Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Genomics ; 21(1): 541, 2020 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-32758142

RESUMEN

BACKGROUND: The development of genome-wide genotyping resources has provided terrestrial livestock and crop industries with the unique ability to accurately assess genomic relationships between individuals, uncover the genetic architecture of commercial traits, as well as identify superior individuals for selection based on their specific genetic profile. Utilising recent advancements in de-novo genome-wide genotyping technologies, it is now possible to provide aquaculture industries with these same important genotyping resources, even in the absence of existing genome assemblies. Here, we present the development of a genome-wide SNP assay for the Black Tiger shrimp (Penaeus monodon) through utilisation of a reduced-representation whole-genome genotyping approach (DArTseq). RESULTS: Based on a single reduced-representation library, 31,262 polymorphic SNPs were identified across 650 individuals obtained from Australian wild stocks and commercial aquaculture populations. After filtering to remove SNPs with low read depth, low MAF, low call rate, deviation from HWE, and non-Mendelian inheritance, 7542 high-quality SNPs were retained. From these, 4236 high-quality genome-wide loci were selected for baits-probe development and 4194 SNPs were included within a finalized target-capture genotype-by-sequence assay (DArTcap). This assay was designed for routine and cost effective commercial application in large scale breeding programs, and demonstrates higher confidence in genotype calls through increased call rate (from 80.2 ± 14.7 to 93.0% ± 3.5%), increased read depth (from 20.4 ± 15.6 to 80.0 ± 88.7), as well as a 3-fold reduction in cost over traditional genotype-by-sequencing approaches. CONCLUSION: Importantly, this assay equips the P. monodon industry with the ability to simultaneously assign parentage of communally reared animals, undertake genomic relationship analysis, manage mate pairings between cryptic family lines, as well as undertake advance studies of genome and trait architecture. Critically this assay can be cost effectively applied as P. monodon breeding programs transition to undertaking genomic selection.


Asunto(s)
Penaeidae , Animales , Australia , Genoma , Genómica , Genotipo , Penaeidae/genética , Polimorfismo de Nucleótido Simple
2.
Plant Physiol ; 179(4): 1362-1372, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30593453

RESUMEN

Unraveling and exploiting mechanisms of disease resistance in cereal crops is currently limited by their large repeat-rich genomes and the lack of genetic recombination or cultivar (cv)-specific sequence information. We cloned the first leaf rust resistance gene Rph1 (Rph1 a) from cultivated barley (Hordeum vulgare) using "MutChromSeq," a recently developed molecular genomics tool for the rapid cloning of genes in plants. Marker-trait association in the CI 9214/Stirling doubled haploid population mapped Rph1 to the short arm of chromosome 2H in a physical region of 1.3 megabases relative to the barley cv Morex reference assembly. A sodium azide mutant population in cv Sudan was generated and 10 mutants were confirmed by progeny-testing. Flow-sorted 2H chromosomes from Sudan (wild type) and six of the mutants were sequenced and compared to identify candidate genes for the Rph1 locus. MutChromSeq identified a single gene candidate encoding a coiled-coil nucleotide binding site Leucine-rich repeat (NLR) receptor protein that was altered in three different mutants. Further Sanger sequencing confirmed all three mutations and identified an additional two independent mutations within the same candidate gene. Phylogenetic analysis determined that Rph1 clustered separately from all previously cloned NLRs from the Triticeae and displayed highest sequence similarity (89%) with a homolog of the Arabidopsis (Arabidopsis thaliana) disease resistance protein 1 protein in Triticum urartu In this study we determined the molecular basis for Rph1-mediated resistance in cultivated barley enabling varietal improvement through diagnostic marker design, gene editing, and gene stacking technologies.


Asunto(s)
Hordeum/fisiología , Interacciones Huésped-Patógeno , Proteínas NLR/fisiología , Mapeo Cromosómico , Genes de Plantas , Proteínas de Plantas/fisiología , Análisis de Secuencia de ADN
3.
Trop Anim Health Prod ; 52(5): 2309-2317, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32157518

RESUMEN

Camel is an important domestic animal that is well adapted to extremely harsh environments. Due to its multi-purpose role, the camel is gaining importance, particularly as a meat producer. Body weights at different ages and growth curves have been extensively studied in several livestock species. However, the information on the camel is very limited. We investigate patterns of variation in birth weight and weaning weight of two prominent breeds of camels in Pakistan, namely Marecha and Lassi. A further objective is not only to develop growth models which will account for systematic differences due to breed and sex but also to allow for individual variation in growth, by the application of appropriate statistical models. Birth weight, weaning, and monthly weights for a period of up to 48 months were recorded for each camel. Growth records of 137 camels consisting of 108 Marecha and 29 Lassi were obtained. Differences were detected between the two breeds, Marecha and Lassi, as well as differences between sexes, but only after 2 years of age. Beyond that, female Marecha camels had slower growth than males, whereas Lassi (mostly females) had faster growth than female Marechas. In addition, there is a sizable variation between individuals within the same breed-sex combination. The results of the present study will be of use to explore the potential of the camel as a meat producer in Pakistan.


Asunto(s)
Camelus/crecimiento & desarrollo , Envejecimiento , Animales , Camelus/genética , Femenino , Masculino , Modelos Biológicos , Pakistán
4.
Mol Plant Microbe Interact ; 27(11): 1253-62, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25025780

RESUMEN

Rust pathogens within the genus Puccinia cause some of the most economically significant diseases of crops. Different formae speciales of P. graminis have co-evolved to mainly infect specific grass hosts; however, some genotypes of other closely related cereals can also be infected. This study investigated the inheritance of resistance to three diverse pathotypes of the oat stem rust pathogen (P. graminis f. sp. avenae) in the 'Yerong' ✕ 'Franklin' (Y/F) barley doubled haploid (DH) population, a host with which it is not normally associated. Both parents, 'Yerong' and 'Franklin', were immune to all P. graminis f. sp. avenae pathotypes; however. there was transgressive segregation within the Y/F population, in which infection types (IT) ranged from complete immunity to mesothetic susceptibility, suggesting the presence of heritable resistance. Both QTL and marker-trait association (MTA) analysis was performed on the Y/F population to map resistance loci in response to P. graminis f. sp. avenae. QTL on chromosome 1H ('Yerong' Rpga1 and Rpga2) were identified using all forms of analysis, while QTL detected on 5H ('Franklin' Rpga3 and Rpga4) and 7H (Rpga5) were only detected using MTA or composite interval mapping-single marker regression analysis respectively. Rpga1 to Rpga5 were effective in response to all P. graminis f. sp. avenae pathotypes used in this study, suggesting resistance is not pathotype specific. Rpga1 co-located to previously mapped QTL in the Y/F population for adult plant resistance to the barley leaf scald pathogen (Rhynchosporium secalis) on chromosome 1H. Histological evidence suggests that the resistance observed within parental and immune DH lines in the population was prehaustorial and caused by callose deposition within the walls of the mesophyll cells, preventing hyphal penetration.


Asunto(s)
Basidiomycota/fisiología , Resistencia a la Enfermedad/genética , Hordeum/genética , Enfermedades de las Plantas/inmunología , Sitios de Carácter Cuantitativo/genética , Mapeo Cromosómico , Genotipo , Hordeum/citología , Hordeum/inmunología , Hordeum/microbiología , Fenotipo , Enfermedades de las Plantas/microbiología , Hojas de la Planta/citología , Hojas de la Planta/genética , Hojas de la Planta/inmunología , Hojas de la Planta/microbiología , Tallos de la Planta/citología , Tallos de la Planta/genética , Tallos de la Planta/inmunología , Tallos de la Planta/microbiología , Plantones/citología , Plantones/genética , Plantones/inmunología , Plantones/microbiología
5.
BMC Plant Biol ; 14: 1598, 2014 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-25526867

RESUMEN

BACKGROUND: Barley is an important cereal crop cultivated for malt and ruminant feed and in certain regions it is used for human consumption. It is vulnerable to numerous foliar diseases including barley leaf rust caused by the pathogen Puccinia hordei. RESULTS: A temporarily designated resistance locus RphCantala (RphC) identified in the Australian Hordeum vulgare L. cultivar 'Cantala' displayed an intermediate to low infection type (";12 = N") against the P. hordei pathotype 253P- (virulent on Rph1, Rph2, Rph4, Rph6, Rph8 and RphQ). Phenotypic assessment of a 'CI 9214' (susceptible) x 'Stirling' (RphC) (CI 9214/Stirling) doubled haploid (DH) population at the seedling stage using P. hordei pathotype 253P-, confirmed that RphC was monogenically inherited. Marker-trait association analysis of RphC in the CI 9214/Stirling DH population using 4,500 DArT-seq markers identified a highly significant (-log10Pvalue > 17) single peak on the long arm of chromosome 5H (5HL). Further tests of allelism determined that RphC was genetically independent of Rph3, Rph7, Rph11, Rph13 and Rph14, and was an allele of Rph12 (Rph9.z), which also maps to 5HL. CONCLUSION: Multipathotype tests and subsequent pedigree analysis determined that 14 related Australian barley varieties (including 'Stirling' and 'Cantala') carry RphC and that the likely source of this resistance is via a Czechoslovakian landrace LV-Kvasice-NA-Morave transferred through common ancestral cultivars 'Hanna' and 'Abed Binder'. RphC is an allele of Rph12 (Rph9.z) and is therefore designated Rph9.am. Bioinformatic analysis using sequence arrays from DArT-seq markers in linkage disequilibrium with Rph9.am identified possible candidates for further gene cloning efforts and marker development at the Rph9/Rph12/Rph9.am locus.


Asunto(s)
Resistencia a la Enfermedad/genética , Hordeum/genética , Alelos , Basidiomycota/fisiología , Mapeo Cromosómico , Cromosomas de las Plantas , Biología Computacional , Hordeum/inmunología , Hordeum/microbiología , Interacciones Huésped-Patógeno/genética
6.
BMC Genomics ; 14: 810, 2013 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-24252414

RESUMEN

BACKGROUND: The silver-lipped pearl oyster, Pinctada maxima, is an important tropical aquaculture species extensively farmed for the highly sought "South Sea" pearls. Traditional breeding programs have been initiated for this species in order to select for improved pearl quality, but many economic traits under selection are complex, polygenic and confounded with environmental factors, limiting the accuracy of selection. The incorporation of a marker-assisted selection (MAS) breeding approach would greatly benefit pearl breeding programs by allowing the direct selection of genes responsible for pearl quality. However, before MAS can be incorporated, substantial genomic resources such as genetic linkage maps need to be generated. The construction of a high-density genetic linkage map for P. maxima is not only essential for unravelling the genomic architecture of complex pearl quality traits, but also provides indispensable information on the genome structure of pearl oysters. RESULTS: A total of 1,189 informative genome-wide single nucleotide polymorphisms (SNPs) were incorporated into linkage map construction. The final linkage map consisted of 887 SNPs in 14 linkage groups, spans a total genetic distance of 831.7 centimorgans (cM), and covers an estimated 96% of the P. maxima genome. Assessment of sex-specific recombination across all linkage groups revealed limited overall heterochiasmy between the sexes (i.e. 1.15:1 F/M map length ratio). However, there were pronounced localised differences throughout the linkage groups, whereby male recombination was suppressed near the centromeres compared to female recombination, but inflated towards telomeric regions. Mean values of LD for adjacent SNP pairs suggest that a higher density of markers will be required for powerful genome-wide association studies. Finally, numerous nacre biomineralization genes were localised providing novel positional information for these genes. CONCLUSIONS: This high-density SNP genetic map is the first comprehensive linkage map for any pearl oyster species. It provides an essential genomic tool facilitating studies investigating the genomic architecture of complex trait variation and identifying quantitative trait loci for economically important traits useful in genetic selection programs within the P. maxima pearling industry. Furthermore, this map provides a foundation for further research aiming to improve our understanding of the dynamic process of biomineralization, and pearl oyster evolution and synteny.


Asunto(s)
Mapeo Cromosómico , Pinctada/genética , Polimorfismo de Nucleótido Simple/genética , Selección Genética , Animales , Etiquetas de Secuencia Expresada , Ligamiento Genético , Repeticiones de Microsatélite , Sitios de Carácter Cuantitativo/genética , Recombinación Genética , Sintenía/genética
7.
Anim Biosci ; 36(7): 1010-1021, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36397694

RESUMEN

OBJECTIVE: Growth performance and growth-related traits have a crucial role in livestock due to their influence on productivity. This genome-wide association study (GWAS) in Pakistani dromedary camels was conducted to identify single nucleotide polymorphisms (SNPs) associated with growth at specific camel ages, and for selected SNPs, to investigate in detail how their effects change with increasing camel age. This is the first GWAS conducted on dromedary camels in this region. METHODS: Two Pakistani breeds, Marecha and Lassi, were selected for this study. A genotypingby-sequencing method was used, and a total of 65,644 SNPs were identified. For GWAS, weight records data with several body weight traits, namely, birthweight, weaning weight, and weights of camels at 1, 2, 4, and 6 years of age were analysed by using model-based growth curve analysis. Age-specific weight data were analysed with a linear mixed model that included fixed effects of SNP genotype as well as sex. RESULTS: Based on the q-value method for false discovery control, for Marecha camels, five SNPs at q<0.01 and 96 at q<0.05 were significantly associated with the weight traits considered, while three (q<0.01) and seven (q<0.05) SNP associations were identified for Lassi camels. Several candidate genes harbouring these SNP were discovered. CONCLUSION: These results will help to better understand the genetic architecture of growth including how these genes are expressed at different phases of their life. This will serve to lay the foundations for applied breeding programs of camels by allowing the genetic selection of superior animals.

8.
Vet Sci ; 10(12)2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38133254

RESUMEN

Lymphoma is the most common haematological malignancy affecting dogs and has a high incidence in the Bullmastiff breed. The aim of this study was to identify risk loci predisposing this breed to the disease. The average age of lymphoma diagnosis in 55 cases was less than 6 years, similar to the median age of 64 cases from our clinical and pathology databases. When fine-scale population structure was explored using NETVIEW, cases were distributed throughout an extended pedigree. When genotyped cases (n = 49) and dogs from the control group (n = 281) were compared in a genome-wide association analysis of lymphoma risk, the most prominent associated regions were detected on CFA13 and CFA33. The top SNPs in a 5.4 Mb region on CFA13 were significant at a chromosome-wide level, and the region was fine-mapped to ~1.2 Mb (CFA13: 25.2-26.4 Mb; CanFam3.1) with four potential functional candidates, including the MYC proto-oncogene bHLH transcription factor (MYC) and a region syntenic with the human and mouse lncRNA Pvt1 oncogene (PVT1). A 380 Kb associated region at CFA33: 7.7-8.1 Mb contained the coding sequence for SUMO specific peptidase7 (SENP7) and NFK inhibitor zeta (NFKBIZ) genes. These genes have annotations related to cancer, amongst others, and both have functional links to MYC regulation. Genomic signatures identified in lymphoma cases suggest that increased risk contributed by the regions identified by GWAS may complement a complex predisposing genetic background.

9.
BMC Genomics ; 13: 538, 2012 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-23043356

RESUMEN

BACKGROUND: We investigated strategies and factors affecting accuracy of imputing genotypes from lower-density SNP panels (Illumina 3K, 7K, Affymetrix 15K and 25K, and evenly spaced subsets) up to one medium (Illumina 50K) and one high-density (Illumina 800K) SNP panel. We also evaluated the utility of imputed genotypes on the accuracy of genomic selection using Australian Holstein-Friesian cattle data from 2727 and 845 animals genotyped with 50K and 800K SNP chip, respectively. Animals were divided into reference and test sets (genotyped with higher and lower density SNP panels, respectively) for evaluating the accuracies of imputation. For the accuracy of genomic selection, a comparison of direct genetic values (DGV) was made by dividing the data into training and validation sets under a range of imputation scenarios. RESULTS: Of the three methods compared for imputation, IMPUTE2 outperformed Beagle and fastPhase for almost all scenarios. Higher SNP densities in the test animals, larger reference sets and higher relatedness between test and reference animals increased the accuracy of imputation. 50K specific genotypes were imputed with moderate allelic error rates from 15K (2.85%) and 25K (2.75%) genotypes. Using IMPUTE2, SNP genotypes up to 800K were imputed with low allelic error rate (0.79% genome-wide) from 50K genotypes, and with moderate error rate from 3K (4.78%) and 7K (2.00%) genotypes. The error rate of imputing up to 800K from 3K or 7K was further reduced when an additional middle tier of 50K genotypes was incorporated in a 3-tiered framework. Accuracies of DGV for five production traits using imputed 50K genotypes were close to those obtained with the actual 50K genotypes and higher compared to using 3K or 7K genotypes. The loss in accuracy of DGV was small when most of the training animals also had imputed (50K) genotypes. Additional gains in DGV accuracies were small when SNP densities increased from 50K to imputed 800K. CONCLUSION: Population-based genotype imputation can be used to predict and combine genotypes from different low, medium and high-density SNP chips with a high level of accuracy. Imputing genotypes from low-density SNP panels to at least 50K SNP density increases the accuracy of genomic selection.


Asunto(s)
Alelos , Genoma , Genotipo , Técnicas de Genotipaje/normas , Análisis de Secuencia por Matrices de Oligonucleótidos/normas , Polimorfismo de Nucleótido Simple , Animales , Cruzamiento , Bovinos , Industria Lechera , Femenino , Estudio de Asociación del Genoma Completo , Fenotipo , Sensibilidad y Especificidad
10.
Anim Biosci ; 35(10): 1499-1511, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35507849

RESUMEN

OBJECTIVE: This study was aimed to estimate the genetic parameters, including genetic and phenotypic correlations, of milk yield, lactation curve traits and milk composition of Thai dairy cattle from three government research farms. METHODS: The data of 25,789 test-day milk yield and milk composition records of 1,468 cattle from lactation 1 to 3 of Holstein Friesian (HF) and crossbred HF dairy cattle calved between 1990 and 2015 from three government research farms in Thailand were analysed. 305-day milk yield was estimated by the Wood model and a test interval method. The Wood model was used for estimating cumulative 305-day milk yield, peak milk yield, days to peak milk yield and persistency. Genetic parameters were estimated using linear mixed models with herd, breed group, year and season of calving as fixed effects, and animals linked to a pedigree as random effects, together with a residual error. Univariate models were used to estimate variance components, heritability, estimated breeding values (EBVs) and repeatability of each trait, while pairwise bivariate models were used to estimate covariance components and correlations between traits in the same lactation and in the same trait across lactations. RESULTS: The heritability of 305-day milk yield, peak milk yield and protein percentage have moderate to high estimates ranging from 0.19 to 0.45 while days to peak milk yield, persistency and fat percentage have low heritability ranging from 0.08 to 0.14 in lactation 1 cows. Further, heritability of most traits considered was higher in lactation 1 compared with lactations 2 and 3. For cows in lactation 1, high genetic correlations were found between 305-day milk yield and peak milk yield (0.86±0.07) and days to peak milk yield and persistency (0.99±0.02) while estimates of genetic correlations between the remaining traits were imprecise due to the high standard errors. The genetic correlations within the traits across lactation were high. There was no consistent trend of EBVs for most traits in the first lactation over the study period. CONCLUSION: Both the Wood model and test interval method can be used for milk yield estimates in these herds. However, the Wood model has advantages over the test interval method as it can be fitted using fewer test-day records and the estimated model parameters can be used to derive estimates of other lactation curve parameters. Milk yield, peak milk yield and protein percentage can be improved by a selection and mating program while days to peak milk yield, persistency and fat percentage can be improved by including into a selection index.

11.
Front Genet ; 13: 1007123, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36338959

RESUMEN

The black tiger shrimp, Penaeus monodon, is the second most economically important aquaculture shrimp species in the world, and in Australia it is one of the most commonly farmed shrimp species. Despite its economic significance, very few studies have reported the genetic evaluation of economically important morphological size and shape traits of shrimp grown in commercial grow-out environments. In this study we obtained genetic parameter estimates and evaluated genotype-by-environment interaction (GxE) for nine body morphological traits of shrimp derived from images. The data set contained image and body weight (BW) records of 5,308 shrimp, from 64 sires and 54 dams, reared in eight grow-out ponds for an average of 133 days. From the images, landmark based morphological distances were computed from which novel morphological traits associated with size and shape were derived for genetic evaluation. These traits included body weight (BW), body length (BL), body size (BS), head size (HS), Abdominal size (AS), abdominal percentage (AP), tail tip (TT), front by back ratio (FBR), condition factor (CF) and condition factor length (CFL). We also evaluated G×E interaction effects of these traits for shrimp reared in different ponds. The heritability estimates for growth related morphological and body weight traits were moderately high (BW: h 2 = 0.32 ± 0.05; BL: h 2 = 0.36 ± 0.06; BS: h 2 = 0.32 ± 0.05; HS: h 2 = 0.31 ± 0.05; AS: h 2 = 0.32 ± 0.05; and TT: h 2 = 0.28 ± 0.05) and low for abdominal percentage and body shape traits (AP: h 2 = 0.09 ± 0.02; FBR: h 2 = 0.08 ± 0.02; CF: h 2 = 0.06 ± 0.02; and CFL: h 2 = 0.003 ± 0.004). G × E interaction were negligible for all traits for shrimp reared in different ponds, suggesting re-ranking is not prevalent for this population. Genetic correlations among growth related morphological traits were high ranging from 0.36 to 0.99, suggesting these traits can be simultaneously improved through indirect genetic selection. However, negative genetic correlations were observed for FBR & CF shape traits with major growth traits (ranged -0.08 to -0.95), suggesting genetic selection for rapid growth will likely result in thick/fatty shrimp over generations. Our study showed image-based landmark data can be successfully employed for genetic evaluation of complex morphological traits of shrimp and is potentially amenable to machine-learning derived parameters in semi-automated high volume phenotyping systems needed under commercial conditions.

12.
Sci Rep ; 12(1): 2454, 2022 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-35165362

RESUMEN

COVID-19 has affected all countries. Its containment represents a unique challenge for India due to a large population (> 1.38 billion) across a wide range of population densities. Assessment of the COVID-19 disease burden is required to put the disease impact into context and support future pandemic policy development. Here, we present the national-level burden of COVID-19 in India in 2020 that accounts for differences across urban and rural regions and across age groups. Input data were collected from official records or published literature. The proportion of excess COVID-19 deaths was estimated using the Institute for Health Metrics and Evaluation, Washington data. Disability-adjusted life years (DALY) due to COVID-19 were estimated in the Indian population in 2020, comprised of years of life lost (YLL) and years lived with disability (YLD). YLL was estimated by multiplying the number of deaths due to COVID-19 by the residual standard life expectancy at the age of death due to the disease. YLD was calculated as a product of the number of incident cases of COVID-19, disease duration and disability weight. Scenario analyses were conducted to account for excess deaths not recorded in the official data and for reported COVID-19 deaths. The direct impact of COVID-19 in 2020 in India was responsible for 14,100,422 (95% uncertainty interval [UI] 14,030,129-14,213,231) DALYs, consisting of 99.2% (95% UI 98.47-99.64%) YLLs and 0.80% (95% UI 0.36-1.53) YLDs. DALYs were higher in urban (56%; 95% UI 56-57%) than rural areas (44%; 95% UI 43.4-43.6) and in men (64%) than women (36%). In absolute terms, the highest DALYs occurred in the 51-60-year-old age group (28%) but the highest DALYs per 100,000 persons were estimated for the 71-80 years old age group (5481; 95% UI 5464-5500 years). There were 4,815,908 (95% UI 4,760,908-4,924,307) DALYs after considering reported COVID-19 deaths only. The DALY estimations have direct and immediate implications not only for public policy in India, but also internationally given that India represents one sixth of the world's population.


Asunto(s)
COVID-19/prevención & control , Años de Vida Ajustados por Discapacidad , Salud Pública/estadística & datos numéricos , Años de Vida Ajustados por Calidad de Vida , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/epidemiología , COVID-19/virología , Niño , Femenino , Humanos , India/epidemiología , Masculino , Persona de Mediana Edad , Pandemias/prevención & control , Salud Pública/métodos , Población Rural/estadística & datos numéricos , SARS-CoV-2/fisiología , Población Urbana/estadística & datos numéricos , Adulto Joven
13.
Front Genet ; 13: 1002346, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36263423

RESUMEN

Black tiger shrimp (Penaeus monodon) is the second most important aquaculture species of shrimp in the world. In addition to growth traits, uncooked and cooked body color of shrimp are traits of significance for profitability and consumer acceptance. This study investigated for the first time, the phenotypic and genetic variances and relationships for body weight and body color traits, obtained from image analyses of 838 shrimp, representing the progeny from 55 sires and 52 dams. The color of uncooked shrimp was subjectively scored on a scale from 1 to 4, with "1" being the lightest/pale color and "4" being the darkest color. For cooked shrimp color, shrimp were graded firstly by subjective scoring using a commercial grading score card, where the score ranged from 1 to 12 representing light to deep coloration which was subsequently found to not be sufficiently reliable with poor repeatability of measurement (r = 0.68-0.78) Therefore, all images of cooked color were regraded on a three-point scale from brightest and lightest colored cooked shrimp, to darkest and most color-intense, with a high repeatability (r = 0.80-0.92). Objective color of both cooked and uncooked color was obtained by measurement of RGB intensities (values range from 0 to 255) for each pixel from each shrimp. Using the "convertColor" function in "R", the RGB values were converted to L*a*b* (CIE Lab) systems of color properties. This system of color space was established in 1976, by the International Commission of Illumination (CIE) where "L*" represents the measure of degree of lightness, values range from 0 to 100, where 0 = pure black and 100 = pure white. The value "a*" represents red to green coloration, where a positive value represents the color progression towards red and a negative value towards green. The value "b*" represents blue to yellow coloration, where a positive value refers to more yellowish and negative towards the blue coloration. In total, eight color-related traits were investigated. An ordinal mixed (threshold) model was adopted for manually (subjectively) scored color phenotypes, whereas all other traits were analyzed by linear mixed models using ASReml software to derive variance components and estimated breeding values (EBVs). Moderate to low heritability estimates (0.05-0.35) were obtained for body color traits. For subjectively scored cooked and uncooked color, EBV-based selection would result in substantial genetic improvement in these traits. The genetic correlations among cooked, uncooked and body weight traits were high and ranged from -0.88 to 0.81. These suggest for the first time that 1) cooked color can be improved indirectly by genetic selection based on color of uncooked/live shrimp, and 2) intensity of coloration is positively correlated with body weight traits and hence selection for body weight will also improve color traits in this population.

14.
R Soc Open Sci ; 9(3): 210558, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35308631

RESUMEN

The Arabian oryx was the first species to be rescued from extinction in the wild by the concerted efforts of captive programmes in zoos and private collections around the world. Reintroduction efforts have used two main sources: the 'World Herd', established at the Phoenix Zoo, and private collections in Saudi Arabia. The breeding programme at the Al-Wusta Wildlife Reserve (WWR) in Oman has played a central role in the rescue of the oryx. Individuals from the 'World Herd' and the United Arab Emirates have been the main source for the WWR programme. However, no breeding strategies accounting for genetic diversity have been implemented. To address this, we investigated the diversity of the WWR population and historical samples using mitochondrial DNA (mtDNA) and single nucleotide polymorphisms (SNPs). We found individuals at WWR contain 58% of the total mtDNA diversity observed globally. Inference of ancestry and spatial patterns of SNP variation shows the presence of three ancestral sources and three different groups of individuals. Similar levels of diversity and low inbreeding were observed between groups. We identified individuals and groups that could most effectively contribute to maximizing genetic diversity. Our results will be valuable to guide breeding and reintroduction programmes at WWR.

15.
G3 (Bethesda) ; 12(4)2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35143647

RESUMEN

Shrimp are a valuable aquaculture species globally; however, disease remains a major hindrance to shrimp aquaculture sustainability and growth. Mechanisms mediated by endogenous viral elements have been proposed as a means by which shrimp that encounter a new virus start to accommodate rather than succumb to infection over time. However, evidence on the nature of such endogenous viral elements and how they mediate viral accommodation is limited. More extensive genomic data on Penaeid shrimp from different geographical locations should assist in exposing the diversity of endogenous viral elements. In this context, reported here is a PacBio Sequel-based draft genome assembly of an Australian black tiger shrimp (Penaeus monodon) inbred for 1 generation. The 1.89 Gbp draft genome is comprised of 31,922 scaffolds (N50: 496,398 bp) covering 85.9% of the projected genome size. The genome repeat content (61.8% with 30% representing simple sequence repeats) is almost the highest identified for any species. The functional annotation identified 35,517 gene models, of which 25,809 were protein-coding and 17,158 were annotated using interproscan. Scaffold scanning for specific endogenous viral elements identified an element comprised of a 9,045-bp stretch of repeated, inverted, and jumbled genome fragments of infectious hypodermal and hematopoietic necrosis virus bounded by a repeated 591/590 bp host sequence. As only near complete linear ∼4 kb infectious hypodermal and hematopoietic necrosis virus genomes have been found integrated in the genome of P. monodon previously, its discovery has implications regarding the validity of PCR tests designed to specifically detect such linear endogenous viral element types. The existence of joined inverted infectious hypodermal and hematopoietic necrosis virus genome fragments also provides a means by which hairpin double-stranded RNA could be expressed and processed by the shrimp RNA interference machinery.


Asunto(s)
Densovirinae , Penaeidae , Animales , Australia , Densovirinae/genética , Genoma Viral , Penaeidae/genética , Reacción en Cadena de la Polimerasa
16.
Prev Vet Med ; 189: 105291, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33582551

RESUMEN

Bovine brucellosis is a neglected zoonotic disease prevalent in several developing countries including India. It has been successfully controlled in many developed countries by using vaccination in conjunction with extensive surveillance and test-and-cull approaches, but some of these approaches do not suit Indian culture and norms. This study was conducted to investigate the feasibility and social acceptability of various bovine brucellosis control strategies in India. Focus group discussions and key-informant interviews were conducted with veterinarians, para-veterinarians, veterinary academics, farmers and other stakeholders. Vaccination with the Brucella strain 19 vaccine was considered feasible, but the participants were concerned about the risk of self-inoculation, the inability to vaccinate pregnant and male animals, the difficulty to differentiate vaccinated from diseased animals and the challenges of maintaining the vaccine cold chain in India. As expected, the test-and-cull approach was not considered feasible as cattle are considered sacred by Hindus and their slaughter is banned in most states. Although the test-and-segregation approach appears reasonable in theory, it would have low acceptability, if implemented without providing any compensation to farmers. Negligible biosecurity was implemented by farmers: almost no biosecurity procedures were performed for visitors entering a farm, and testing of animals was rarely undertaken before introducing them to a farm. However, the participants considered that improving biosecurity would be more acceptable and feasible than both the test-and-cull and the test-and-segregation approaches. Similarly, inadequate personal protection was used by veterinary personnel for handling parturition, retention of placenta and abortion cases; this was considered as another area of possible improvement. Farmers and veterinarians expressed serious concerns about stray cattle as many of them could potentially be infected with brucellosis, and thus could spread the infection between farms. This study recommends using vaccination and biosecurity along with some ancillary strategies to control brucellosis in India. Information from the study could be used to develop an evidence-based disease control program for the disease in the country.


Asunto(s)
Brucelosis Bovina , Control de Enfermedades Transmisibles/métodos , Aborto Veterinario , Animales , Brucelosis Bovina/prevención & control , Bovinos , Agricultores , Estudios de Factibilidad , Femenino , Humanos , India , Masculino , Embarazo , Vacunación/veterinaria
18.
BMC Bioinformatics ; 11: 171, 2010 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-20370931

RESUMEN

BACKGROUND: Recent developments of high-density SNP chips across a number of species require accurate genetic maps. Despite rapid advances in genome sequence assembly and availability of a number of tools for creating genetic maps, the exact genome location for a number of SNPs from these SNP chips still remains unknown. We have developed a locus ordering procedure based on linkage disequilibrium (LODE) which provides estimation of the chromosomal positions of unaligned SNPs and scaffolds. It also provides an alternative means for verification of genetic maps. We exemplified LODE in cattle. RESULTS: The utility of the LODE procedure was demonstrated using data from 1,943 bulls genotyped for 73,569 SNPs across three different SNP chips. First, the utility of the procedure was tested by analysing the masked positions of 1,500 randomly-chosen SNPs with known locations (50 from each chromosome), representing three classes of minor allele frequencies (MAF), namely >0.05, 0.010.05), for validating and checking the quality of a genome assembly, and offers a means for positioning of unordered scaffolds containing SNPs. The LODE procedure will be helpful in refining genome sequence assemblies, especially those being created from next-generation sequencing where high-throughput SNP discovery and genotyping platforms are integrated components of genome analysis.


Asunto(s)
Cromosomas de los Mamíferos/genética , Genómica/métodos , Desequilibrio de Ligamiento/genética , Polimorfismo de Nucleótido Simple/genética , Animales , Bovinos , Mapeo Cromosómico/métodos , Frecuencia de los Genes , Genoma , Genotipo , Humanos
19.
Genet Sel Evol ; 42: 37, 2010 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-20950478

RESUMEN

BACKGROUND: At the current price, the use of high-density single nucleotide polymorphisms (SNP) genotyping assays in genomic selection of dairy cattle is limited to applications involving elite sires and dams. The objective of this study was to evaluate the use of low-density assays to predict direct genomic value (DGV) on five milk production traits, an overall conformation trait, a survival index, and two profit index traits (APR, ASI). METHODS: Dense SNP genotypes were available for 42,576 SNP for 2,114 Holstein bulls and 510 cows. A subset of 1,847 bulls born between 1955 and 2004 was used as a training set to fit models with various sets of pre-selected SNP. A group of 297 bulls born between 2001 and 2004 and all cows born between 1992 and 2004 were used to evaluate the accuracy of DGV prediction. Ridge regression (RR) and partial least squares regression (PLSR) were used to derive prediction equations and to rank SNP based on the absolute value of the regression coefficients. Four alternative strategies were applied to select subset of SNP, namely: subsets of the highest ranked SNP for each individual trait, or a single subset of evenly spaced SNP, where SNP were selected based on their rank for ASI, APR or minor allele frequency within intervals of approximately equal length. RESULTS: RR and PLSR performed very similarly to predict DGV, with PLSR performing better for low-density assays and RR for higher-density SNP sets. When using all SNP, DGV predictions for production traits, which have a higher heritability, were more accurate (0.52-0.64) than for survival (0.19-0.20), which has a low heritability. The gain in accuracy using subsets that included the highest ranked SNP for each trait was marginal (5-6%) over a common set of evenly spaced SNP when at least 3,000 SNP were used. Subsets containing 3,000 SNP provided more than 90% of the accuracy that could be achieved with a high-density assay for cows, and 80% of the high-density assay for young bulls. CONCLUSIONS: Accurate genomic evaluation of the broader bull and cow population can be achieved with a single genotyping assays containing ~ 3,000 to 5,000 evenly spaced SNP.


Asunto(s)
Bovinos/genética , Genómica/métodos , Polimorfismo de Nucleótido Simple/genética , Animales , Femenino , Marcadores Genéticos , Genotipo , Análisis de los Mínimos Cuadrados , Masculino , Fenotipo , Carácter Cuantitativo Heredable , Reproducibilidad de los Resultados
20.
PLoS One ; 15(9): e0238697, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32970694

RESUMEN

Niemann-Pick type C disease is a lysosomal storage disease affecting primarily the nervous system that results in premature death. Here we present the first report and investigation of Niemann-Pick type C disease in Australian Angus/Angus-cross calves. After a preliminary diagnosis of Niemann-Pick type C, samples from two affected calves and two obligate carriers were analysed using single nucleotide polymorphism genotyping and homozygosity mapping, and NPC1 was considered as a positional candidate gene. A likely causal missense variant on chromosome 24 in the NPC1 gene (NM_174758.2:c.2969C>G) was identified by Sanger sequencing of cDNA. SIFT analysis, protein alignment and protein modelling predicted the variant to be deleterious to protein function. Segregation of the variant with disease was confirmed in two additional affected calves and two obligate carrier dams. Genotyping of 403 animals from the original herd identified an estimated allele frequency of 3.5%. The Niemann-Pick type C phenotype was additionally confirmed via biochemical analysis of Lysotracker Green, cholesterol, sphingosine and glycosphingolipids in fibroblast cell cultures originating from two affected calves. The identification of a novel missense variant for Niemann-Pick type C disease in Angus/Angus-cross cattle will enable improved breeding and management of this disease in at-risk populations. The results from this study offer a unique opportunity to further the knowledge of human Niemann-Pick type C disease through the potential availability of a bovine model of disease.


Asunto(s)
Enfermedad de Niemann-Pick Tipo C/genética , Enfermedad de Niemann-Pick Tipo C/patología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Bovinos , Células Cultivadas , Toxina del Cólera/metabolismo , Colesterol/metabolismo , ADN Complementario/genética , Modelos Animales de Enfermedad , Fibroblastos/patología , Gangliósido G(M1)/metabolismo , Homocigoto , Mutación/genética , Proteína Niemann-Pick C1/química , Proteína Niemann-Pick C1/genética , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Polisacáridos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA