Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Biomech Eng ; 145(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37715307

RESUMEN

Within the aortic valve (AV) leaflet exists a population of interstitial cells (AVICs) that maintain the constituent tissues by extracellular matrix (ECM) secretion, degradation, and remodeling. AVICs can transition from a quiescent, fibroblast-like phenotype to an activated, myofibroblast phenotype in response to growth or disease. AVIC dysfunction has been implicated in AV disease processes, yet our understanding of AVIC function remains quite limited. A major characteristic of the AVIC phenotype is its contractile state, driven by contractile forces generated by the underlying stress fibers (SF). However, direct assessment of the AVIC SF contractile state and structure within physiologically mimicking three-dimensional environments remains technically challenging, as the size of single SFs are below the resolution of light microscopy. Therefore, in the present study, we developed a three-dimensional (3D) computational approach of AVICs embedded in 3D hydrogels to estimate their SF local orientations and contractile forces. One challenge with this approach is that AVICs will remodel the hydrogel, so that the gel moduli will vary spatially. We thus utilized our previous approach (Khang et al. 2023, "Estimation of Aortic Valve Interstitial Cell-Induced 3D Remodeling of Poly (Ethylene Glycol) Hydrogel Environments Using an Inverse Finite Element Approach," Acta Biomater., 160, pp. 123-133) to define local hydrogel mechanical properties. The AVIC SF model incorporated known cytosol and nucleus mechanical behaviors, with the cell membrane assumed to be perfectly bonded to the surrounding hydrogel. The AVIC SFs were first modeled as locally unidirectional hyperelastic fibers with a contractile force component. An adjoint-based inverse modeling approach was developed to estimate local SF orientation and contractile force. Substantial heterogeneity in SF force and orientations were observed, with the greatest levels of SF alignment and contractile forces occurring in AVIC protrusions. The addition of a dispersed SF orientation to the modeling approach did not substantially alter these findings. To the best of our knowledge, we report the first fully 3D computational contractile cell models which can predict locally varying stress fiber orientation and contractile force levels.


Asunto(s)
Válvula Aórtica , Fibras de Estrés , Fenómenos Mecánicos , Contracción Muscular , Hidrogeles/metabolismo , Células Cultivadas
2.
J Biomech Eng ; 143(9)2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-33876206

RESUMEN

Myofibroblasts are responsible for wound healing and tissue repair across all organ systems. In periods of growth and disease, myofibroblasts can undergo a phenotypic transition characterized by an increase in extracellular matrix (ECM) deposition rate, changes in various protein expression (e.g., alpha-smooth muscle actin (αSMA)), and elevated contractility. Cell shape is known to correlate closely with stress-fiber geometry and function and is thus a critical feature of cell biophysical state. However, the relationship between myofibroblast shape and contraction is complex, even as well in regards to steady-state contractile level (basal tonus). At present, the relationship between myofibroblast shape and basal tonus in three-dimensional (3D) environments is poorly understood. Herein, we utilize the aortic valve interstitial cell (AVIC) as a representative myofibroblast to investigate the relationship between basal tonus and overall cell shape. AVICs were embedded within 3D poly(ethylene glycol) (PEG) hydrogels containing degradable peptide crosslinkers, adhesive peptide sequences, and submicron fluorescent microspheres to track the local displacement field. We then developed a methodology to evaluate the correlation between overall AVIC shape and basal tonus induced contraction. We computed a volume averaged stretch tensor ⟨U⟩ for the volume occupied by the AVIC, which had three distinct eigenvalues (λ1,2,3=1.08,0.99, and 0.89), suggesting that AVIC shape is a result of anisotropic contraction. Furthermore, the direction of maximum contraction correlated closely with the longest axis of a bounding ellipsoid enclosing the AVIC. As gel-imbedded AVICs are known to be in a stable state by 3 days of incubation used herein, this finding suggests that the overall quiescent AVIC shape is driven by the underlying stress-fiber directional structure and potentially contraction level.


Asunto(s)
Miofibroblastos
3.
Adv Mater ; 36(28): e2403198, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38655776

RESUMEN

The nonlinear elasticity of many tissue-specific extracellular matrices is difficult to recapitulate without the use of fibrous architectures, which couple strain-stiffening with stress relaxation. Herein, bottlebrush polymers are synthesized and crosslinked to form poly(ethylene glycol)-based hydrogels and used to study how strain-stiffening behavior affects human mesenchymal stromal cells (hMSCs). By tailoring the bottlebrush polymer length, the critical stress associated with the onset of network stiffening is systematically varied, and a unique protrusion-rich hMSC morphology emerges only at critical stresses within a biologically accessible stress regime. Local cell-matrix interactions are quantified using 3D traction force microscopy and small molecule inhibitors are used to identify cellular machinery that plays a critical role in hMSC mechanosensing of the engineered, strain-stiffening microenvironment. Collectively, this study demonstrates how covalently crosslinked bottlebrush polymer hydrogels can recapitulate strain-stiffening biomechanical cues at biologically relevant stresses and be used to probe how nonlinear elastic matrix properties regulate cellular processes.


Asunto(s)
Actomiosina , Elasticidad , Hidrogeles , Células Madre Mesenquimatosas , Polietilenglicoles , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Hidrogeles/química , Hidrogeles/farmacología , Humanos , Actomiosina/metabolismo , Polietilenglicoles/química , Polímeros/química , Polímeros/farmacología , Matriz Extracelular/metabolismo , Matriz Extracelular/química
4.
bioRxiv ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39005262

RESUMEN

Aortic valve stenosis (AVS) is characterized by altered mechanics of the valve leaflets, which disrupts blood flow through the aorta and can cause left ventricle hypotrophy. These changes in the valve tissue result in activation of resident valvular interstitial cells (VICs) into myofibroblasts, which have increased levels of αSMA in their stress fibers. The persistence of VIC myofibroblast activation is a hallmark of AVS. In recent years, the tumor suppressor gene phosphatase and tensin homolog (PTEN) has emerged as an important player in the regulation of fibrosis in various tissues (e.g., lung, skin), which motivated us to investigate PTEN as a potential protective factor against matrix-induced myofibroblast activation in VICs. In aortic valve samples from humans, we found high levels of PTEN in healthy tissue and low levels of PTEN in diseased tissue. Then, using pharmacological inducers to treat VIC cultures, we observed PTEN overexpression prevented stiffness-induced myofibroblast activation, whereas genetic and pharmacological inhibition of PTEN further activated myofibroblasts. We also observed increased nuclear PTEN localization in VICs cultured on stiff matrices, and nuclear PTEN also correlated with smaller nuclei, altered expression of histones and a quiescent fibroblast phenotype. Together, these results suggest that PTEN not only suppresses VIC activation, but functions to promote quiescence, and could serve as a potential pharmacological target for the treatment of AVS.

5.
Acta Biomater ; 163: 194-209, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-35085795

RESUMEN

Cell-shape is a conglomerate of mechanical, chemical, and biological mechanisms that reflects the cell biophysical state. In a specific application, we consider aortic valve interstitial cells (AVICs), which maintain the structure and function of aortic heart valve leaflets. Actomyosin stress fibers help determine AVIC shape and facilitate processes such as adhesion, contraction, and mechanosensing. However, detailed 3D assessment of stress fiber architecture and function is currently impractical. Herein, we assessed AVIC shape and contractile behaviors using hydrogel-based 3D traction force microscopy to intuit the orientation and behavior of AVIC stress fibers. We utilized spherical harmonics (SPHARM) to quantify AVIC geometries through three days of incubation, which demonstrated a shift from a spherical shape to forming substantial protrusions. Furthermore, we assessed changes in post-three day AVIC shape and contractile function within two testing regimes: (1) normal contractile level to relaxation (cytochalasin D), and (2) normal contractile level to hyper-contraction (endothelin-1). In both scenarios, AVICs underwent isovolumic shape changes and produced complex displacement fields within the hydrogel. AVICs were more elongated when relaxed and more spherical in hyper-contraction. Locally, AVIC protrusions contracted along their long axis and expanded in their circumferential direction, indicating predominately axially aligned stress fibers. Furthermore, the magnitude of protrusion displacements was correlated with protrusion length and approached a consistent displacement plateau at a similar critical length across all AVICs. This implied that stress fiber behavior is conserved, despite great variations in AVIC shapes. We anticipate our findings will bolster future investigations into AVIC stress fiber architecture and function. STATEMENT OF SIGNIFICANCE: Within the aortic valve there exists a population of aortic valve interstitial cells, which orchestrate the turnover, secretion, and remodeling of its extracellular matrix, maintaining tissue integrity and ultimately sustaining the proper mechanical function. Alterations in these processes are thought to underlie diseases of the aortic valve, which affect hundreds of thousands domestically and world-wide. Yet, to date, there are no non-surgical treatments for aortic heart valve disease, in part due to our limited understanding of the underlying disease processes. In the present study, we built upon our previous study to include a full 3D analysis of aortic valve interstitial cell shapes at differing contractile levels. The resulting detailed shape and deformation analysis provided insight into the underlying stress-fiber structures and mechanical behaviors.


Asunto(s)
Válvula Aórtica , Hidrogeles , Válvula Aórtica/metabolismo , Hidrogeles/metabolismo , Forma de la Célula , Contracción Muscular , Matriz Extracelular , Células Cultivadas
6.
Acta Biomater ; 160: 123-133, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36812955

RESUMEN

Aortic valve interstitial cells (AVICs) reside within the leaflet tissues of the aortic valve and maintain and remodel its extracellular matrix components. Part of this process is a result of AVIC contractility brought about by underlying stress fibers whose behaviors can change in various disease states. Currently, it is challenging to directly investigate AVIC contractile behaviors within dense leaflet tissues. As a result, optically clear poly (ethylene glycol) hydrogel matrices have been used to study AVIC contractility via 3D traction force microscopy (3DTFM). However, the local stiffness of the hydrogel is difficult to measure directly and is further confounded by the remodeling activity of the AVIC. Ambiguity in hydrogel mechanics can lead to large errors in computed cellular tractions. Herein, we developed an inverse computational approach to estimate AVIC-induced remodeling of the hydrogel material. The model was validated with test problems comprised of an experimentally measured AVIC geometry and prescribed modulus fields containing unmodified, stiffened, and degraded regions. The inverse model estimated the ground truth data sets with high accuracy. When applied to AVICs assessed via 3DTFM, the model estimated regions of significant stiffening and degradation in the vicinity of the AVIC. We observed that stiffening was largely localized at AVIC protrusions, likely a result of collagen deposition as confirmed by immunostaining. Degradation was more spatially uniform and present in regions further away from the AVIC, likely a result of enzymatic activity. Looking forward, this approach will allow for more accurate computation of AVIC contractile force levels. STATEMENT OF SIGNIFICANCE: The aortic valve (AV), positioned between the left ventricle and the aorta, prevents retrograde flow into the left ventricle. Within the AV tissues reside a resident population of aortic valve interstitial cells (AVICs) that replenish, restore, and remodel extracellular matrix components. Currently, it is technically challenging to directly investigate AVIC contractile behaviors within the dense leaflet tissues. As a result, optically clear hydrogels have been used to study AVIC contractility through means of 3D traction force microscopy. Herein, we developed a method to estimate AVIC-induced remodeling of PEG hydrogels. This method was able to accurately estimate regions of significant stiffening and degradation induced by the AVIC and allows a deeper understanding of AVIC remodeling activity, which can differ in normal and disease conditions.


Asunto(s)
Válvula Aórtica , Fenómenos Mecánicos , Análisis de Elementos Finitos , Hidrogeles/farmacología , Materiales Biocompatibles , Polietilenglicoles , Células Cultivadas
7.
Front Physiol ; 14: 1168691, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37405132

RESUMEN

Calcific aortic valve disease (CAVD) is characterized by progressive stiffening of aortic valve (AV) tissues, inducing stenosis and insufficiency. Bicuspid aortic valve (BAV) is a common congenital defect in which the AV has two leaflets rather than three, with BAV patients developing CAVD decades years earlier than in the general population. Current treatment for CAVD remains surgical replacement with its continued durability problems, as there are no pharmaceutical therapies or other alternative treatments available. Before such therapeutic approaches can be developed, a deeper understanding of CAVD disease mechanisms is clearly required. It is known that AV interstitial cells (AVICs) maintain the AV extracellular matrix and are typically quiescent in the normal state, transitioning into an activated, myofibroblast-like state during periods of growth or disease. One proposed mechanism of CAVD is the subsequent transition of AVICs into an osteoblast-like phenotype. A sensitive indicator of AVIC phenotypic state is enhanced basal contractility (tonus), so that AVICs from diseased AV will exhibit a higher basal tonus level. The goals of the present study were thus to assess the hypothesis that different human CAVD states lead to different biophysical AVIC states. To accomplish this, we characterized AVIC basal tonus behaviors from diseased human AV tissues embedded in 3D hydrogels. Established methods were utilized to track AVIC-induced gel displacements and shape changes after the application of Cytochalasin D (an actin polymerization inhibitor) to depolymerize the AVIC stress fibers. Results indicated that human diseased AVICs from the non-calcified region of TAVs were significantly more activated than AVICs from the corresponding calcified region. In addition, AVICs from the raphe region of BAVs were more activated than from the non-raphe region. Interestingly, we observed significantly greater basal tonus levels in females compared to males. Furthermore, the overall AVIC shape changes after Cytochalasin suggested that AVICs from TAVs and BAVs develop different stress fiber architectures. These findings are the first evidence of sex-specific differences in basal tonus state in human AVICs in varying disease states. Future studies are underway to quantify stress fiber mechanical behaviors to further elucidate CAVD disease mechanisms.

8.
Adv Mater ; : e2211209, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36715698

RESUMEN

While many hydrogels are elastic networks crosslinked by covalent bonds, viscoelastic hydrogels with adaptable crosslinks are increasingly being developed to better recapitulate time and position-dependent processes found in many tissues. In this work, 1,2-dithiolanes are presented as dynamic covalent photocrosslinkers of hydrogels, resulting in disulfide bonds throughout the hydrogel that respond to multiple stimuli. Using lipoic acid as a model dithiolane, disulfide crosslinks are formed under physiological conditions, enabling cell encapsulation via an initiator-free light-induced dithiolane ring-opening photopolymerization. The resulting hydrogels allow for multiple photoinduced dynamic responses including stress relaxation, stiffening, softening, and network functionalization using a single chemistry, which can be supplemented by permanent reaction with alkenes to further control network properties and connectivity using irreversible thioether crosslinks. Moreover, complementary photochemical approaches are used to achieve rapid and complete sample degradation via radical scission and post-gelation network stiffening when irradiated in the presence of reactive gel precursor. The results herein demonstrate the versatility of this material chemistry to study and direct 2D and 3D cell-material interactions. This work highlights dithiolane-based hydrogel photocrosslinking as a robust method for generating adaptable hydrogels with a range of biologically relevant mechanical and chemical properties that are varied on demand.

9.
Adv Healthc Mater ; : e2302925, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37984810

RESUMEN

Granular biomaterials have found widespread applications in tissue engineering, in part because of their inherent porosity, tunable properties, injectability, and 3D printability. However, the assembly of granular hydrogels typically relies on spherical microparticles and more complex particle geometries have been limited in scope, often requiring templating of individual microgels by microfluidics or in-mold polymerization. Here, we use dithiolane-functionalized synthetic macromolecules to fabricate photopolymerized microgels via batch emulsion, and then harness the dynamic disulfide crosslinks to rearrange the network. Through unconfined compression between parallel plates in the presence of photoinitiated radicals, we transform the isotropic microgels are transformed into disks. Characterizing this process, we find that the areas of the microgel surface in contact with the compressive plates are flattened while the curvature of the uncompressed microgel boundaries increases. When cultured with C2C12 myoblasts, cells localize to regions of higher curvature on the disk-shaped microgel surfaces. This altered localization affects cell-driven construction of large supraparticle scaffold assemblies, with spherical particles assembling without specific junction structure while disk microgels assemble preferentially on their curved surfaces. These results represent a unique spatiotemporal process for rapid reprocessing of microgels into anisotropic shapes, providing new opportunities to study shape-driven mechanobiological cues during and after granular hydrogel assembly.

10.
SoftwareX ; 112020.
Artículo en Inglés | MEDLINE | ID: mdl-34291145

RESUMEN

Tracking the deformation of fiducial markers in the vicinity of living cells embedded in compliant synthetic or biological gels is a powerful means to study cell mechanics and mechanobiology in three-dimensional environments. However, current approaches to track and quantify three-dimensional (3D) fiducial marker displacements remain ad-hoc, can be difficult to implement, and may not produce reliable results. Herein, we present a compact software package entitled "FM-Track," written in the popular Python language, to facilitate feature-based particle tracking tailored for 3D cell micromechanical environment studies. FM-Track contains functions for pre-processing images, running fiducial marker tracking, and post-processing and visualization. FM-Track can thus aid the study of cellular mechanics and mechanobiology by providing an extensible software platform to more reliably extract complex local 3D cell contractile information in transparent compliant gel systems.

11.
Acta Biomater ; 96: 354-367, 2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-31323351

RESUMEN

Valve interstitial cells (VIC) are the primary cell type residing within heart valve tissues. In many valve pathologies, VICs become activated and will subsequently profoundly remodel the valve tissue extracellular matrix (ECM). A primary indicator of VIC activation is the upregulation of α-smooth muscle actin (αSMA) stress fibers, which in turn increase VIC contractility. Thus, contractile state reflects VIC activation and ECM biosynthesis levels. In general, cell contraction studies have largely utilized two-dimensional substrates, which are a vastly different micro mechanical environment than 3D native leaflet tissue. To address this limitation, hydrogels have been a popular choice for studying cells in a three-dimensional environment due to their tunable properties and optical transparency, which allows for direct cell visualization. In the present study, we extended the use of hydrogels to study the active contractile behavior of VICs. Aortic VICs (AVIC) were encapsulated within poly(ethylene glycol) (PEG) hydrogels and were subjected to flexural-deformation tests to assess the state of AVIC contraction. Using a finite element model of the experimental setup, we determined the effective shear modulus µ of the constructs. An increase in µ resulting from AVIC active contraction was observed. Results further indicated that AVIC contraction had a more pronounced effect on µ in softer gels (72 ±â€¯21% increase in µ within 2.5 kPa gels) and was dependent upon the availability of adhesion sites (0.5-1 mM CRGDS). The transparency of the gel allowed us to image AVICs directly within the hydrogel, where we observed a time-dependent decrease in volume (time constant τ=3.04 min) when the AVICs were induced into a hypertensive state. Our results indicated that AVIC contraction was regulated by both the intrinsic (unseeded) gel stiffness and the CRGDS peptide concentrations. This finding suggests that AVIC contractile state can be profoundly modulated through their local micro environment using modifiable PEG gels in a 3D micromechanical-emulating environment. Moving forward, this approach has the potential to be used towards delineating normal and diseased VIC biomechanical properties using highly tunable PEG biomaterials. STATEMENT OF SIGNIFICANCE.


Asunto(s)
Matriz Extracelular/química , Válvulas Cardíacas/metabolismo , Hidrogeles/química , Células Intersticiales de Cajal/metabolismo , Contracción Muscular , Polietilenglicoles/química , Animales , Células Cultivadas , Válvulas Cardíacas/citología , Células Intersticiales de Cajal/citología , Porcinos
12.
J Biomed Mater Res B Appl Biomater ; 105(8): 2455-2464, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27652573

RESUMEN

Biphasic materials, comprised of an ordered arrangement of two different material phases within a material, have the potential for a wide variety of applications including filtration, protective clothing and tissue engineering. This study reports for the first time, a process for engineering biphasic Janus-type polymeric nanofiber (BJPNF) networks via the centrifugal jet spinning technique. BJPNF alignment and fiber diameter was dependent on fabrication rotational speed as well as solution composition. The biphasic character of these BJPNFs, which was controlled via the rotational speed of fabrication, was confirmed at the individual nanofiber scale using energy dispersive X-ray spectroscopy, and at the bulk, macro-scale using attenuated total reflectance-Fourier transform infrared spectroscopy. Biphasic character was also demonstrated at the functional level via differing affinities on either side of the BJPNF for cell attachment. Our work thus presents a method for fabricating BJPNF scaffold networks where there might be a need for different properties on either side of a material. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2455-2464, 2017.


Asunto(s)
Nanofibras/química , Andamios del Tejido/química , Anisotropía , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA