Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(7)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37050732

RESUMEN

While developing traffic-based cognitive enhancement technology (CET), such as bike accident prevention systems, it can be challenging to test and evaluate them properly. After all, the real-world scenario could endanger the subjects' health and safety. Therefore, a simulator is needed, preferably one that is realistic yet low cost. This paper introduces a way to use the video game Grand Theft Auto V (GTA V) and its sophisticated traffic system as a base to create such a simulator, allowing for the safe and realistic testing of dangerous traffic situations involving cyclists, cars, and trucks. The open world of GTA V, which can be explored on foot and via various vehicles, serves as an immersive stand-in for the real world. Custom modification scripts of the game give the researchers control over the experiment scenario and the output data to be evaluated. An off-the-shelf bicycle equipped with three sensors serves as a realistic input device for the subject's movement direction and speed. The simulator was used to test two early-stage CET concepts enabling cyclists to sense dangerous traffic situations, such as trucks approaching from behind the cyclist. Thus, this paper also presents the user evaluation of the cycling simulator and the CET used by the subjects to sense dangerous traffic situations. With the knowledge of the first iteration of the user-centered design (UCD) process, this paper concludes by naming improvements for the cycling simulator and discussing further research directions for CET that enable users to sense dangerous situations better.


Asunto(s)
Accidentes de Tránsito , Conducción de Automóvil , Humanos , Accidentes de Tránsito/prevención & control , Ciclismo/psicología , Robo , Planificación Ambiental , Cognición , Conducción de Automóvil/psicología
2.
Opt Express ; 24(3): 3089-94, 2016 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-26906873

RESUMEN

We demonstrate resonance fluorescence from single In-GaAs/GaAs quantum dots embedded in a rib waveguide beamsplitter structure operated under pulsed laser excitation. A systematic study on the excitation laser pulse duration depicts that a sufficiently small laser linewidth enables a substantial improved single-photon-to-laser-background ratio inside a waveguide chip. This manifests in the observation of clear Rabi oscillations over two periods of the quantum dot emission as a function of laser excitation power. A photon cross-correlation measurement between the two output arms of an on-chip beamsplitter results in a g(2)(0)=0.18, demonstrating the generation, guiding and splitting of triggered single photons under resonant excitation in an on-chip device. The present results open new perspectives for the implementation of photonic quantum circuits with integrated quantum dots as resonantly-pumped deterministic single-photon sources.

3.
Opt Express ; 24(19): 22250-60, 2016 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-27661959

RESUMEN

We present experimental results on quantum frequency down-conversion of indistinguishable single photons emitted by an InAs/GaAs quantum dot at 904 nm to the telecom C-band at 1557 nm. Hong-Ou-Mandel (HOM) interference measurements are shown prior to and after the down-conversion step. We perform Monte-Carlo simulations of the HOM experiments taking into account the time delays of the different interferometers used and the signal-to-background ratio and further estimate the impact of spectral diffusion on the degree of indistinguishability. By that we conclude that the down-conversion step does not introduce any loss of HOM interference visibility. A noise-free conversion-process along with a high conversion-efficiency (> 30 %) emphasize that our scheme is a promising candidate for an efficient source of indistinguishable single photons at telecom wavelengths.

4.
Phys Rev Lett ; 109(14): 147404, 2012 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-23083285

RESUMEN

We demonstrate efficient (>30%) quantum frequency conversion of visible single photons (711 nm) emitted by a quantum dot to a telecom wavelength (1313 nm). Analysis of the first- and second-order coherence before and after wavelength conversion clearly proves that pivotal properties, such as the coherence time and photon antibunching, are fully conserved during the frequency translation process. Our findings underline the great potential of single photon sources on demand in combination with quantum frequency conversion as a promising technique that may pave the way for a number of new applications in quantum technology.

5.
Nat Nanotechnol ; 16(3): 283-287, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33349683

RESUMEN

Hybrid quantum optomechanical systems1 interface a macroscopic mechanical degree of freedom with a single two-level system such as a single spin2-4, a superconducting qubit5-7 or a single optical emitter8-12. Recently, hybrid systems operating in the microwave domain have witnessed impressive progress13,14. Concurrently, only a few experimental approaches have successfully addressed hybrid systems in the optical domain, demonstrating that macroscopic motion can modulate the two-level system transition energy9,10,15. However, the reciprocal effect, corresponding to the backaction of a single quantum system on a macroscopic mechanical resonator, has remained elusive. In contrast to an optical cavity, a two-level system operates with no more than a single energy quantum. Hence, it requires a much stronger hybrid coupling rate compared to cavity optomechanical systems1,16. Here, we build on the large strain coupling between an oscillating microwire and a single embedded quantum dot9. We resonantly drive the quantum dot's exciton using a laser modulated at the mechanical frequency. State-dependent strain then results in a time-dependent mechanical force that actuates microwire motion. This force is almost three orders of magnitude larger than the radiation pressure produced by the photon flux interacting with the quantum dot. In principle, the state-dependent force could constitute a strategy to coherently encode the quantum dot quantum state onto a mechanical degree of freedom1.

6.
Nat Nanotechnol ; 14(1): 23-26, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30348956

RESUMEN

Efficient fibre-based long-distance quantum communication via quantum repeaters relies on deterministic single-photon sources at telecom wavelengths, potentially exploiting the existing world-wide infrastructures. For upscaling the experimental complexity in quantum networking, two-photon interference (TPI) of remote non-classical emitters in the low-loss telecom bands is of utmost importance. Several experiments have been conducted regarding TPI of distinct emitters, for example, using trapped atoms1, ions2, nitrogen vacancy centres3,4, silicon vacancy centres5, organic molecules6 and semiconductor quantum dots7,8. However, the spectral range was far from the highly desirable telecom C-band. Here, we exploit quantum frequency conversion to realize TPI at 1,550 nm with single photons stemming from two remote quantum dots. We thereby prove quantum frequency conversion9-11 as a bridging technology and a precise and stable mechanism to erase the frequency difference between independent emitters. On resonance, a TPI visibility of 29 ± 3% has been observed, limited only by the spectral diffusion processes of the individual quantum dots12,13. The local fibre network used covers several rooms between two floors of the building. Even the addition of up to 2 km of fibre channel shows no influence on the TPI visibility, proving the photon wavepacket distortion to be negligible. Our studies pave the way to establish long-distance entanglement distribution between remote solid-state emitters including interfaces with various quantum hybrid systems14-16.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA