Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Molecules ; 26(9)2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33946559

RESUMEN

Alzheimer's disease (AD) is the most common form of dementia and is characterized by irreversible and progressive neurodegeneration. Cholinergic dysfunction has been reported in AD, and several cholinesterase inhibitors, including natural compounds and synthetic analogs, have been developed to treat the disease. However, there is currently no treatment for AD, as most drug-like compounds have failed in clinical trials. Acetylcholinesterase (AChE) is the target of most drugs used commercially to treat AD. This work focused on screening natural compounds obtained from the ZINC database (224, 205 compounds) against AChE to identify those possibly capable of enabling the management of AD. Indirubin and dehydroevodiamine were the best potential AChE inhibitors with free binding energies of -10.03 and -9.00 kcal/mol, respectively. The key residue (His447) of the active site of AChE was found to participate in complex interactions with these two molecules. Six H-bonds were involved in the 'indirubin-AChE' interaction and three H-bonds in the 'dehydroevodiamine-AChE' interaction. These compounds were predicted to cross the blood-brain barrier (BBB) and to exhibit high levels of intestinal absorption. Furthermore, 'indirubin-AChE' and 'dehydroevodiamine-AChE' complexes were found to be stable, as determined by root mean square deviation (RMSD) during a 50 ns molecular dynamics simulation study. Based on the free binding energies and stabilities obtained by simulation studies, we recommend that experimental studies be undertaken on indirubin and dehydroevodiamine with a view towards their potential use as treatments for AD.


Asunto(s)
Acetilcolinesterasa/química , Productos Biológicos/química , Inhibidores de la Colinesterasa/química , Biología Computacional/métodos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Enfermedad de Alzheimer/tratamiento farmacológico , Sitios de Unión , Productos Biológicos/farmacología , Inhibidores de la Colinesterasa/farmacología , Bases de Datos Farmacéuticas , Humanos , Estructura Molecular , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad
2.
Biotechnol Appl Biochem ; 66(5): 880-899, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31397000

RESUMEN

The present study was aimed to explore the molecular and structural features of UDP-N-acetylglucosamine pyrophosphorylase of Bombyx mori (BmUAP), an essential enzyme for chitin synthesis in insects. The BmUAP cDNA sequence was cloned and expression profiles were monitored during the molting and feeding stages of silkworm larvae. The effect of 20-hydroxyecdysone (20E) on BmUAP expression, and on silkworm molting was studied, which revealed that 20E regulates its expression. Multiple sequence alignment of various pyrophosphorylases revealed that the residues N223, G290, N327, and K407 of human UAP (PDB ID: 1JV1) were found to be highly conserved in BmUAP and all other eukaryotic UAPs considered for the study. Phylogenetic analysis inferred that the UAPs possess discrete variations in primary structure among different insect Orders while sharing good identity between species of the Order. The structure of BmUAP was predicted and its interactions with uridine triphosphate, N-acetylglucosamine-1-phosphate, and UDP-N-acetylglucosamine were analyzed. Virtual screening with a library of natural compounds resulted in five potential hits with good binding affinities. On further analysis, these five hits were found to be mimicking substrate and product, in inducing conformational changes in the active site. This work provides crucial information on molecular interactions and structural dynamics of insect UAPs.


Asunto(s)
Bombyx/enzimología , Bombyx/genética , Clonación Molecular , Simulación por Computador , Regulación Enzimológica de la Expresión Génica/genética , Simulación del Acoplamiento Molecular , Nucleotidiltransferasas/química , Nucleotidiltransferasas/genética , Animales , Humanos , Nucleotidiltransferasas/metabolismo , Conformación Proteica
3.
Braz J Microbiol ; 51(2): 467-487, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32086747

RESUMEN

Pseudomonas aeruginosa is the second most emerging multidrug-resistant, opportunistic pathogen after Acinetobacter baumannii that poses a threat in nursing homes, hospitals, and patients who need devices such as ventilators and blood catheters. Its ability to form quorum sensing-regulated virulence factors and biofilm makes it more resistant to top most therapeutic agents such as carbapenems and next-generation antibiotics. In the current study, we studied the quorum quenching potential of secondary metabolites of Mycoleptodiscus indicus PUTY1 strain. In vitro observation showed a mitigation in virulence factors such as rhamnolipids, protease, elastase pyocyanin, exopolysaccharides, and hydrogen cyanide gas. Furthermore, a significant reduction in the motility such as swimming, swarming, twitching, and inhibition in biofilm formation by Pseudomonas aeruginosa PAO1 was observed. Results of in vitro studies were further confirmed by in silico studies through docking and molecular dynamic simulation of GC-MS-detected compounds of Mycoleptodiscus indicus employing LasR and RhlR proteins. Both in vitro and in silico observations indicate a new alternative approach for combating virulence of Pseudomonas aeruginosa by targeting its protein receptors LasR and RhlR. Graphical abstract.


Asunto(s)
Ascomicetos/química , Biopelículas/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Percepción de Quorum/efectos de los fármacos , Factores de Virulencia/antagonistas & inhibidores , Pruebas de Sensibilidad Microbiana , Simulación de Dinámica Molecular , Pseudomonas aeruginosa/fisiología , Metabolismo Secundario
4.
Bioinformation ; 14(8): 414-428, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30310249

RESUMEN

Acetyl-cholinesterase enzyme (AChE) is a known target for identifying potential inhibitors against Alzheimer diseases (AD). Therefore, it is of interest to screen AChE with the CNS-BBB database. An AChE enzyme is a member of hydrolase family is activated by acetylcholine (ACh), so, targeting the AChE enzyme with the potential inhibitor may block the binding of the ACh. In this study we carried out virtual screening of drug-like molecules from Chemical Diversity Database particularly CNS-BBB compounds, to identify potential inhibitors using Glide docking program. Top ranking ten compounds, which have lower Glide Score when compared to known drugs (Tacrine and Galantamine) for AChE. For top three molecules MD simulation was carried out and calculated binding free energy. We report the best binding compounds with AChE compared to known drugs (Taine and Galantamine) for AD. We further document the salient features of their molecular interaction with the known target. Three molecules (1-benzyl-3-(2- hydroxyethyl)-N-[2-(3-pyridyl)ethyl]-3-pyrrolidinecarboxamide, N-{3[benzyl(methyl)amino]propyl}-1,5-dimethyl-4-oxo-4,5-dihydro- 1H-pyrrolo[3,2-c]quinoline-2-carboxamide, and 6-chloro-N-[2-(diethylamino)-2-phenylethyl]-4-oxo-4H-chromene-2-carboxamide) have -196.36, -204.27, -214.40 kJ/mol, binding free energy values respectively which are much lower than values calculated for the reference ligands Tacrine and Galantamine having -119.65 and -142.18 kJ/mol respectively. Thus these molecules can be very novel potential inhibitors against AChE involved in Alzheimer's disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA