Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(34): e2301880120, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37579160

RESUMEN

Skin is the largest human organ with easily noticeable biophysical manifestations of aging. As human tissues age, there is chronological accumulation of biophysical changes due to internal and environmental factors. Skin aging leads to decreased elasticity and the loss of dermal matrix integrity via degradation. The mechanical properties of the dermal matrix are maintained by fibroblasts, which undergo replicative aging and may reach senescence. While the secretory phenotype of senescent fibroblasts is well studied, little is known about changes in the fibroblasts biophysical phenotype. Therefore, we compare biophysical properties of young versus proliferatively aged primary fibroblasts via fluorescence and traction force microscopy, single-cell atomic force spectroscopy, microfluidics, and microrheology of the cytoskeleton. Results show senescent fibroblasts have decreased cytoskeletal tension and myosin II regulatory light chain phosphorylation, in addition to significant loss of traction force. The alteration of cellular forces is harmful to extracellular matrix homeostasis, while decreased cytoskeletal tension can amplify epigenetic changes involved in senescence. Further exploration and detection of these mechanical phenomena provide possibilities for previously unexplored pharmaceutical targets against aging.


Asunto(s)
Senescencia Celular , Piel , Humanos , Anciano , Senescencia Celular/genética , Células Cultivadas , Envejecimiento , Fibroblastos/metabolismo
2.
Acta Neuropathol ; 132(3): 391-411, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26910103

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a devastating progressive neurodegenerative disease affecting primarily the upper and lower motor neurons. A common feature of all ALS cases is a well-characterized neuroinflammatory reaction within the central nervous system (CNS). However, much less is known about the role of the peripheral immune system and its interplay with CNS resident immune cells in motor neuron degeneration. Here, we characterized peripheral monocytes in both temporal and spatial dimensions of ALS pathogenesis. We found the circulating monocytes to be deregulated in ALS regarding subtype constitution, function and gene expression. Moreover, we show that CNS infiltration of peripheral monocytes correlates with improved motor neuron survival in a genetic ALS mouse model. Furthermore, application of human immunoglobulins or fusion proteins containing only the human Fc, but not the Fab antibody fragment, increased CNS invasion of peripheral monocytes and delayed the disease onset. Our results underline the importance of peripheral monocytes in ALS pathogenesis and are in agreement with a protective role of monocytes in the early phase of the disease. The possibility to boost this beneficial function of peripheral monocytes by application of human immunoglobulins should be evaluated in clinical trials.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Sistema Nervioso Central/metabolismo , Leucocitos Mononucleares/metabolismo , Monocitos/metabolismo , Sistema Mononuclear Fagocítico/metabolismo , Neuronas Motoras/patología , Médula Espinal/patología , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Ratones Endogámicos C57BL , Médula Espinal/metabolismo
3.
Curr Protoc Cell Biol ; 83(1): e85, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30865383

RESUMEN

Genetically encoded Förster resonance energy transfer (FRET)-based tension sensors measure piconewton-scale forces across individual molecules in living cells or whole organisms. These biosensors show comparably high FRET efficiencies in the absence of tension, but FRET quickly decreases when forces are applied. In this article, we describe how such biosensors can be generated for a specific protein of interest, and we discuss controls to confirm that the observed differences in FRET efficiency reflect changes in molecular tension. These FRET efficiency changes can be related to mechanical forces as the FRET-force relationship of the employed tension sensor modules are calibrated. We provide information on construct generation, expression in cells, and image acquisition using live-cell fluorescence lifetime imaging microscopy (FLIM). Moreover, we describe how to analyze, statistically evaluate, and interpret the resulting data sets. Together, these protocols should enable the reader to plan, execute, and interpret FRET-based tension sensor experiments. © 2019 by John Wiley & Sons, Inc.


Asunto(s)
Técnicas Biosensibles , Transferencia Resonante de Energía de Fluorescencia/métodos , ADN/química , Escherichia coli/genética , Técnicas de Amplificación de Ácido Nucleico , Transformación Genética
4.
Sci Rep ; 7: 46532, 2017 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-28513618

RESUMEN

Adhesion of monocytes to micro-injuries on arterial walls is an important early step in the occurrence and development of degenerative atherosclerotic lesions. At these injuries, collagen is exposed to the blood stream. We are interested whether age influences monocyte adhesion to collagen under flow, and hence influences the susceptibility to arteriosclerotic lesions. Therefore, we studied adhesion and rolling of human peripheral blood monocytes from old and young individuals on collagen type I coated surface under shear flow. We find that firm adhesion of monocytes to collagen type I is elevated in old individuals. Pre-stimulation by lipopolysaccharide increases the firm adhesion of monocytes homogeneously in older individuals, but heterogeneously in young individuals. Blocking integrin αx showed that adhesion of monocytes to collagen type I is specific to the main collagen binding integrin αxß2. Surprisingly, we find no significant age-dependent difference in gene expression of integrin αx or integrin ß2. However, if all integrins are activated from the outside, no differences exist between the age groups. Altered integrin activation therefore causes the increased adhesion. Our results show that the basal increase in integrin activation in monocytes from old individuals increases monocyte adhesion to collagen and therefore the risk for arteriosclerotic plaques.


Asunto(s)
Envejecimiento/metabolismo , Aterosclerosis/metabolismo , Colágeno Tipo I/metabolismo , Integrina alfaXbeta2/metabolismo , Rodamiento de Leucocito , Monocitos/metabolismo , Adulto , Anciano , Envejecimiento/patología , Aterosclerosis/patología , Adhesión Celular , Femenino , Humanos , Masculino , Persona de Mediana Edad , Monocitos/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA