endocrinol ; 285: 113250, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31445009

RESUMEN

Seasonally breeding animals initiate gonadal recrudescence when mechanisms that suppress reproduction give way to mechanisms that stimulate it. However, knowledge of mechanistic changes in hormonal regulation during this transition is limited. Further, most studies of reproductive timing have focused on males, despite the critical role of females in determining breeding phenology. Closely related populations that live in the same environment but differ in reproductive timing provide an opportunity to examine differences in mechanisms during the transition from the pre-reproductive to reproductive state. We studied closely related migrant and resident populations of dark-eyed juncos (Junco hyemalis) that reside in the same environment in spring but differ in breeding phenology. Residents initiate breeding earlier than migrants, which do not breed until after they have migrated. To directly study differences in the hypothalamic mechanisms of reproduction, we captured 16 migrant and 13 resident females from the field on March 25-April 11. We quantified expression of mRNA transcripts and show that resident females had higher abundance of gonadotropin-releasing hormone transcripts than migrant females, indicating greater reproductive development in resident than migrant females living in the same environment. We also found higher transcript abundance of estrogen receptor and androgen receptor in migrant than resident females, suggesting that negative feedback may delay reproductive development in migrant females until after they migrate. These differences in hypothalamic mechanisms may help to explain differences in reproductive timing in populations that differ in migratory strategy.


Asunto(s)
Migración Animal/fisiología , Sistemas Neurosecretores/metabolismo , Estaciones del Año , Pájaros Cantores/fisiología , Simpatría/fisiología , Animales , Femenino , Hormona Liberadora de Gonadotropina/genética , Hormona Liberadora de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Modelos Lineales , ARN Mensajero/genética , ARN Mensajero/metabolismo
9.
Mol Ecol ; 28(5): 968-979, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30714237

RESUMEN

Some studies have found that dispersal rates and distances increase with density, indicating that density-dependent dispersal likely affects spatial genetic structure. In an 11-year mark-recapture study on a passerine, the dark-eyed junco, we tested whether density affected dispersal distance and/or fine-scale spatial genetic structure. Contrary to expectations, we found no effect of predispersal density on dispersal distance or the proportion of locally produced juveniles returning to the population from which they hatched. However, even though density did not affect dispersal distance or natal return rates, we found that density still did affect spatial genetic structure. We found significant positive spatial genetic structure at low densities of (postdispersal) adults but not at high densities. In years with high postdispersal (adult) densities that also had high predispersal (juvenile) densities in the previous year, we found negative spatial genetic structure, indicating high levels of dispersal. We found that density also affected fitness of recruits, and fitness of immigrants, potentially linking these population parameters with the spatial genetic structure detected. Immigrants and recruits rarely nested in low postdispersal density years. In contrast, in years with high postdispersal density, recruits were common and immigrants had equal success to local birds, so novel genotypes diluted the gene pool and effectively eliminated positive spatial genetic structure. In relation to fine-scale spatial genetic structure, fitness of immigrants and new recruits is poorly understood compared to dispersal movements, but we conclude that it can have implications for the spatial distribution of genotypes in populations.


Asunto(s)
Variación Genética , Genética de Población , Passeriformes/genética , Dinámica Poblacional , Animales , Genotipo , Repeticiones de Microsatélite/genética
10.
Mol Ecol ; 28(1): 114-126, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30565787

RESUMEN

Annual reproductive success is often highest in individuals that initiate breeding early, yet relatively few individuals start breeding during this apparently optimal time. This suggests that individuals, particularly females who ultimately dictate when offspring are born, incur costs by initiating reproduction early in the season. We hypothesized that increases in the ageing rate of somatic cells may be one such cost. Telomeres, the repetitive DNA sequences on the ends of chromosomes, may be good proxies of biological wear and tear as they shorten with age and in response to stress. Using historical data from a long-term study population of dark-eyed juncos (Junco hyemalis), we found that telomere loss between years was greater in earlier breeding females, regardless of chronological age. There was no relationship between telomere loss and the annual number of eggs laid or chicks that reached independence. However, telomere loss was greater when temperatures were cooler, and cooler temperatures generally occur early in the season. This suggests that environmental conditions could be the primary cause of accelerated telomere loss in early breeders.


Asunto(s)
Reproducción/genética , Pájaros Cantores/genética , Telómero/genética , Animales , Cruzamiento , Femenino , Masculino , Reproducción/fisiología , Estaciones del Año , Pájaros Cantores/fisiología
11.
J Exp Biol ; 222(Pt 20)2019 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-31537652

RESUMEN

Symbiotic microbes that inhabit animal scent glands can produce volatile compounds used as chemical signals by the host animal. Though several studies have demonstrated correlations between scent gland bacterial community structure and host animal odour profiles, none have systematically demonstrated a causal relationship. In birds, volatile compounds in preen oil secreted by the uropygial gland serve as chemical cues and signals. Here, we tested whether manipulating the uropygial gland microbial community affects chemical profiles in the dark-eyed junco (Junco hyemalis). We found an effect of antibiotic treatment targeting the uropygial gland on both bacterial and volatile profiles. In a second experiment, we cultured bacteria from junco preen oil, and found that all of the cultivars produced at least one volatile compound common in junco preen oil, and that most cultivars produced multiple preen oil volatiles. In both experiments, we identified experimentally generated patterns in specific volatile compounds previously shown to predict junco reproductive success. Together, our data provide experimental support for the hypothesis that symbiotic bacteria produce behaviourally relevant volatile compounds within avian chemical cues and signals.


Asunto(s)
Bacterias/metabolismo , Señales (Psicología) , Pájaros Cantores/microbiología , Simbiosis/fisiología , Animales , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Biodiversidad , Femenino , Masculino , Modelos Biológicos , Aceites/química , Análisis de Componente Principal , Compuestos Orgánicos Volátiles/análisis
12.
Gen Comp Endocrinol ; 270: 103-112, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30339809

RESUMEN

Mechanisms related to seasonal reproductive timing in vertebrates have received far more study in males than in females, despite the fact that female timing decisions dictate when rearing of offspring will occur. Production and release of gonadotropin-releasing hormone (GnRH) by the hypothalamus stimulates the pituitary to secrete gonadotropins, initiating the beginning stages of gonadal recrudescence and production of the sex steroids, testosterone and estradiol, which are necessary to prime the liver for secretion of yolk precursors in breeding female birds. While stimulation by the hypothalamus can occur during the pre-breeding period, egg development itself is likely regulated downstream of the hypothalamus. We used GnRH challenges to examine variation in breeding-stage-specific patterns of pituitary and ovarian responsiveness in free-living female dark-eyed juncos (Junco hyemalis) and also examined the ovary and liver for variation in mRNA expression of candidate genes. Baseline LH levels increased during the transition from pre-breeding to egg-development, however no significant difference was observed in post-GnRH injection levels for LH or sex steroids (testosterone and estradiol). Interestingly, a stage by time-point interaction was observed, with post-GnRH LH levels increasing over baseline during the pre-breeding stage, but not during the egg-development stage. We observed a decrease in liver mRNA expression of estradiol receptor-alpha, and glucocorticoid and mineralocorticoid receptors and a decrease in glucocorticoid receptor expression levels in the ovary. A decline in FSH receptor expression across stages was also observed in the ovary. Combined, our data suggest seasonal variation in female's sensitivity to signals of HPG activity and energetic or stress signals. These data provide additional insight into the physiological mechanisms regulating onset of clutch initiation.


Asunto(s)
Hipotálamo/metabolismo , Animales , Femenino , Estaciones del Año , Pájaros Cantores
13.
Am Nat ; 191(6): 777-782, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29750556

RESUMEN

Female vertebrates that breed earlier in the season generally have greater reproductive success. However, evidence suggests that breeding early may be costly, thus leading to the prediction that females with fewer future reproductive events will breed earlier in the season. While chronological age is a good indicator of remaining life span, telomere lengths may also be good biomarkers of longevity as they potentially reflect lifetime wear and tear (i.e., biological age). We examined whether variation in the timing of the first seasonal clutch was related to age and telomere length in female dark-eyed juncos (Junco hyemalis), predicting that older females and those with shorter telomeres would breed earlier. Both predictions held true and were independent of each other, as telomere length did not significantly vary with age. These results suggest that females may adjust their reproductive effort based on both chronological and biological age.


Asunto(s)
Envejecimiento/fisiología , Passeriformes/fisiología , Reproducción , Conducta Sexual Animal , Telómero , Animales , Femenino
14.
Proc Biol Sci ; 285(1889)2018 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-30355713

RESUMEN

Allochrony, the mismatch of reproductive schedules, is one mechanism that can mediate sympatric speciation and diversification. In songbirds, the transition into breeding condition and gonadal growth is regulated by the hypothalamic-pituitary-gonadal (HPG) axis at multiple levels. We investigated whether the difference in reproductive timing between two seasonally sympatric subspecies of dark-eyed juncos (Junco hyemalis) was related to gene expression along the HPG axis. During the sympatric pre-breeding stage, we measured hypothalamic and testicular mRNA expression of candidate genes via qPCR in captive male juncos. For hypothalamic mRNA, we found our earlier breeding subspecies had increased expression of gonadotropin-releasing hormone (GnRH) and decreased expression of androgen receptor, oestrogen receptor alpha and mineralocorticoid receptor (MR). Subspecies did not differ in expression of hypothalamic gonadotropin-inhibitory hormone (GnIH) and glucocorticoid receptor (GR). While our earlier breeding subspecies had higher mRNA expression of testicular GR, subspecies did not differ in testicular luteinizing hormone receptor, follicle-stimulating hormone receptor or MR mRNA expression levels. Our findings indicate increased GnRH production and decreased hypothalamic sensitivity to sex steroid negative feedback as factors promoting differences in the timing of gonadal recrudescence between recently diverged populations. Differential gene expression along the HPG axis may facilitate species diversification under seasonal sympatry.


Asunto(s)
Proteínas Aviares/genética , Expresión Génica , Hipotálamo/metabolismo , Reproducción/fisiología , Pájaros Cantores/genética , Testículo/metabolismo , Animales , Proteínas Aviares/metabolismo , Masculino , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducción/genética , Estaciones del Año , Pájaros Cantores/crecimiento & desarrollo , Simpatría
15.
Mol Ecol ; 27(22): 4501-4515, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30252177

RESUMEN

Colour plays a prominent role in species recognition; therefore, understanding the proximate basis of pigmentation can provide insight into reproductive isolation and speciation. Colour differences between taxa may be the result of regulatory differences or be caused by mutations in coding regions of the expressed genes. To investigate these two alternatives, we studied the pigment composition and the genetic basis of coloration in two divergent dark-eyed junco (Junco hyemalis) subspecies, the slate-coloured and Oregon juncos, which have evolved marked differences in plumage coloration since the Last Glacial Maximum. We used HPLC and light microscopy to investigate pigment composition and deposition in feathers from four body areas. We then used RNA-seq to compare the relative roles of differential gene expression in developing feathers and sequence divergence in transcribed loci under common-garden conditions. Junco feathers differed in eumelanin and pheomelanin content and distribution. Within subspecies, in lighter feathers melanin synthesis genes were downregulated (including PMEL, TYR, TYRP1, OCA2 and MLANA), and ASIP was upregulated. Feathers from different body regions also showed differential expression of HOX and WNT genes. Feathers from the same body regions that differed in colour between the two subspecies showed differential expression of ASIP and three other genes (MFSD12, KCNJ13 and HAND2) associated with pigmentation in other taxa. Sequence variation in the expressed genes was not related to colour differences. Our findings support the hypothesis that differential regulation of a few genes can account for marked differences in coloration, a mechanism that may facilitate the rapid phenotypic diversification of juncos.


Asunto(s)
Plumas , Melaninas/análisis , Pigmentación/genética , Pájaros Cantores/genética , Animales , Melaninas/biosíntesis , Oregon
16.
Artículo en Inglés | MEDLINE | ID: mdl-29063285

RESUMEN

Chemical signals can provide useful information to potential mates and rivals. The production mechanisms of these signals are poorly understood in birds, despite emerging evidence that volatile compounds from preen oil may serve as chemosignals. Steroid hormones, including testosterone (T), may influence the production of these signals, yet variation in circulating T only partly accounts for this variation. We hypothesized that odor is a T-mediated signal of an individual's phenotype, regulated in part by androgen sensitivity in the uropygial gland. We quantified natural variation in chemosignals, T, uropygial gland androgen sensitivity, and aggressive behavior in dark-eyed juncos (Junco hyemalis). The interaction between circulating T and androgen receptor transcript abundance significantly correlated with volatile concentrations in male, but not female, preen oil. In both sexes, odorant variables correlated with aggressive response to an intruder. Our results suggest that preen oil volatiles could function as signals of aggressive intent, and, at least in males, may be regulated by local androgen receptor signaling in the uropygial gland. Because these behavioral and chemical traits have been linked with reproductive success, local regulation of androgen sensitivity in the periphery has the potential to be a target of selection in the evolution of avian olfactory signaling.


Asunto(s)
Agresión/fisiología , Andrógenos/metabolismo , Odorantes , Pájaros Cantores/metabolismo , Comunicación Animal , Animales , Femenino , Masculino , Aceites/metabolismo , ARN Mensajero/metabolismo , Reproducción/fisiología , Caracteres Sexuales , Olfato/fisiología , Territorialidad , Compuestos Orgánicos Volátiles
17.
J Exp Biol ; 221(Pt 17)2018 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-29997161

RESUMEN

Organisms are expected to invest less in reproduction in response to a stressor, but theory predicts that this effect should depend on the frequency and duration of stressors in the environment. Here, we investigated how an acute stressor affected testes function in a songbird, and how chronic stressors influenced the acute stress response. We exposed male dark-eyed juncos (Junco hyemalis) either to chronic or minimal (control) disturbance during testicular recrudescence, after which we measured baseline testosterone, testosterone after an acute handling stressor, and capacity to produce testosterone after hormonal stimulation. In a 2×2 design, we then killed males from the two chronic treatment groups either immediately or after an acute stressor to investigate the effect of long- and short-term stressors on the testicular transcriptome. We found that chronically disturbed birds had marginally lower baseline testosterone. The acute stressor suppressed testosterone in control birds, but not in the chronic disturbance group. The ability to elevate testosterone did not differ between the chronic treatments. Surprisingly, chronic disturbance had a weak effect on the testicular transcriptome, and did not affect the transcriptomic response to the acute stressor. The acute stressor, on the other hand, upregulated the cellular stress response and affected expression of genes associated with hormonal stress response. Overall, we show that testicular function is sensitive to acute stressors but surprisingly robust to long-term stressors, and that chronic disturbance attenuates the decrease in testosterone in response to an acute stressor.


Asunto(s)
Reproducción/fisiología , Gorriones/fisiología , Testículo/fisiología , Testosterona/metabolismo , Transcriptoma , Animales , Ambiente , Expresión Génica , Masculino , Estaciones del Año , Pájaros Cantores , Gorriones/genética , Estrés Fisiológico
18.
Biol Lett ; 14(2)2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29445045

RESUMEN

Ongoing changes to global weather patterns and human modifications of the environment have altered the breeding and non-breeding ranges of migratory species, the timing of their migrations, and even whether they continue to migrate at all. Animal movements are arguably one of the most difficult behaviours to study, particularly in smaller birds that migrate tens to thousands of kilometres seasonally, often moving hundreds of kilometres each day. The recent miniaturization of tracking and logging devices has led to a radical transformation in our understanding of avian migratory behaviour and migratory connectivity. While advances in technology have altered the way researchers study migratory behaviour in the field, advances in techniques related to the study of physiological and genetic mechanisms underlying migratory behaviour have rarely been integrated into field studies of tracking. To predict the capacity of migrants to adjust to a changing planet, it is essential that we combine avian migration data with physiological and genetic measurements taken at key time points prior to, during and after migration.


Asunto(s)
Migración Animal/fisiología , Aves/fisiología , Conservación de los Recursos Naturales , Genoma/genética , Animales , Aves/genética , Investigación/tendencias , Estaciones del Año
20.
Gen Comp Endocrinol ; 247: 166-173, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28161439

RESUMEN

Seasonal hyperphagia and fattening promote survivorship in migratory and wintering birds, but reduced adiposity may be more advantageous during the breeding season. Factors such as photoperiod, temperature, and food predictability are known environmental determinants of fat storage, but the underlying neuroendocrine mechanisms are less clear. Endocannabinoids and other lipid signaling molecules regulate multiple aspects of energy balance including appetite and lipid metabolism. However, these functions have been established primarily in mammals; thus the role of lipid signals in avian fat storage remains largely undefined. Here we examined relationships between endocannabinoid signaling and individual variation in fat storage in captive white-winged juncos (Junco hyemalis aikeni) following a transition to long-day photoperiods. We report that levels of the endocannabinoid 2-arachidonoylglycerol (2-AG), but not anandamide (AEA), in furcular and abdominal fat depots correlate negatively with fat mass. Hindbrain mRNA expression of CB1 endocannabinoid receptors also correlates negatively with levels of fat, demonstrating that fatter animals experience less central and peripheral endocannabinoid signaling when in breeding condition. Concentrations of the anorexigenic lipid, oleoylethanolamide (OEA), also inversely relate to adiposity. These findings demonstrate unique and significant relationships between adiposity and lipid signaling molecules in the brain and periphery, thereby suggesting a potential role for lipid signals in mediating adaptive levels of fat storage.


Asunto(s)
Adiposidad , Aves/metabolismo , Metabolismo de los Lípidos , Animales , Encéfalo/metabolismo , Femenino , Masculino , Receptor Cannabinoide CB1/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA