Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 292
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(19): e2217887120, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37126704

RESUMEN

Treatment of HIV-1ADA-infected CD34+ NSG-humanized mice with long-acting ester prodrugs of cabotegravir, lamivudine, and abacavir in combination with native rilpivirine was followed by dual CRISPR-Cas9 C-C chemokine receptor type five (CCR5) and HIV-1 proviral DNA gene editing. This led to sequential viral suppression, restoration of absolute human CD4+ T cell numbers, then elimination of replication-competent virus in 58% of infected mice. Dual CRISPR therapies enabled the excision of integrated proviral DNA in infected human cells contained within live infected animals. Highly sensitive nucleic acid nested and droplet digital PCR, RNAscope, and viral outgrowth assays affirmed viral elimination. HIV-1 was not detected in the blood, spleen, lung, kidney, liver, gut, bone marrow, and brain of virus-free animals. Progeny virus from adoptively transferred and CRISPR-treated virus-free mice was neither detected nor recovered. Residual HIV-1 DNA fragments were easily seen in untreated and viral-rebounded animals. No evidence of off-target toxicities was recorded in any of the treated animals. Importantly, the dual CRISPR therapy demonstrated statistically significant improvements in HIV-1 cure percentages compared to single treatments. Taken together, these observations underscore a pivotal role of combinatorial CRISPR gene editing in achieving the elimination of HIV-1 infection.


Asunto(s)
Infecciones por VIH , Seropositividad para VIH , Ratones , Animales , Humanos , Antirretrovirales/uso terapéutico , Edición Génica , Provirus/genética , Receptores CCR5
2.
J Neurovirol ; 30(1): 71-85, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38355914

RESUMEN

Mixed glia are infiltrated with HIV-1 virus early in the course of infection leading to the development of a persistent viral reservoir in the central nervous system. Modification of the HIV-1 genome using gene editing techniques, including CRISPR/Cas9, has shown great promise towards eliminating HIV-1 viral reservoirs; whether these techniques are capable of removing HIV-1 viral proteins from mixed glia, however, has not been systematically evaluated. Herein, the efficacy of adeno-associated virus 9 (AAV9)-CRISPR/Cas9 gene editing for eliminating HIV-1 messenger RNA (mRNA) from cortical mixed glia was evaluated in vitro and in vivo. In vitro, a within-subjects experimental design was utilized to treat mixed glia isolated from neonatal HIV-1 transgenic (Tg) rats with varying doses (0, 0.9, 1.8, 2.7, 3.6, 4.5, or 5.4 µL corresponding to a physical titer of 0, 4.23 × 109, 8.46 × 109, 1.269 × 1010, 1.692 × 1010, 2.115 × 1010, and 2.538 × 1010 gc/µL) of CRISPR/Cas9 for 72 h. Dose-dependent decreases in the number of HIV-1 mRNA, quantified using an innovative in situ hybridization technique, were observed in a subset (i.e., n = 5 out of 8) of primary mixed glia. In vivo, HIV-1 Tg rats were retro-orbitally inoculated with CRISPR/Cas9 for two weeks, whereby treatment resulted in profound excision (i.e., approximately 53.2%) of HIV-1 mRNA from the medial prefrontal cortex. Given incomplete excision of the HIV-1 viral genome, the clinical relevance of HIV-1 mRNA knockdown for eliminating neurocognitive impairments was evaluated via examination of temporal processing, a putative neurobehavioral mechanism underlying HIV-1-associated neurocognitive disorders (HAND). Indeed, treatment with CRISPR/Cas9 protractedly, albeit not permanently, restored the developmental trajectory of temporal processing. Proof-of-concept studies, therefore, support the susceptibility of mixed glia to gene editing and the potential of CRISPR/Cas9 to serve as a novel therapeutic strategy for HAND, even in the absence of full viral eradication.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , VIH-1 , ARN Mensajero , Ratas Transgénicas , Animales , VIH-1/genética , VIH-1/fisiología , Ratas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Edición Génica/métodos , Neuroglía/virología , Neuroglía/metabolismo , Dependovirus/genética , Infecciones por VIH/virología , Infecciones por VIH/genética , Técnicas de Silenciamiento del Gen , ARN Viral/genética , Cognición/fisiología , Humanos
3.
Gene Ther ; 2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37587230

RESUMEN

In this study, we demonstrate the safety and utility of CRISPR-Cas9 gene editing technology for in vivo editing of proviral DNA in ART-treated, virally controlled simian immunodeficiency virus (SIV) infected rhesus macaques, an established model for HIV infection. EBT-001 is an AAV9-based vector delivering SaCas9 and dual guide RNAs designed to target multiple regions of the SIV genome: the viral LTRs, and the Gag gene. The results presented here demonstrate that a single IV inoculation of EBT-001 at each of 3 dose levels (1.4 × 1012, 1.4 × 1013 and 1.4 × 1014 genome copies/kg) resulted in broad and functional biodistribution of AAV9-EBT-001 to known tissue reservoirs of SIV. No off-target effects or abnormal pathology were observed, and animals returned to their normal body weight after receiving EBT-001. Importantly, the macaques that received the 2 highest doses of EBT-001 showed improved absolute lymphocyte counts as compared to antiretroviral-treated controls. Taken together, these results demonstrate safety, biodistribution, and in vivo proviral DNA editing following IV administration of EBT-001, supporting the further development of CRISPR-based gene editing as a potential therapeutic approach for HIV in humans.

4.
Int J Mol Sci ; 23(17)2022 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-36077131

RESUMEN

Protein quality control allows eukaryotes to maintain proteostasis under the stress of constantly changing conditions. In this review, we discuss the current literature on PQC, highlighting flaws that must exist for malignancy to occur. At the nidus of PQC, the expression of BAG1-6 reflects the cell environment; each isoform directs proteins toward different, parallel branches of the quality control cascade. The sum of these branches creates a net shift toward either homeostasis or apoptosis. With an established role in ALP, Bag3 is necessary for cell survival in stress conditions including those of the cancerous niche (i.e., hypoxia, hypermutation). Evidence suggests that excessive Bag3-HSP70 activity not only sustains, but also propagates cancers. Its role is anti-apoptotic-which allows malignant cells to persist-and intercellular-with the production of infectious 'oncosomes' enabling cancer expansion and recurrence. While Bag3 has been identified as a key prognostic indicator in several cancer types, its investigation is limited regarding glioblastoma. The cochaperone HSP70 has been strongly linked with GBM, while ALP inhibitors have been shown to improve GBM susceptibility to chemotherapeutics. Given the highly resilient, frequently recurrent nature of GBM, the targeting of Bag3 is a necessary consideration for the successful and definitive treatment of GBM.


Asunto(s)
Glioblastoma , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagia , Glioblastoma/tratamiento farmacológico , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , Factores de Transcripción/metabolismo
5.
J Cell Physiol ; 235(4): 3131-3141, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31556109

RESUMEN

Converging evidence indicates the dysregulation of unique cytosolic compartments called stress granules (SGs) might facilitate the accumulation of toxic protein aggregates that underlie many age-related neurodegenerative pathologies (ANPs). SG dynamics are particularly susceptible to the cellular conditions that are commonly induced by aging, including the elevation in reactive oxygen species and increased concentration of aggregate-prone proteins. In turn, the persistent formation of these compartments is hypothesized to serve as a seed for subsequent protein aggregation. Notably, the protein quality control (PQC) machinery responsible for inhibiting persistent SGs (e.g., Hsc70-BAG3) can become compromised with age, suggesting that the modulation of such PQC mechanisms could reliably inhibit pathological processes of ANPs. As exemplified in the context of accelerated aging syndromes (i.e., Hutchinson-Gilford progeria), PQC enhancement is emerging as a potential therapeutic strategy, indicating similar techniques might be applied to ANPs. Collectively, these recent findings advance our understanding of how the processes that might facilitate protein aggregation are particularly susceptible to aging conditions, and present investigators with an opportunity to develop novel targets for ANPs.


Asunto(s)
Envejecimiento , Proteínas Reguladoras de la Apoptosis/metabolismo , Enfermedades Neurodegenerativas/patología , Especies Reactivas de Oxígeno/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Humanos , Enfermedades Neurodegenerativas/metabolismo , Estrés Fisiológico/fisiología
6.
J Card Fail ; 26(12): 1075-1085, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32956817

RESUMEN

BACKGROUND: We reported 3 novel nonsynonymous single nucleotide variants of Bcl2-associated athanogene 3 (BAG3) in African Americans with heart failure (HF) that are associated with a 2-fold increase in cardiac events (HF hospitalization, heart transplantation, or death). METHODS AND RESULTS: We expressed BAG3 variants (P63A, P380S, and A479V) via adenovirus-mediated gene transfer in adult left ventricular myocytes isolated from either wild-type (WT) or cardiac-specific BAG3 haploinsufficient (cBAG3+/-) mice: the latter to simulate the clinical situation in which BAG3 variants are only found on 1 allele. Compared with WT myocytes, cBAG3+/- myocytes expressed approximately 50% of endogenous BAG3 levels and exhibited decreased [Ca2+]i and contraction amplitudes after isoproterenol owing to decreased L-type Ca2+ current. BAG3 repletion with WT BAG3 but not P380S, A479V, or P63A/P380S variants restored contraction amplitudes in cBAG3+/- myocytes to those measured in WT myocytes, suggesting excitation-contraction abnormalities partly account for HF in patients harboring these mutants. Because P63A is near the WW domain (residues 21-55) and A479V is in the BAG domain (residues 420-499), we expressed BAG3 deletion mutants (Δ1-61 and Δ421-575) in WT myocytes and demonstrated that the BAG but not the WW domain was involved in enhancement of excitation-contraction by isoproterenol. CONCLUSIONS: The BAG3 variants contribute to HF in African American patients partly by decreasing myocyte excitation-contraction under stress, and that both the BAG and PXXP domains are involved in mediating ß-adrenergic responsiveness in myocytes.


Asunto(s)
Cardiomiopatías , Insuficiencia Cardíaca , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adrenérgicos , Negro o Afroamericano/genética , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Cardiomiopatías/genética , Insuficiencia Cardíaca/genética , Humanos , Isoproterenol/farmacología , Ratones , Contracción Miocárdica , Miocitos Cardíacos/metabolismo
7.
Mol Ther ; 27(12): 2067-2079, 2019 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-31653397

RESUMEN

Zika virus (ZIKV) infection is associated with microcephaly in neonates and Guillain-Barré syndrome in adults. ZIKV produces a class of nonstructural (NS) regulatory proteins that play a critical role in viral transcription and replication, including NS5, which possesses RNA-dependent RNA polymerase (RdRp) activity. Here we demonstrate that rilpivirine (RPV), a non-nucleoside reverse transcriptase inhibitor (NNRTI) used in the treatment of HIV-1 infection, inhibits the enzymatic activity of NS5 and suppresses ZIKV infection and replication in primary human astrocytes. Similarly, other members of the NNRTI family, including etravirine and efavirenz, showed inhibitory effects on viral infection of brain cells. Site-directed mutagenesis identified 14 amino acid residues within the NS5 RdRp domain (AA265-903), which are important for the RPV interaction and the inhibition of NS5 polymerase activity. Administration of RPV to ZIKV-infected interferon-alpha/beta receptor (IFN-A/R) knockout mice improved the clinical outcome and prevented ZIKV-induced mortality. Histopathological examination of the brains from infected animals revealed that RPV reduced ZIKV RNA levels in the hippocampus, frontal cortex, thalamus, and cerebellum. Repurposing of NNRTIs, such as RPV, for the inhibition of ZIKV replication offers a possible therapeutic strategy for the prevention and treatment of ZIKV-associated disease.


Asunto(s)
Fármacos Anti-VIH/farmacología , Encéfalo/efectos de los fármacos , Receptor de Interferón alfa y beta/fisiología , Rilpivirina/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Infección por el Virus Zika/tratamiento farmacológico , Virus Zika/efectos de los fármacos , Animales , Encéfalo/virología , Humanos , Ratones , Ratones Noqueados , Mutagénesis Sitio-Dirigida , Mutación , Unión Proteica , Conformación Proteica , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Replicación Viral , Infección por el Virus Zika/patología , Infección por el Virus Zika/virología
9.
J Cell Physiol ; 234(6): 8122-8133, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30417391

RESUMEN

Mitochondria play an important role in maintaining cardiac homeostasis by supplying the major energy required for cardiac excitation-contraction coupling as well as controlling the key intracellular survival and death pathways. Healthy mitochondria generate ATP molecules through an aerobic process known as oxidative phosphorylation (OXPHOS). Mitochondrial injury during myocardial infarction (MI) impairs OXPHOS and results in the excessive production of reactive oxygen species (ROS), bioenergetic insufficiency, and contributes to the development of cardiovascular diseases. Therefore, mitochondrial biogenesis along with proper mitochondrial quality control machinery, which removes unhealthy mitochondria is pivotal for mitochondrial homeostasis and cardiac health. Upon damage to the mitochondrial network, mitochondrial quality control components are recruited to segregate the unhealthy mitochondria and target aberrant mitochondrial proteins for degradation and elimination. Impairment of mitochondrial quality control and accumulation of abnormal mitochondria have been reported in the pathogenesis of various cardiac disorders and heart failure. Here, we provide an overview of the recent studies describing various mechanistic pathways underlying mitochondrial homeostasis with the main focus on cardiac cells. In addition, this review demonstrates the potential effects of mitochondrial quality control dysregulation in the development of cardiovascular disease.


Asunto(s)
Enfermedades Cardiovasculares/genética , Lesiones Cardíacas/genética , Mitocondrias Cardíacas/genética , Miocitos Cardíacos/metabolismo , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Lesiones Cardíacas/metabolismo , Lesiones Cardíacas/patología , Humanos , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Dinámicas Mitocondriales/genética , Proteínas Mitocondriales/genética , Mitofagia/genética , Miocitos Cardíacos/patología , Especies Reactivas de Oxígeno/metabolismo
10.
J Cell Physiol ; 234(10): 18371-18381, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30932190

RESUMEN

Homeostasis of proteins involved in contractility of individual cardiomyocytes and those coupling adjacent cells is of critical importance as any abnormalities in cardiac electrical conduction may result in cardiac irregular activity and heart failure. Bcl2-associated athanogene 3 (BAG3) is a stress-induced protein whose role in stabilizing myofibril proteins as well as protein quality control pathways, especially in the cardiac tissue, has captured much attention. Mutations of BAG3 have been implicated in the pathogenesis of cardiac complications such as dilated cardiomyopathy. In this study, we have used an in vitro model of neonatal rat ventricular cardiomyocytes to investigate potential impacts of BAG3 on electrophysiological activity by employing the microelectrode array (MEA) technology. Our MEA data showed that BAG3 plays an important role in the cardiac signal generation as reduced levels of BAG3 led to lower signal frequency and amplitude. Our analysis also revealed that BAG3 is essential to the signal propagation throughout the myocardium, as the MEA data-based conduction velocity, connectivity degree, activation time, and synchrony were adversely affected by BAG3 knockdown. Moreover, BAG3 deficiency was demonstrated to be connected with the emergence of independently beating clusters of cardiomyocytes. On the other hand, BAG3 overexpression improved the activity of cardiomyocytes in terms of electrical signal amplitude and connectivity degree. Overall, by providing more in-depth analyses and characterization of electrophysiological parameters, this study reveals that BAG3 is of critical importance for electrical activity of neonatal cardiomyocytes.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Fenómenos Electrofisiológicos/fisiología , Miocitos Cardíacos/metabolismo , Animales , Autofagia/fisiología , Células Cultivadas , Insuficiencia Cardíaca/metabolismo , Ventrículos Cardíacos/metabolismo , Miocardio/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal/fisiología
11.
J Cell Physiol ; 234(4): 4432-4444, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30256393

RESUMEN

The pathophysiology of human immunodeficiency virus (HIV)-associated cardiomyopathy remains uncertain. We used HIV-1 transgenic (Tg26) mice to explore mechanisms by which HIV-related proteins impacted on myocyte function. Compared to adult ventricular myocytes isolated from nontransgenic (wild type [WT]) littermates, Tg26 myocytes had similar mitochondrial membrane potential (ΔΨ m ) under normoxic conditions but lower Δ Ψ m after hypoxia/reoxygenation (H/R). In addition, Δ Ψ m in Tg26 myocytes failed to recover after Ca 2+ challenge. Functionally, mitochondrial Ca 2+ uptake was severely impaired in Tg26 myocytes. Basal and maximal oxygen consumption rates (OCR) were lower in normoxic Tg26 myocytes, and further reduced after H/R. Complex I subunit and ATP levels were lower in Tg26 hearts. Post-H/R, mitochondrial superoxide (O 2•- ) levels were higher in Tg26 compared to WT myocytes. Overexpression of B-cell lymphoma 2-associated athanogene 3 (BAG3) reduced O 2•- levels in hypoxic WT and Tg26 myocytes back to normal. Under normoxic conditions, single myocyte contraction dynamics were similar between WT and Tg26 myocytes. Post-H/R and in the presence of isoproterenol, myocyte contraction amplitudes were lower in Tg26 myocytes. BAG3 overexpression restored Tg26 myocyte contraction amplitudes to those measured in WT myocytes post-H/R. Coimmunoprecipitation experiments demonstrated physical association of BAG3 and the HIV protein Tat. We conclude: (a) Under basal conditions, mitochondrial Ca 2+ uptake, OCR, and ATP levels were lower in Tg26 myocytes; (b) post-H/R, Δ Ψ m was lower, mitochondrial O 2•- levels were higher, and contraction amplitudes were reduced in Tg26 myocytes; and (c) BAG3 overexpression decreased O 2•- levels and restored contraction amplitudes to normal in Tg26 myocytes post-H/R in the presence of isoproterenol.


Asunto(s)
Cardiomiopatías/metabolismo , Metabolismo Energético , Infecciones por VIH/complicaciones , VIH-1/genética , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Cardiomiopatías/genética , Cardiomiopatías/fisiopatología , Cardiomiopatías/virología , Hipoxia de la Célula , Células Cultivadas , Modelos Animales de Enfermedad , Infecciones por VIH/virología , Potencial de la Membrana Mitocondrial , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias Cardíacas/virología , Contracción Miocárdica , Miocitos Cardíacos/virología , Oxidación-Reducción , Estrés Oxidativo , Consumo de Oxígeno , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Función Ventricular Izquierda
12.
J Cell Physiol ; 233(12): 9299-9311, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29206302

RESUMEN

HIV-associated neurocognitive disorders affecting greater than 30% of patients are caused by HIV-1 infection of the CNS, and in part, include neurotoxic effects of the viral transactivator of transcription, Tat protein. In addition to increasing the risk for becoming HIV infected, cocaine abuse enhances the neuropathogenic impacts of HIV-1. To investigate the outcome of Tat and cocaine interference in the hippocampal neuronal network, cross-rank-corrlation was employed to develop a systematic framework to assess hippocampal neurons behavior cultured on multielectrode arrays. Tat and cocaine differentially disturbed neuronal spiking rates, amplitude, synchronous activity, and oscillations within the hippocampal neuronal network via potentiation of inhibitory neurotransmission. The Tat-mediated impairment of neuronal spiking was reversible by removal of Tat, which restored neuronal activity. The presence of astrocytes co-cultured with neuronal networks diminished the effects of Tat and cocaine on neuron function suggesting a role for astrocytes in stabilizing neuronal behavior and increasing neuronal spontaneous activities such as bursting amplitude, frequency, and wave propagation rate. Taken together, our studies indicate that the HIV protein Tat and cocaine impair hippocampal neuronal network functioning and that the presence of astrocytes alleviates network dysfunction pointing to a newly discovered pathway through which ionic homeostasis is maintained by neuron-glial crosstalk in the CNS.


Asunto(s)
Cocaína/farmacología , Hipocampo/citología , Neuronas/metabolismo , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/farmacología , Potenciales de Acción/efectos de los fármacos , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , VIH-1/metabolismo , Microelectrodos , Red Nerviosa/efectos de los fármacos , Red Nerviosa/metabolismo , Neuronas/efectos de los fármacos , Norepinefrina/metabolismo , Ratas , Receptores de GABA/metabolismo , Receptores de Glutamato/metabolismo , Receptores de Neurotransmisores/metabolismo , Proteínas Recombinantes/farmacología
13.
J Cell Physiol ; 233(2): 748-758, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28493473

RESUMEN

Cardiovascular disease remains a leading cause of morbidity and mortality in HIV-positive patients, even in those whose viral loads are well controlled with antiretroviral therapy. However, the underlying molecular events responsible for the development of cardiac disease in the setting of HIV remain unknown. The HIV-encoded Tat protein plays a critical role in the activation of HIV gene expression and profoundly impacts homeostasis in both HIV-infected cells and uninfected cells that have taken up released Tat via a bystander effect. Since cardiomyocyte function, including excitation-contraction coupling, greatly depends on energy provided by the mitochondria, in this study, we performed a series of experiments to assess the impact of Tat on mitochondrial function and bioenergetics pathways in a primary cell culture model derived from neonatal rat ventricular cardiomyocytes (NRVCs). Our results show that the presence of Tat in cardiomyocytes is accompanied by a decrease in oxidative phosphorylation, a decline in the levels of ATP, and an accumulation of reactive oxygen species (ROS). Tat impairs the uptake of mitochondrial Ca2+ ([Ca2+ ]m ) and the electrophysiological activity of cardiomyocytes. Tat also affects the protein clearance pathway and autophagy in cardiomyocytes under stress due to hypoxia-reoxygenation conditions. A reduction in the level of ubiquitin along with dysregulated degradation of autophagy proteins including SQSTM1/p62 and a reduction of LC3 II were detected in cardiomyocytes harboring Tat. These results suggest that, by targeting mitochondria and protein quality control, Tat significantly impacts bioenergetics and autophagy resulting in dysregulation of cardiomyocyte health and homeostasis.


Asunto(s)
Metabolismo Energético , VIH-1/metabolismo , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/metabolismo , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Apoptosis , Autofagia , Calcio/metabolismo , Canales de Calcio/metabolismo , Hipoxia de la Célula , Células Cultivadas , Interacciones Huésped-Patógeno , Potenciales de la Membrana , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias Cardíacas/virología , Mitofagia , Miocitos Cardíacos/virología , Fosforilación Oxidativa , Cultivo Primario de Células , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Proteína Sequestosoma-1/metabolismo , Transducción de Señal , Factores de Tiempo
14.
J Cell Physiol ; 233(9): 6319-6326, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29323723

RESUMEN

Bcl2-associated athanogene 3 (BAG3) is a 575 amino acid protein that is found predominantly in the heart, skeletal muscle, and many cancers. Deletions and truncations in BAG3 that result in haplo-insufficiency have been associated with the development of dilated cardiomyopathy. To study the cellular and molecular events attributable to BAG3 haplo-insufficiency we generated a mouse in which one allele of BAG3 was flanked by loxP recombination sites (BAG3fl/+ ). Mice were crossed with α-MHC-Cre mice in order to generate mice with cardiac-specific haplo-insufficiency (cBAG3+/-) and underwent bi-weekly echocardiography to assess their cardiac phenotype. By 10 weeks of age, cBAG3+/- mice demonstrated increased heart size and diminished left ventricular ejection fraction when compared with non-transgenic littermates (Cre-/- BAG3fl/+ ). Contractility in adult myocytes isolated from cBAG3+/- mice were similar to those isolated from control mice at baseline, but showed a significantly decreased response to adrenergic stimulation. Intracellular calcium ([Ca2+ ]i ) transient amplitudes in myocytes isolated from cBAG3+/- mice were also similar to myocytes isolated from control mice at baseline but were significantly lower than myocytes from control mice in their response to isoproterenol. BAG3 haplo-insufficiency was also associated with decreased autophagy flux and increased apoptosis. Taken together, these results suggest that mice in which BAG3 has been deleted from a single allele provide a model that mirrors the biology seen in patients with heart failure and BAG3 haplo-insufficiency.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis/fisiología , Miocitos Cardíacos/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Receptores Adrenérgicos beta/metabolismo , Disfunción Ventricular Izquierda/metabolismo , Adrenérgicos/farmacología , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Calcio/metabolismo , Cardiomiopatía Dilatada/metabolismo , Insuficiencia Cardíaca/metabolismo , Isoproterenol/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/efectos de los fármacos , Fenotipo
15.
Circ Res ; 118(12): 1894-905, 2016 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-27142163

RESUMEN

RATIONALE: SUMOylation plays an important role in cardiac function and can be protective against cardiac stress. Recent studies show that SUMOylation is an integral part of the ubiquitin proteasome system, and expression of the small ubiquitin-like modifier (SUMO) E2 enzyme UBC9 improves cardiac protein quality control. However, the precise role of SUMOylation on other protein degradation pathways, particularly autophagy, remains undefined in the heart. OBJECTIVE: To determine whether SUMOylation affects cardiac autophagy and whether this effect is protective in a mouse model of proteotoxic cardiac stress. METHODS AND RESULTS: We modulated expression of UBC9, a SUMO E2 ligase, using gain- and loss-of-function in neonatal rat ventricular cardiomyocytes. UBC9 expression seemed to directly alter autophagic flux. To confirm this effect in vivo, we generated transgenic mice overexpressing UBC9 in cardiomyocytes. These mice have an increased level of SUMOylation at baseline and, in confirmation of the data obtained from neonatal rat ventricular cardiomyocytes, demonstrated increased autophagy, suggesting that increased UBC9-mediated SUMOylation is sufficient to upregulate cardiac autophagy. Finally, we tested the protective role of SUMOylation-mediated autophagy by expressing UBC9 in a model of cardiac proteotoxicity, induced by cardiomyocyte-specific expression of a mutant α-B-crystallin, mutant CryAB (CryAB(R120G)), which shows impaired autophagy. UBC9 overexpression reduced aggregate formation, decreased fibrosis, reduced hypertrophy, and improved cardiac function and survival. CONCLUSIONS: The data showed that increased UBC9-mediated SUMOylation is sufficient to induce relatively high levels of autophagy and may represent a novel strategy for increasing autophagic flux and ameliorating morbidity in proteotoxic cardiac disease.


Asunto(s)
Cardiomiopatías/metabolismo , Miocitos Cardíacos/metabolismo , Sumoilación , Enzimas Ubiquitina-Conjugadoras/metabolismo , Animales , Autofagia , Cardiomiopatías/genética , Células Cultivadas , Ratones , Ratas , Ratas Sprague-Dawley , Enzimas Ubiquitina-Conjugadoras/genética , Cadena B de alfa-Cristalina/genética , Cadena B de alfa-Cristalina/metabolismo
16.
Mol Ther ; 25(5): 1168-1186, 2017 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-28366764

RESUMEN

CRISPR-associated protein 9 (Cas9)-mediated genome editing provides a promising cure for HIV-1/AIDS; however, gene delivery efficiency in vivo remains an obstacle to overcome. Here, we demonstrate the feasibility and efficiency of excising the HIV-1 provirus in three different animal models using an all-in-one adeno-associated virus (AAV) vector to deliver multiplex single-guide RNAs (sgRNAs) plus Staphylococcus aureus Cas9 (saCas9). The quadruplex sgRNAs/saCas9 vector outperformed the duplex vector in excising the integrated HIV-1 genome in cultured neural stem/progenitor cells from HIV-1 Tg26 transgenic mice. Intravenously injected quadruplex sgRNAs/saCas9 AAV-DJ/8 excised HIV-1 proviral DNA and significantly reduced viral RNA expression in several organs/tissues of Tg26 mice. In EcoHIV acutely infected mice, intravenously injected quadruplex sgRNAs/saCas9 AAV-DJ/8 reduced systemic EcoHIV infection, as determined by live bioluminescence imaging. Additionally, this quadruplex vector induced efficient proviral excision, as determined by PCR genotyping in the liver, lungs, brain, and spleen. Finally, in humanized bone marrow/liver/thymus (BLT) mice with chronic HIV-1 infection, successful proviral excision was detected by PCR genotyping in the spleen, lungs, heart, colon, and brain after a single intravenous injection of quadruplex sgRNAs/saCas9 AAV-DJ/8. In conclusion, in vivo excision of HIV-1 proviral DNA by sgRNAs/saCas9 in solid tissues/organs can be achieved via AAV delivery, a significant step toward human clinical trials.


Asunto(s)
Endonucleasas/genética , Terapia Genética/métodos , Genoma Viral , Infecciones por VIH/terapia , VIH-1/genética , Provirus/genética , ARN Guía de Kinetoplastida/genética , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Dependovirus/genética , Dependovirus/metabolismo , Modelos Animales de Enfermedad , Endonucleasas/metabolismo , Edición Génica/métodos , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Infecciones por VIH/patología , Infecciones por VIH/virología , Duplicado del Terminal Largo de VIH , VIH-1/metabolismo , Humanos , Ratones , Ratones Transgénicos , Oligonucleótidos/genética , Oligonucleótidos/metabolismo , Provirus/metabolismo , ARN Guía de Kinetoplastida/metabolismo , Staphylococcus aureus/química , Staphylococcus aureus/enzimología , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo , Productos del Gen pol del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen pol del Virus de la Inmunodeficiencia Humana/metabolismo
17.
Cell Mol Life Sci ; 74(13): 2439-2450, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28210784

RESUMEN

HIV/AIDS remains a major public health issue. In 2014, it was estimated that 36.9 million people are living with HIV worldwide, including 2.6 million children. Since the advent of combination antiretroviral therapy (cART), in the 1990s, treatment has been so successful that in many parts of the world, HIV has become a chronic condition in which progression to AIDS has become increasingly rare. However, while people with HIV can expect to live a normal life span with cART, lifelong medication is required and cardiovascular, renal, liver, and neurologic diseases are still possible, which continues to prompt research for a cure for HIV. Infected reservoir cells, such as CD4+ T cells and myeloid cells, allow persistence of HIV as an integrated DNA provirus and serve as a potential source for the re-emergence of virus. Attempts to eradicate HIV from these cells have focused mainly on the so-called "shock and kill" approach, where cellular reactivation is induced so as to trigger the purging of virus-producing cells by cytolysis or immune attack. This approach has several limitations and its usefulness in clinical applications remains to be assessed. Recent advances in gene-editing technology have allowed the use of this approach for inactivating integrated proviral DNA in the genome of latently infected cells or knocking out HIV receptors. Here, we review this strategy and its potential to eliminate the latent HIV reservoir resulting in a sterile cure of AIDS.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida/genética , Síndrome de Inmunodeficiencia Adquirida/terapia , Edición Génica , Terapia Genética , VIH-1/genética , Humanos , Evasión Inmune/genética , Mutación/genética
18.
J Cell Physiol ; 232(4): 797-805, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27381181

RESUMEN

Mitochondrial abnormalities impact the development of myofibrillar myopathies. Therefore, understanding the mechanisms underlying the removal of dysfunctional mitochondria from cells is of great importance toward understanding the molecular events involved in the genesis of cardiomyopathy. Earlier studies have ascribed a role for BAG3 in the development of cardiomyopathy in experimental animals leading to the identification of BAG3 mutations in patients with heart failure which may play a part in the onset of disease development and progression. BAG3 is co-chaperone of heat shock protein 70 (HSP70), which has been shown to modulate apoptosis and autophagy, in several cell models. In this study, we explore the potential role of BAG3 in mitochondrial quality control. We demonstrate that siRNA mediated suppression of BAG3 production in neonatal rat ventricular cardiomyocytes (NRVCs) significantly elevates the level of Parkin, a key component of mitophagy. We found that both BAG3 and Parkin are recruited to depolarized mitochondria and promote mitophagy. Suppression of BAG3 in NRVCs significantly reduces autophagy flux and eliminates clearance of Tom20, an essential import receptor for mitochondria proteins, after induction of mitophagy. These observations suggest that BAG3 is critical for the maintenance of mitochondrial homeostasis under stress conditions, and disruptions in BAG3 expression impact cardiomyocyte function. J. Cell. Physiol. 232: 797-805, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Mitocondrias/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Carbonil Cianuro m-Clorofenil Hidrazona/farmacología , Línea Celular , Metabolismo Energético , Técnicas de Silenciamiento del Gen , Humanos , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitofagia/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Inhibidores de Proteasoma/farmacología , Transporte de Proteínas/efectos de los fármacos , Ratas Sprague-Dawley , Ubiquitina-Proteína Ligasas/metabolismo
19.
J Cell Biochem ; 118(11): 3586-3594, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28460414

RESUMEN

The CRISPR or clustered regularly interspaced short palindromic repeats system is currently the most advanced approach to genome editing and is notable for providing an unprecedented degree of specificity, effectiveness, and versatility in genetic manipulation. CRISPR evolved as a prokaryotic immune system to provide an acquired immunity and resistance to foreign genetic elements such as bacteriophages. It has recently been developed into a tool for the specific targeting of nucleotide sequences within complex eukaryotic genomes for the purpose of genetic manipulation. The power of CRISPR lies in its simplicity and ease of use, its flexibility to be targeted to any given nucleotide sequence by the choice of an easily synthesized guide RNA, and its ready ability to continue to undergo technical improvements. Applications for CRISPR are numerous including creation of novel transgenic cell animals for research, high-throughput screening of gene function, potential clinical gene therapy, and nongene-editing approaches such as modulating gene activity and fluorescent tagging. In this prospect article, we will describe the salient features of the CRISPR system with an emphasis on important drawbacks and considerations with respect to eliminating off-target events and obtaining efficient CRISPR delivery. We will discuss recent technical developments to the system and we will illustrate some of the most recent applications with an emphasis on approaches to eliminate human viruses including HIV-1, JCV and HSV-1 and prospects for the future. J. Cell. Biochem. 118: 3586-3594, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Investigación Biomédica/métodos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Edición Génica/métodos , Animales , Investigación Biomédica/tendencias , Edición Génica/tendencias , Humanos
20.
Ann Neurol ; 80(4): 479-89, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27464346

RESUMEN

The emergence of Zika virus in the Americas has followed a pattern that is familiar from earlier epidemics of other viruses, where a new disease is introduced into a human population and then spreads rapidly with important public health consequences. In the case of Zika virus, an accumulating body of recent evidence implicates the virus in the etiology of serious pathologies of the human nervous system, that is, the occurrence of microcephaly in neonates and Guillain-Barré syndrome in adults. Zika virus is an arbovirus (arthropod-borne virus) and a member of the family Flaviviridae, genus Flavivirus. Zika virions are enveloped and icosahedral, and contain a nonsegmented, single-stranded, positive-sense RNA genome, which encodes 3 structural and 7 nonstructural proteins that are expressed as a single polyprotein that undergoes cleavage. Zika genomic RNA replicates in the cytoplasm of infected host cells. Zika virus was first detected in 1947 in the blood of a febrile monkey in Uganda's Zika Forest and in crushed suspensions of the Aedes mosquito, which is one of the vectors for Zika virus. The virus remained obscure, with a few human cases confined to Africa and Asia. There are two lineages of the Zika virus, African and Asian, with the Asian strain causing outbreaks in Micronesia in 2007 and French Polynesia in 2013-2014. From here, the virus spread to Brazil with the first report of autochthonous Zika transmission in the Americas in March 2015. The rapid advance of the virus in the Americas and its likely association with microcephaly and Guillain-Barré syndrome make Zika an urgent public health concern. Ann Neurol 2016;80:479-489.


Asunto(s)
Síndrome de Guillain-Barré/etiología , Microcefalia/etiología , Infección por el Virus Zika/complicaciones , Virus Zika/genética , Virus Zika/patogenicidad , Adulto , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Recién Nacido , Virus Zika/clasificación , Infección por el Virus Zika/epidemiología , Infección por el Virus Zika/historia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA