Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Neurosci ; 36(46): 11704-11715, 2016 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-27852778

RESUMEN

Hyperinsulinemia is a risk factor for late-onset Alzheimer's disease (AD). In vitro experiments describe potential connections between insulin, insulin signaling, and amyloid-ß (Aß), but in vivo experiments are needed to validate these relationships under physiological conditions. First, we performed hyperinsulinemic-euglycemic clamps with concurrent hippocampal microdialysis in young, awake, behaving APPswe/PS1dE9 transgenic mice. Both a postprandial and supraphysiological insulin clamp significantly increased interstitial fluid (ISF) and plasma Aß compared with controls. We could detect no increase in brain, ISF, or CSF insulin or brain insulin signaling in response to peripheral hyperinsulinemia, despite detecting increased signaling in the muscle. Next, we delivered insulin directly into the hippocampus of young APP/PS1 mice via reverse microdialysis. Brain tissue insulin and insulin signaling was dose-dependently increased, but ISF Aß was unchanged by central insulin administration. Finally, to determine whether peripheral and central high insulin has differential effects in the presence of significant amyloid pathology, we repeated these experiments in older APP/PS1 mice with significant amyloid plaque burden. Postprandial insulin clamps increased ISF and plasma Aß, whereas direct delivery of insulin to the hippocampus significantly increased tissue insulin and insulin signaling, with no effect on Aß in old mice. These results suggest that the brain is still responsive to insulin in the presence of amyloid pathology but increased insulin signaling does not acutely modulate Aß in vivo before or after the onset of amyloid pathology. Peripheral hyperinsulinemia modestly increases ISF and plasma Aß in young and old mice, independent of neuronal insulin signaling. SIGNIFICANCE STATEMENT: The transportation of insulin from blood to brain is a saturable process relevant to understanding the link between hyperinsulinemia and AD. In vitro experiments have found direct connections between high insulin and extracellular Aß, but these mechanisms presume that peripheral high insulin elevates brain insulin significantly. We found that physiological hyperinsulinemia in awake, behaving mice does not increase CNS insulin to an appreciable level yet modestly increases extracellular Aß. We also found that the brain of aged APP/PS1 mice was not insulin resistant, contrary to the current state of the literature. These results further elucidate the relationship between insulin, the brain, and AD and its conflicting roles as both a risk factor and potential treatment.


Asunto(s)
Envejecimiento/metabolismo , Péptidos beta-Amiloides/metabolismo , Hipocampo/metabolismo , Hiperinsulinismo/metabolismo , Insulina/metabolismo , Músculo Esquelético/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Femenino , Insulina/sangre , Resistencia a la Insulina , Masculino , Ratones , Ratones Transgénicos , Presenilina-1/genética , Transducción de Señal
2.
J Clin Invest ; 128(5): 2144-2155, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29600961

RESUMEN

The apolipoprotein E E4 allele of the APOE gene is the strongest genetic factor for late-onset Alzheimer disease (LOAD). There is compelling evidence that apoE influences Alzheimer disease (AD) in large part by affecting amyloid ß (Aß) aggregation and clearance; however, the molecular mechanism underlying these findings remains largely unknown. Herein, we tested whether anti-human apoE antibodies can decrease Aß pathology in mice producing both human Aß and apoE4, and investigated the mechanism underlying these effects. We utilized APPPS1-21 mice crossed to apoE4-knockin mice expressing human apoE4 (APPPS1-21/APOE4). We discovered an anti-human apoE antibody, anti-human apoE 4 (HAE-4), that specifically recognizes human apoE4 and apoE3 and preferentially binds nonlipidated, aggregated apoE over the lipidated apoE found in circulation. HAE-4 also binds to apoE in amyloid plaques in unfixed brain sections and in living APPPS1-21/APOE4 mice. When delivered centrally or by peripheral injection, HAE-4 reduced Aß deposition in APPPS1-21/APOE4 mice. Using adeno-associated virus to express 2 different full-length anti-apoE antibodies in the brain, we found that HAE antibodies decreased amyloid accumulation, which was dependent on Fcγ receptor function. These data support the hypothesis that a primary mechanism for apoE-mediated plaque formation may be a result of apoE aggregation, as preferentially targeting apoE aggregates with therapeutic antibodies reduces Aß pathology and may represent a selective approach to treat AD.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/metabolismo , Anticuerpos Monoclonales de Origen Murino/farmacología , Apolipoproteína E4/antagonistas & inhibidores , Placa Amiloide/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/genética , Animales , Apolipoproteína E3/antagonistas & inhibidores , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Humanos , Ratones , Ratones Noqueados , Placa Amiloide/genética , Placa Amiloide/metabolismo , Placa Amiloide/patología
3.
Sci Transl Med ; 9(386)2017 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-28424326

RESUMEN

Tauopathies are a group of disorders in which the cytosolic protein tau aggregates and accumulates in cells within the brain, resulting in neurodegeneration. A promising treatment being explored for tauopathies is passive immunization with anti-tau antibodies. We previously found that administration of an anti-tau antibody to human tau transgenic mice increased the concentration of plasma tau. We further explored the effects of administering an anti-tau antibody on plasma tau. After peripheral administration of an anti-tau antibody to human patients with tauopathy and to mice expressing human tau in the central nervous system, there was a dose-dependent increase in plasma tau. In mouse plasma, we found that tau had a short half-life of 8 min that increased to more than 3 hours after administration of anti-tau antibody. As tau transgenic mice accumulated insoluble tau in the brain, brain soluble and interstitial fluid tau decreased. Administration of anti-tau antibody to tau transgenic mice that had decreased brain soluble tau and interstitial fluid tau resulted in an increase in plasma tau, but this increase was less than that observed in tau transgenic mice without these brain changes. Tau transgenic mice subjected to acute neuronal injury using 3-nitropropionic acid showed increased interstitial fluid tau and plasma tau. These data suggest that peripheral administration of an anti-tau antibody results in increased plasma tau, which correlates with the concentration of extracellular and soluble tau in the brain.


Asunto(s)
Anticuerpos/farmacología , Tauopatías/sangre , Tauopatías/metabolismo , Proteínas tau/sangre , Proteínas tau/metabolismo , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Humanos , Ratones , Ratones Transgénicos , Nitrocompuestos/toxicidad , Propionatos/toxicidad
4.
Anat Rec (Hoboken) ; 296(11): 1747-57, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23997038

RESUMEN

An essential step in the translation of cell-based therapies for kidney repair involves preclinical studies in relevant animal models. Regenerative therapies in children with congenital kidney disease may provide benefit, but limited quantitative data on normal development is available to aid in identifying efficient protocols for repair. Nonhuman primates share many developmental similarities with humans and provide an important translational model for understanding nephrogenesis and morphological changes across gestation. These studies assessed monkey kidney size and weight during development and utilized stereological methods to quantitate total number of glomeruli. Immunohistochemical methods were included to identify patterns of expression of tubular proteins including Aquaporin-1 (AQP1), AQP2, Calbindin, E-Cadherin, and Uromodulin. Results have shown that glomerular number increased linearly with kidney weight, from 1.1 × 10(3) in the late first trimester to 3.5 × 10(5) near term (P < 0.001). The ratio of glomeruli to body weight tripled from the late first to early second trimester then remained relatively unchanged. Only AQP1 was expressed in the proximal tubule and descending Loop of Henle. The ascending Loop of Henle was positive for AQP2, Calbindin, and Uromodulin; distal convoluted tubules stained for Calbindin only; and collecting tubules expressed AQP2 and E-Cadherin with occasional Calbindin-positive cells. These findings provide quantitative information on normal kidney ontogeny in rhesus monkeys and further support the importance of this model for human kidney development.


Asunto(s)
Acuaporinas/metabolismo , Cadherinas/metabolismo , Calbindinas/metabolismo , Glomérulos Renales/citología , Túbulos Renales/metabolismo , Riñón/embriología , Macaca mulatta/embriología , Animales , Peso Corporal , Proliferación Celular , Femenino , Riñón/citología , Riñón/metabolismo , Glomérulos Renales/metabolismo , Modelos Animales , Morfogénesis , Embarazo , Uromodulina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA