Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Appl Math Comput ; 432: 127365, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35812766

RESUMEN

During a pandemic event like the present COVID-19, self-quarantine, mask-wearing, hygiene maintenance, isolation, forced quarantine, and social distancing are the most effective nonpharmaceutical measures to control the epidemic when the vaccination and proper treatments are absent. In this study, we proposed an epidemiological model based on the SEIR dynamics along with the two interventions defined as self-quarantine and forced quarantine by human behavior dynamics. We consider a disease spreading through a population where some people can choose the self-quarantine option of paying some costs and be safer than the remaining ones. The remaining ones act normally and send to forced quarantine by the government if they get infected and symptomatic. The government pays the forced quarantine costs for individuals, and the government has a budget limit to treat the infected ones. Each intervention derived from the so-called behavior model has a dynamical equation that accounts for a proper balance between the costs for each case, the total budget, and the risk of infection. We show that the infection peak cannot be reduced if the authority does not enforce a proactive (quantified by a higher sensitivity parameter) intervention. While comparing the impact of both self- and forced quarantine provisions, our results demonstrate that the latter is more influential to reduce the disease prevalence and the social efficiency deficit (a gap between social optimum payoff and equilibrium payoff).

2.
Infect Dis Model ; 9(3): 657-672, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38628352

RESUMEN

In this research, we introduce a comprehensive epidemiological model that accounts for multiple strains of an infectious disease and two distinct vaccination options. Vaccination stands out as the most effective means to prevent and manage infectious diseases. However, when there are various vaccines available, each with its costs and effectiveness, the decision-making process for individuals becomes paramount. Furthermore, the factor of waning immunity following vaccination also plays a significant role in influencing these choices. To understand how individuals make decisions in the context of multiple strains and waning immunity, we employ a behavioral model, allowing an epidemiological model to be coupled with the dynamics of a decision-making process. Individuals base their choice of vaccination on factors such as the total number of infected individuals and the cost-effectiveness of the vaccine. Our findings indicate that as waning immunity increases, people tend to prioritize vaccines with higher costs and greater efficacy. Moreover, when more contagious strains are present, the equilibrium in vaccine adoption is reached more rapidly. Finally, we delve into the social dilemma inherent in our model by quantifying the social efficiency deficit (SED) under various parameter combinations.

3.
Infect Dis Model ; 8(3): 656-671, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37346475

RESUMEN

The emergence of a novel strain during a pandemic, like the current COVID-19, is a major concern to the healthcare system. The most effective strategy to control this type of pandemic is vaccination. Many previous studies suggest that the existing vaccine may not be fully effective against the new strain. Additionally, the new strain's late arrival has a significant impact on the disease dynamics and vaccine coverage. Focusing on these issues, this study presents a two-strain epidemic model in which the new strain appears with a time delay. We considered two vaccination provisions, namely preinfection and postinfection vaccinations, which are governed by human behavioral dynamics. In such a framework, individuals have the option to commit vaccination before being infected with the first strain. Additionally, people who forgo vaccination and become infected with the first train have the chance to be vaccinated (after recovery) in an attempt to avoid infection from the second strain. However, a second strain can infect vaccinated and unvaccinated individuals. People may have additional opportunities to be vaccinated and to protect themselves from the second strain due to the time delay. Considering the cost of the vaccine, the severity of the new strain, and the vaccine's effectiveness, our results indicated that delaying the second strain decreases the peak size of the infected individuals. Finally, by estimating the social efficiency deficit, we discovered that the social dilemma for receiving immunization decreases with the delay in the arrival of the second strain.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA