Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Anal Chem ; 2024 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-39422560

RESUMEN

The prolonged retention of ionizable lipids within the body limits the repeated dosing of lipid nanoparticles (LNPs) for nucleic acid delivery. While most ionizable lipids are primarily metabolized in the liver via the enzymatic hydrolysis of ester bonds, elimination half-lives can range from several hours to days. The development of compounds that undergo rapid biodegradation remains a major engineering challenge in the absence of standardized biodegradability assessments in the early stages of drug discovery. Here, we analyze and compare the hydrolysis kinetics of well-known ionizable lipids (ALC-0315, DLin-MC3-DMA, LP-01, L319, and SM-102) using optimized cell-free reactions monitored by 1H NMR. Unlike conventional analytical techniques, these NMR-based methods are universal and suitable for high-throughput screening. We demonstrate that enzyme-catalyzed and base hydrolysis reactions can predict whether ionizable lipids undergo fast or slow liver elimination, as our results are in alignment with prior pharmacokinetic studies. Furthermore, we show that the hydrolysis kinetics of ionizable lipids vary by several orders of magnitude depending on steric effects. This study provides a framework to expedite the discovery of rapidly degradable ionizable lipids, with implications for improving the therapeutic index of LNP-based drugs.

2.
J Am Chem Soc ; 145(4): 2294-2304, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36652629

RESUMEN

Lipid nanoparticles (LNPs) are the most clinically advanced delivery vehicles for RNA and have enabled the development of RNA-based drugs such as the mRNA COVID-19 vaccines. Functional delivery of mRNA by an LNP greatly depends on the inclusion of an ionizable lipid, and small changes to these lipid structures can significantly improve delivery. However, the structure-function relationships between ionizable lipids and mRNA delivery are poorly understood, especially for LNPs administered intramuscularly. Here, we show that the iterative design of a novel series of ionizable lipids generates key structure-activity relationships and enables the optimization of chemically distinct lipids with efficacy that is on-par with the current state of the art. We find that the combination of ionizable lipids comprising an ethanolamine core and LNPs with an apparent pKa between 6.6 and 6.9 maximizes intramuscular mRNA delivery. Furthermore, we report a nonlinear relationship between the lipid-to-mRNA mass ratio and protein expression, suggesting that a critical mass ratio exists for LNPs and may depend on ionizable lipid structure. Our findings add to the mechanistic understanding of ionizable lipids and demonstrate that hydrogen bonding, ionization behavior, and lipid-to-mRNA mass ratio are key design parameters affecting intramuscular mRNA delivery. We validate these insights by applying them to the rational design of new ionizable lipids. Overall, our iterative design strategy efficiently generates potent ionizable lipids. This hypothesis-driven method reveals structure-activity relationships that lay the foundation for the optimization of ionizable lipids in future LNP-RNA drugs. We foresee that this design strategy can be extended to other optimization parameters beyond intramuscular expression.


Asunto(s)
COVID-19 , Nanopartículas , Humanos , ARN Mensajero/metabolismo , Vacunas contra la COVID-19 , Lípidos/química , Nanopartículas/química , ARN Interferente Pequeño/genética
3.
Small ; 19(41): e2302917, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37312676

RESUMEN

Lipid nanoparticles (LNPs) and ribonucleic acid (RNA) technology are highly versatile tools that can be deployed for diagnostic, prophylactic, and therapeutic applications. In this report, supramolecular chemistry concepts are incorporated into the rational design of a new ionizable lipid, C3-K2-E14, for systemic administration. This lipid incorporates a cone-shaped structure intended to facilitate cell bilayer disruption, and three tertiary amines to improve RNA binding. Additionally, hydroxyl and amide motifs are incorporated to further enhance RNA binding and improve LNP stability. Optimization of messenger RNA (mRNA) and small interfering RNA (siRNA) formulation conditions and lipid ratios produce LNPs with favorable diameter (<150 nm), polydispersity index (<0.15), and RNA encapsulation efficiency (>90%), all of which are preserved after 2 months at 4 or 37 °C storage in ready-to-use liquid form. The lipid and formulated LNPs are well-tolerated in animals and show no deleterious material-induced effects. Furthermore, 1 week after intravenous LNP administration, fluorescent signal from tagged RNA payloads are not detected. To demonstrate the long-term treatment potential for chronic diseases, repeated dosing of C3-K2-E14 LNPs containing siRNA that silences the colony stimulating factor-1 (CSF-1) gene can modulate leukocyte populations in vivo, further highlighting utility.


Asunto(s)
Nanopartículas , Animales , ARN Interferente Pequeño , ARN Mensajero/genética , Nanopartículas/química , Lípidos/química
4.
Circulation ; 139(19): 2238-2255, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-30759996

RESUMEN

BACKGROUND: Deficiencies of iron-sulfur (Fe-S) clusters, metal complexes that control redox state and mitochondrial metabolism, have been linked to pulmonary hypertension (PH), a deadly vascular disease with poorly defined molecular origins. BOLA3 (BolA Family Member 3) regulates Fe-S biogenesis, and mutations in BOLA3 result in multiple mitochondrial dysfunction syndrome, a fatal disorder associated with PH. The mechanistic role of BOLA3 in PH remains undefined. METHODS: In vitro assessment of BOLA3 regulation and gain- and loss-of-function assays were performed in human pulmonary artery endothelial cells using siRNA and lentiviral vectors expressing the mitochondrial isoform of BOLA3. Polymeric nanoparticle 7C1 was used for lung endothelium-specific delivery of BOLA3 siRNA oligonucleotides in mice. Overexpression of pulmonary vascular BOLA3 was performed by orotracheal transgene delivery of adeno-associated virus in mouse models of PH. RESULTS: In cultured hypoxic pulmonary artery endothelial cells, lung from human patients with Group 1 and 3 PH, and multiple rodent models of PH, endothelial BOLA3 expression was downregulated, which involved hypoxia inducible factor-2α-dependent transcriptional repression via histone deacetylase 1-mediated histone deacetylation. In vitro gain- and loss-of-function studies demonstrated that BOLA3 regulated Fe-S integrity, thus modulating lipoate-containing 2-oxoacid dehydrogenases with consequent control over glycolysis and mitochondrial respiration. In contexts of siRNA knockdown and naturally occurring human genetic mutation, cellular BOLA3 deficiency downregulated the glycine cleavage system protein H, thus bolstering intracellular glycine content. In the setting of these alterations of oxidative metabolism and glycine levels, BOLA3 deficiency increased endothelial proliferation, survival, and vasoconstriction while decreasing angiogenic potential. In vivo, pharmacological knockdown of endothelial BOLA3 and targeted overexpression of BOLA3 in mice demonstrated that BOLA3 deficiency promotes histological and hemodynamic manifestations of PH. Notably, the therapeutic effects of BOLA3 expression were reversed by exogenous glycine supplementation. CONCLUSIONS: BOLA3 acts as a crucial lynchpin connecting Fe-S-dependent oxidative respiration and glycine homeostasis with endothelial metabolic reprogramming critical to PH pathogenesis. These results provide a molecular explanation for the clinical associations linking PH with hyperglycinemic syndromes and mitochondrial disorders. These findings also identify novel metabolic targets, including those involved in epigenetics, Fe-S biogenesis, and glycine biology, for diagnostic and therapeutic development.


Asunto(s)
Endotelio Vascular/fisiología , Glicina/metabolismo , Hipertensión Pulmonar/genética , Proteínas Mitocondriales/metabolismo , Adolescente , Adulto , Animales , Respiración de la Célula , Células Cultivadas , Niño , Preescolar , Modelos Animales de Enfermedad , Femenino , Humanos , Hipertensión Pulmonar/metabolismo , Lactante , Proteínas Hierro-Azufre/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Mitocondriales/genética , Mutación/genética , Oxidación-Reducción , ARN Interferente Pequeño/genética , Adulto Joven
5.
Proc Natl Acad Sci U S A ; 114(30): E6147-E6156, 2017 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-28696296

RESUMEN

Brain tumor-initiating cells (BTICs) have been identified as key contributors to therapy resistance, recurrence, and progression of diffuse gliomas, particularly glioblastoma (GBM). BTICs are elusive therapeutic targets that reside across the blood-brain barrier, underscoring the urgent need to develop novel therapeutic strategies. Additionally, intratumoral heterogeneity and adaptations to therapeutic pressure by BTICs impede the discovery of effective anti-BTIC therapies and limit the efficacy of individual gene targeting. Recent discoveries in the genetic and epigenetic determinants of BTIC tumorigenesis offer novel opportunities for RNAi-mediated targeting of BTICs. Here we show that BTIC growth arrest in vitro and in vivo is accomplished via concurrent siRNA knockdown of four transcription factors (SOX2, OLIG2, SALL2, and POU3F2) that drive the proneural BTIC phenotype delivered by multiplexed siRNA encapsulation in the lipopolymeric nanoparticle 7C1. Importantly, we demonstrate that 7C1 nano-encapsulation of multiplexed RNAi is a viable BTIC-targeting strategy when delivered directly in vivo in an established mouse brain tumor. Therapeutic potential was most evident via a convection-enhanced delivery method, which shows significant extension of median survival in two patient-derived BTIC xenograft mouse models of GBM. Our study suggests that there is potential advantage in multiplexed targeting strategies for BTICs and establishes a flexible nonviral gene therapy platform with the capacity to channel multiplexed RNAi schemes to address the challenges posed by tumor heterogeneity.


Asunto(s)
Glioblastoma/patología , Nanopartículas/uso terapéutico , Interferencia de ARN , Animales , Carcinogénesis/genética , Resistencia a Antineoplásicos , Femenino , Terapia Genética/métodos , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Humanos , Masculino , Ratones , Ratones Desnudos , Ensayos Antitumor por Modelo de Xenoinjerto
6.
BMC Cancer ; 19(1): 150, 2019 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-30764801

RESUMEN

BACKGROUND: Cognitive impairment is commonly reported in patients receiving chemotherapy, but the acuity of onset is not known. This study utilized the psychomotor vigilance test (PVT) and trail-making test B (TMT-B) to assess cognitive impairment immediately post-chemotherapy. METHODS: Patients aged 18-80 years receiving first-line intravenous chemotherapy for any stage of breast or colorectal cancer were eligible. Patient symptoms, peripheral neuropathy and Stanford Sleepiness Scale were assessed. A five-minute PVT and TMT-B were completed on a tablet computer pre-chemotherapy and immediately post-chemotherapy. Using a mixed linear regression model, changes in reciprocal transformed PVT reaction time (mean 1/RT) were assessed. A priori, an increase in median PVT reaction times by > 20 ms (approximating PVT changes with blood alcohol concentrations of 0.04-0.05 g%) was considered clinically relevant. RESULTS: One hundred forty-two cancer patients (73 breast, 69 colorectal, median age 55.5 years) were tested. Post-chemotherapy, mean 1/RT values were significantly slowed compared to pre-chemotherapy baseline (p = 0.01). This corresponded to a median PVT reaction time slowed by an average of 12.4 ms. Changes in PVT reaction times were not correlated with age, sex, cancer type, treatment setting, or use of supportive medications. Median post-chemotherapy PVT reaction time slowed by an average of 22.5 ms in breast cancer patients and by 1.6 ms in colorectal cancer patients. Post-chemotherapy median PVT times slowed by > 20 ms in 57 patients (40.1%). Exploratory analyses found no statistically significant association between the primary outcome and self-reported anxiety, fatigue or depression. TMT-B completion speed improved significantly post-chemotherapy (p = 0.03), likely due to test-retest phenomenon. CONCLUSIONS: PVT reaction time slowed significantly immediately post-chemotherapy compared to a pre-chemotherapy baseline, and levels of impairment similar to effects of alcohol consumption in other studies was seen in 40% of patients. Further studies assessing functional impact of cognitive impairment on patients immediately after chemotherapy are warranted.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Disfunción Cognitiva/epidemiología , Neoplasias Colorrectales/tratamiento farmacológico , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/epidemiología , Administración Intravenosa , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Canadá/epidemiología , Disfunción Cognitiva/etiología , Estudios de Evaluación como Asunto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Agitación Psicomotora , Autoinforme , Prueba de Secuencia Alfanumérica , Adulto Joven
7.
J Natl Compr Canc Netw ; 17(1): 47-56, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30659129

RESUMEN

Background: Comparative real-world outcomes for patients with HER2-positive (HER2+) breast cancer receiving adjuvant trastuzumab outside of clinical trials are lacking. This study sought to retrospectively characterize outcomes for patients with node-negative and node-positive breast cancer receiving adjuvant trastuzumab in combination with docetaxel/cyclophosphamide (DCH), docetaxel/carboplatin/trastuzumab (TCH), or fluorouracil/epirubicin/cyclophosphamide followed by docetaxel/trastuzumab (FEC-DH) chemotherapy in Alberta, Canada, from 2007 through 2014. Methods: Disease-free survival and overall survival (OS) analyses for node-negative cohorts receiving DCH (n=111) or TCH (n=371) and node-positive cohorts receiving FEC-DH (n=146) or TCH (n=315) were compared using chi-square, Kaplan-Meier, or Cox multivariable analysis where appropriate. Results: Median follow-up was similar in node-negative (63.9 months) and node-positive (69.0 months) cohorts. The 5-year OS rates in patients with node-negative disease receiving DCH or TCH were similar (95.2% vs 96.9%; P=.268), whereas 5-year OS rates were higher but nonsignificant for patients with node-positive disease treated with FEC-DH compared with TCH (95.2% vs 91.4%; P=.160). Subgroup analysis of node-positive cohorts showed significantly improved OS with FEC-DH versus TCH in patients with estrogen receptor (ER)/progesterone receptor (PR)-positive breast cancer (98.3% vs 91.6%, respectively; P=.014). Conversely, patients with ER/PR-negative disease showed a nonsignificant trend toward higher OS rates with TCH versus FEC-DH (91.6% vs 83.3%, respectively; P=.298). Given the retrospective design, we were unable to capture all potential covariates that may have impacted treatment assignment and/or outcomes. Furthermore, cardiac toxicity data were unavailable. Conclusions: Survival rates of patients with HER2+ breast cancer in our study are comparable to those seen in clinical trials. Our findings support chemotherapy de-escalation in patients with node-negative disease and validate the efficacy of FEC-DH in those with node-positive disease.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias de la Mama/terapia , Metástasis Linfática/terapia , Receptor ErbB-2/metabolismo , Adulto , Anciano , Alberta/epidemiología , Mama/patología , Mama/cirugía , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Quimioterapia Adyuvante/métodos , Supervivencia sin Enfermedad , Femenino , Humanos , Escisión del Ganglio Linfático , Metástasis Linfática/patología , Mastectomía , Persona de Mediana Edad , Sistema de Registros/estadística & datos numéricos , Estudios Retrospectivos , Tasa de Supervivencia
8.
J Natl Compr Canc Netw ; 17(8): 957-967, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31390594

RESUMEN

BACKGROUND: Reductions in adjuvant chemotherapy dose <85% for historical regimens (ie, cyclophosphamide/methotrexate/fluorouracil) are known to affect breast cancer survival. This threshold, in addition to early versus late dose reductions, are poorly defined for third-generation anthracycline/taxane-based chemotherapy. In patients with breast cancer receiving adjuvant 5-fluorouracil/epirubicin/cyclophosphamide followed by docetaxel (FEC-D), we evaluated the impact of chemotherapy total cumulative dose (TCD), and early (FEC) versus late (D only) dose reductions, on survival outcomes. PATIENTS AND METHODS: Women with stage I-III, hormone receptor-positive/negative, HER2-negative breast cancer treated with adjuvant FEC-D chemotherapy from 2007 through 2014 in Alberta, Canada, were included. TCD for cycles 1 to 6 of <85% or ≥85% was calculated. Average cumulative dose was also calculated for early (cycles 1-3) and late (cycles 4-6) chemotherapy. Survival outcomes (disease-free survival [DFS] and overall survival [OS]) were estimated using Kaplan-Meier and multivariate analysis. Cohorts were evaluated for uniformity. RESULTS: Characteristics were reasonably balanced for all cohorts. Overall, 1,302 patients were evaluated for dose reductions, with 16% being reduced <85% (n=202) relative to ≥85% (n=1,100; 84%). Patients who received TCD ≥85% relative to <85% had superior 5-year DFS (P=.025) and OS (P<.001) according to Kaplan-Meier analysis, which remained significant on univariate and multivariate analyses. In stratified late and early dose reduction cohorts, DFS and OS showed a significant inferior survival trend for dose reduction early in treatment administration in 5-year Kaplan-Meier (P=.002 and P<.001, respectively) and multivariate analyses (hazard ratio [HR], 1.46; P=.073, and HR, 1.77; P=.011, respectively). Dose delays of <14 or ≥14 days and granulocyte colony-stimulating factor use did not affect outcomes. CONCLUSIONS: Chemotherapy TCD <85% for adjuvant FEC-D affects breast cancer survival. Late reductions (D only) were not shown to adversely affect DFS or OS. Conversely, early reductions (FEC±D) negatively affected patient outcomes.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/mortalidad , Adulto , Anciano , Alberta/epidemiología , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/epidemiología , Quimioterapia Adyuvante , Terapia Combinada , Comorbilidad , Femenino , Humanos , Estimación de Kaplan-Meier , Persona de Mediana Edad , Estadificación de Neoplasias , Pronóstico , Estudios Retrospectivos , Resultado del Tratamiento
9.
Proc Natl Acad Sci U S A ; 113(29): E4133-42, 2016 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-27382155

RESUMEN

Vaccines have had broad medical impact, but existing vaccine technologies and production methods are limited in their ability to respond rapidly to evolving and emerging pathogens, or sudden outbreaks. Here, we develop a rapid-response, fully synthetic, single-dose, adjuvant-free dendrimer nanoparticle vaccine platform wherein antigens are encoded by encapsulated mRNA replicons. To our knowledge, this system is the first capable of generating protective immunity against a broad spectrum of lethal pathogen challenges, including H1N1 influenza, Toxoplasma gondii, and Ebola virus. The vaccine can be formed with multiple antigen-expressing replicons, and is capable of eliciting both CD8(+) T-cell and antibody responses. The ability to generate viable, contaminant-free vaccines within days, to single or multiple antigens, may have broad utility for a range of diseases.


Asunto(s)
Dendrímeros/uso terapéutico , Nanopartículas/uso terapéutico , ARN/uso terapéutico , Vacunas , Animales , Línea Celular , Ebolavirus/efectos de los fármacos , Femenino , Células HeLa , Fiebre Hemorrágica Ebola/prevención & control , Humanos , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Infecciones por Orthomyxoviridae/prevención & control , Ratas , Linfocitos T/inmunología , Toxoplasma/efectos de los fármacos , Toxoplasmosis/prevención & control
10.
Circ Res ; 119(7): 853-64, 2016 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-27444755

RESUMEN

RATIONALE: Macrophages reside in the healthy myocardium, participate in ischemic heart disease, and modulate myocardial infarction (MI) healing. Their origin and roles in post-MI remodeling of nonischemic remote myocardium, however, remain unclear. OBJECTIVE: This study investigated the number, origin, phenotype, and function of remote cardiac macrophages residing in the nonischemic myocardium in mice with chronic heart failure after coronary ligation. METHODS AND RESULTS: Eight weeks post MI, fate mapping and flow cytometry revealed that a 2.9-fold increase in remote macrophages results from both increased local macrophage proliferation and monocyte recruitment. Heart failure produced by extensive MI, through activation of the sympathetic nervous system, expanded medullary and extramedullary hematopoiesis. Circulating Ly6C(high) monocytes rose from 64±5 to 108±9 per microliter of blood (P<0.05). Cardiac monocyte recruitment declined in Ccr2(-/-) mice, reducing macrophage numbers in the failing myocardium. Mechanical strain of primary murine and human macrophage cultures promoted cell cycle entry, suggesting that the increased wall tension in post-MI heart failure stimulates local macrophage proliferation. Strained cells activated the mitogen-activated protein kinase pathway, whereas specific inhibitors of this pathway reduced macrophage proliferation in strained cell cultures and in the failing myocardium (P<0.05). Steady-state cardiac macrophages, monocyte-derived macrophages, and locally sourced macrophages isolated from failing myocardium expressed different genes in a pattern distinct from the M1/M2 macrophage polarization paradigm. In vivo silencing of endothelial cell adhesion molecules curbed post-MI monocyte recruitment to the remote myocardium and preserved ejection fraction (27.4±2.4 versus 19.1±2%; P<0.05). CONCLUSIONS: Myocardial failure is influenced by an altered myeloid cell repertoire.


Asunto(s)
Fenómenos Biomecánicos/fisiología , Proliferación Celular/fisiología , Insuficiencia Cardíaca/patología , Macrófagos/fisiología , Miocardio/citología , Animales , Células Cultivadas , Enfermedad Crónica , Femenino , Insuficiencia Cardíaca/fisiopatología , Humanos , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos
11.
Cancer ; 123(23): 4672-4679, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28817175

RESUMEN

BACKGROUND: Understanding the drug development pathway is critical for streamlining the development of effective cancer treatments. The objective of the current study was to delineate the drug development timeline and attrition rate of different drug classes for common cancer disease sites. METHODS: Drugs entering clinical trials for breast, colorectal, and non-small cell lung cancer were identified using a pharmaceutical business intelligence database. Data regarding drug characteristics, clinical trials, and approval dates were obtained from the database, clinical trial registries, PubMed, and regulatory Web sites. RESULTS: A total of 411 drugs met the inclusion criteria for breast cancer, 246 drugs met the inclusion criteria for colorectal cancer, and 315 drugs met the inclusion criteria for non-small cell lung cancer. Attrition rates were 83.9% for breast cancer, 87.0% for colorectal cancer, and 92.0% for non-small cell lung cancer drugs. In the case of non-small cell lung cancer, there was a trend toward higher attrition rates for targeted monoclonal antibodies compared with other agents. No tumor site-specific differences were noted with regard to cytotoxic chemotherapy, immunomodulatory, or small molecule kinase inhibitor drugs. Drugs classified as "others" in breast cancer had lower attrition rates, primarily due to the higher success of hormonal medications. Mean drug development times were 8.9 years for breast cancer, 6.7 years for colorectal cancer, and 6.6 years for non-small cell lung cancer. CONCLUSIONS: Overall oncologic drug attrition rates remain high, and drugs are more likely to fail in later-stage clinical trials. The refinement of early-phase trial design may permit the selection of drugs that are more likely to succeed in the phase 3 setting. Cancer 2017;123:4672-4679. © 2017 American Cancer Society.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Ensayos Clínicos como Asunto/normas , Neoplasias Colorrectales/tratamiento farmacológico , Descubrimiento de Drogas/normas , Neoplasias Pulmonares/tratamiento farmacológico , Femenino , Humanos , Pronóstico , Factores de Tiempo
12.
Proc Natl Acad Sci U S A ; 111(34): E3553-61, 2014 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-25114235

RESUMEN

MicroRNAs (miRNAs) and siRNAs have enormous potential as cancer therapeutics, but their effective delivery to most solid tumors has been difficult. Here, we show that a new lung-targeting nanoparticle is capable of delivering miRNA mimics and siRNAs to lung adenocarcinoma cells in vitro and to tumors in a genetically engineered mouse model of lung cancer based on activation of oncogenic Kirsten rat sarcoma viral oncogene homolog (Kras) and loss of p53 function. Therapeutic delivery of miR-34a, a p53-regulated tumor suppressor miRNA, restored miR-34a levels in lung tumors, specifically down-regulated miR-34a target genes, and slowed tumor growth. The delivery of siRNAs targeting Kras reduced Kras gene expression and MAPK signaling, increased apoptosis, and inhibited tumor growth. The combination of miR-34a and siRNA targeting Kras improved therapeutic responses over those observed with either small RNA alone, leading to tumor regression. Furthermore, nanoparticle-mediated small RNA delivery plus conventional, cisplatin-based chemotherapy prolonged survival in this model compared with chemotherapy alone. These findings demonstrate that RNA combination therapy is possible in an autochthonous model of lung cancer and provide preclinical support for the use of small RNA therapies in patients who have cancer.


Asunto(s)
Neoplasias Pulmonares/terapia , MicroARNs/uso terapéutico , ARN Interferente Pequeño/uso terapéutico , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/terapia , Animales , Antineoplásicos/administración & dosificación , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/terapia , Línea Celular Tumoral , Cisplatino/administración & dosificación , Terapia Combinada , Expresión Génica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Noqueados , Ratones Transgénicos , MicroARNs/administración & dosificación , MicroARNs/genética , Mutación , Nanopartículas/administración & dosificación , Nanopartículas/uso terapéutico , Nanotecnología , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , ARN Neoplásico/genética , ARN Neoplásico/metabolismo , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/genética , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética , Proteínas ras/genética
13.
Arterioscler Thromb Vasc Biol ; 35(11): 2343-2353, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26404485

RESUMEN

OBJECTIVE: Despite its large clinical impact, the underlying mechanisms for vein graft failure remain obscure and no effective therapeutic solutions are available. We tested the hypothesis that Notch signaling promotes vein graft disease. APPROACH AND RESULTS: We used 2 biotherapeutics for Delta-like ligand 4 (Dll4), a Notch ligand: (1) blocking antibody and (2) macrophage- or endothelial cell (EC)-targeted small-interfering RNA. Dll4 antibody administration for 28 days inhibited vein graft lesion development in low-density lipoprotein (LDL) receptor-deficient (Ldlr(-/-)) mice, and suppressed macrophage accumulation and macrophage expression of proinflammatory M1 genes. Dll4 antibody treatment for 7 days after grafting also reduced macrophage burden at day 28. Dll4 silencing via macrophage-targeted lipid nanoparticles reduced lesion development and macrophage accumulation, whereas EC-targeted Dll4 small-interfering RNA produced no effects. Gain-of-function and loss-of-function studies suggested in vitro that Dll4 induces proinflammatory molecules in macrophages. Macrophage Dll4 also stimulated smooth muscle cell proliferation and migration and suppressed their differentiation. CONCLUSIONS: These results suggest that macrophage Dll4 promotes lesion development in vein grafts via macrophage activation and crosstalk between macrophages and smooth muscle cells, supporting the Dll4-Notch axis as a novel therapeutic target.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Macrófagos/metabolismo , Proteínas de la Membrana/metabolismo , Neointima , Vena Safena/trasplante , Vena Cava Inferior/trasplante , Proteínas Adaptadoras Transductoras de Señales , Animales , Anticuerpos/farmacología , Proteínas de Unión al Calcio , Arterias Carótidas/cirugía , Comunicación Celular , Diferenciación Celular , Movimiento Celular , Proliferación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Humanos , Mediadores de Inflamación/metabolismo , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/inmunología , Macrófagos/inmunología , Masculino , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Interferencia de ARN , Receptores de LDL/deficiencia , Receptores de LDL/genética , Vena Safena/metabolismo , Vena Safena/patología , Transducción de Señal , Factores de Tiempo , Transfección , Remodelación Vascular , Vena Cava Inferior/inmunología , Vena Cava Inferior/metabolismo , Vena Cava Inferior/patología
14.
Clin Trials ; 13(6): 574-581, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27559022

RESUMEN

BACKGROUND: The provision of study results to research participants is supported by pediatric and adult literature. This study assessed adult cancer patient preferences surrounding aggregate result disclosure to study participants. METHODS: A 46-item questionnaire was given to 250 adult cancer patients who had participated in oncology trials at a single center. Respondents answered questions surrounding their preferences for timing, content, and modality of communication for dissemination of study results. RESULTS: Questionnaire completion rate was 76% (189/250). Most patients (92%) strongly felt a right to know study results. Patients preferred result dissemination via letter for trials with positive outcomes, but preferred in-person clinic visits for negative outcomes. Despite this, a majority of participants (59%) found letters acceptable to inform participants of negative results. Only a minority (36%) of the participants found Internet-based disclosure acceptable for negative trial results. Unfortunately, very few patients (8%) recalled having received the results for a study they participated in, and of these patients, less than half fully understood the results they were given. CONCLUSION: Most clinical trial participants feel they have a right to study result disclosure, regardless of trial outcome. In-person visits are preferred for negative results, but more feasible alternatives such as letters were still acceptable for the majority of participants. However, Internet-based disclosure was not acceptable to most participants in oncology trials. Time and cost allocations for result disclosure should be considered during grant and ethics board applications, and clear guidelines are required to help researchers share the results with patients.


Asunto(s)
Actitud Frente a la Salud , Ensayos Clínicos como Asunto , Comunicación , Revelación , Neoplasias/terapia , Sujetos de Investigación , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Difusión de la Información , Internet , Masculino , Persona de Mediana Edad , Relaciones Profesional-Paciente , Investigadores , Encuestas y Cuestionarios
15.
Nano Lett ; 15(5): 3008-16, 2015 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-25789998

RESUMEN

Targeted RNA delivery to lung endothelial cells has the potential to treat conditions that involve inflammation, such as chronic asthma and obstructive pulmonary disease. To this end, chemically modified dendrimer nanomaterials were synthesized and optimized for targeted small interfering RNA (siRNA) delivery to lung vasculature. Using a combinatorial approach, the free amines on multigenerational poly(amido amine) and poly(propylenimine) dendrimers were substituted with alkyl chains of increasing length. The top performing materials from in vivo screens were found to primarily target Tie2-expressing lung endothelial cells. At high doses, the dendrimer-lipid derivatives did not cause chronic increases in proinflammatory cytokines, and animals did not suffer weight loss due to toxicity. We believe these materials have potential as agents for the pulmonary delivery of RNA therapeutics.


Asunto(s)
Dendrímeros/química , Técnicas de Transferencia de Gen , Nanoestructuras/química , ARN Interferente Pequeño/química , Animales , Dendrímeros/uso terapéutico , Células Endoteliales/efectos de los fármacos , Humanos , Pulmón/efectos de los fármacos , Pulmón/patología , Nanoestructuras/uso terapéutico , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/uso terapéutico
16.
Angew Chem Int Ed Engl ; 53(52): 14397-401, 2014 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-25354018

RESUMEN

A library of dendrimers was synthesized and optimized for targeted small interfering RNA (siRNA) delivery to different cell subpopulations within the liver. Using a combinatorial approach, a library of these nanoparticle-forming materials was produced wherein the free amines on multigenerational poly(amido amine) and poly(propylenimine) dendrimers were substituted with alkyl chains of increasing length, and evaluated for their ability to deliver siRNA to liver cell subpopulations. Interestingly, two lead delivery materials could be formulated in a manner to alter their tissue tropism within the liver-with formulations from the same material capable of preferentially delivering siRNA to 1) endothelial cells, 2) endothelial cells and hepatocytes, or 3) endothelial cells, hepatocytes, and tumor cells in vivo. The ability to broaden or narrow the cellular destination of siRNA within the liver may provide a useful tool to address a range of liver diseases.


Asunto(s)
Aminas/química , Dendrímeros/química , ARN Interferente Pequeño/metabolismo , Línea Celular Tumoral , Células Endoteliales/citología , Células Endoteliales/metabolismo , Factor VII/antagonistas & inhibidores , Factor VII/genética , Factor VII/metabolismo , Células HeLa , Humanos , Hígado/citología , Nanoestructuras/química , Interferencia de ARN , Transfección , alfa-Fetoproteínas/antagonistas & inhibidores , alfa-Fetoproteínas/genética , alfa-Fetoproteínas/metabolismo
17.
Curr Oncol ; 29(7): 4768-4778, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35877238

RESUMEN

Breast cancer is the most commonly diagnosed malignancy in women, with triple-negative breast cancer (TNBC) accounting for 10-20% of cases. Historically, fewer treatment options have existed for this subtype of breast cancer, with cytotoxic chemotherapy playing a predominant role. This article aims to review the current treatment paradigm for curative-intent TNBC, while also reviewing potential future developments in this landscape. In addition to chemotherapy, recent advances in the understanding of the molecular biology of TNBC have led to promising new studies of targeted and immune checkpoint inhibitor therapies in the curative-intent setting. The appropriate selection of TNBC patient subgroups with a higher likelihood of benefit from treatment is critical to identify the best treatment approach.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Femenino , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/terapia
18.
Medicine (Baltimore) ; 101(2): e28433, 2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35029184

RESUMEN

RATIONALE: Small cell carcinoma (SCC) is a rare subtype of breast cancer and presents a complex diagnostic and treatment challenge, due to paucity of data. To the best of our knowledge, most cases of breast SCC reported in the literature describe a de novo breast primary. Our case is unique as it describes the evolution of an invasive ductal carcinoma after treatment into a SCC of the breast. PATIENT CONCERNS AND DIAGNOSIS: We report a case of a 53-year-old female, lifelong non-smoker, who initially presented with breast mass noted on self examination. Breast and axillary lymph node biopsy demonstrated a hormone receptor positive invasive ductal carcinoma with a metastatic T3 lesion. INTERVENTION: She was treated with first-line palbociclib/letrozole with initial clinical response, and at progression was switched to capecitabine with no response. Repeat biopsy of the axillary lesion showed evolution of the tumor into a triple negative breast cancer. She was then treated with third-line paclitaxel and radiation therapy with good initial response. She eventually had further disease progression and presented with a new mediastinal lymphadenopathy causing SVC syndrome. Biopsy of this showed a small cell variant of breast neuroendocrine carcinoma. Due to the evolution of histology in this case, a retrospective review of her initial breast specimen as well as the second biopsy from the axilla was conducted which confirmed that the mediastinal lymphadenopathy was metastatic from the original breast tumor. OUTCOMES AND LESSONS: We speculate that the initial treatment allowed a minority of treatment-resistant neuroendocrine cells to grow and become the dominant face of the tumor. Our patient had an excellent response to carboplatin/etoposide and consolidative locoregional radiotherapy but presented with an early intracranial recurrence. This is a similar pattern of metastases as seen in lung SCC and highlights a potential role for prophylactic cranial irradiation in breast SCC. Further studies are needed to better understand the biology and treatment of breast SCC which continues to present a challenge for clinicians.


Asunto(s)
Neoplasias de la Mama , Carcinoma Ductal de Mama , Carcinoma de Células Pequeñas , Linfadenopatía , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/terapia , Carcinoma Ductal de Mama/diagnóstico , Carcinoma Ductal de Mama/terapia , Carcinoma de Células Pequeñas/diagnóstico , Carcinoma de Células Pequeñas/terapia , Femenino , Humanos , Persona de Mediana Edad , Estudios Retrospectivos
19.
Expert Opin Drug Deliv ; 19(12): 1650-1663, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36377494

RESUMEN

INTRODUCTION: Ionizable lipids are critical components in lipid nanoparticles. These molecules sequester nucleic acids for delivery to cells. However, to build more efficacious delivery molecules, the field must continue to broaden structure-function studies for greater insight. While nucleic acid-binding efficiency, degradability and nanoparticle stability are vitally important, this review offers perspective on additional factors that must be addressed to improve delivery efficiency. AREAS COVERED: We discuss how administration route, cellular heterogeneity, uptake pathway, endosomal escape timing, age, sex, and threshold effects can change depending on the type of LNP ionizable lipid. EXPERT OPINION: Ionizable lipid structure-function studies often focus on the efficiency of RNA utilization and biodistribution. While these focus areas are critical, they remain high-level observations. As our tools for observation and system interrogation improve, we believe that the field should begin collecting additional data. At the cellular level, this data should include age (dividing or senescent cells), sex and phenotype, cell entry pathway, and endosome type. Additionally, administration route and dose are essential to track. This additional data will allow us to identify and understand heterogeneity in LNP efficacy across patient populations, which will help us provide better ionizable lipid options for different groups.


Asunto(s)
Nanopartículas , Ácidos Nucleicos , Lípidos/química , Distribución Tisular , Nanopartículas/química , ARN/metabolismo , Endosomas/metabolismo , ARN Interferente Pequeño
20.
Biomed Microdevices ; 13(1): 69-87, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20842530

RESUMEN

To study the effect of disturbed flow patterns on endothelial cells, the channels found within a modular tissue engineering construct were reproduced in a microfluidic chip and lined with endothelial cells whose resulting phenotype under flow was assessed using confocal microscopy. Modular tissue engineered constructs formed by the random packing of sub-millimetre, cylindrically shaped, endothelial cell-covered modules into a larger container creates interconnected channels that permit the flow of fluids such as blood. Due to the random packing, the flow path is tortuous and has the potential to create disturbed flow, resulting in an activated endothelium. At an average shear stress of 2.8 dyn cm⁻², endothelial cells within channels of varying geometries showed higher amounts of activation, as evidenced by an increase in ICAM-1 and VCAM-1 levels with respect to static controls. VE-cadherin expression also increased, however, it appeared discontinuous around the perimeter of the cells. An increase in flow (15.6 dyn cm⁻²) was sufficient to reduce ICAM-1 and VCAM-1 expression to a level below that of static controls for many disturbed flow-prone channels that contained branches, curves, expansions and contractions. VE-cadherin expression was also reduced and became discontinuous in all channels, possibly due to paracrine signaling. Other than showing a mild correlation to VE-cadherin, which may be linked through a cAMP-initiated pathway, KLF2 was found to be largely independent of shear stress for this system. To gauge the adhesiveness of the endothelium to leukocytes, THP-1 cells were introduced into flow-conditioned channels and their attachment measured. Relative to static controls, THP-1 adhesion was reduced in straight and bifurcating channels. However, even in the presence of flow, areas where multiple channels converged were found to be the most prone to THP-1 attachment. The microfluidic system enabled a full analysis of the effect of the tortuous flow expected in a modular construct on endothelial cell phenotype.


Asunto(s)
Células Endoteliales/citología , Células Endoteliales/metabolismo , Técnicas Analíticas Microfluídicas , Ingeniería de Tejidos/instrumentación , Antígenos CD/metabolismo , Biomarcadores/metabolismo , Fenómenos Biomecánicos , Cadherinas/metabolismo , Adhesión Celular , Línea Celular , Regulación de la Expresión Génica , Humanos , Molécula 1 de Adhesión Intercelular/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Monocitos/citología , Estrés Mecánico , Molécula 1 de Adhesión Celular Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA