Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Nanotechnology ; 35(17)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38181439

RESUMEN

Detecting ferroelectricity at micro- and nanoscales is crucial for advanced nanomaterials and materials with complicated topography. Switching spectroscopy piezoresponse force microscopy (SSPFM), which involves measuring piezoelectric hysteresis loops via a scanning probe microscopy tip, is a widely accepted approach to characterize polarization reversal at the local scale and confirm ferroelectricity. However, the local hysteresis loops acquired through this method often exhibit unpredictable shapes, a phenomenon often attributed to the influence of parasitic factors such as electrostatic forces and current flow. Our research has uncovered that the deviation in hysteresis loop shapes can be caused by spontaneous backswitching occurring after polarization reversal. Moreover, we've determined that the extent of this effect can be exacerbated when employing inappropriate SSPFM waveform parameters, including duration, frequency, and AC voltage amplitude. Notably, the conventional 'pulse-mode' SSPFM method has been found to intensify spontaneous backswitching. In response to these challenges, we have redesigned SSPFM approach by introducing the positive up-negative down (PUND) method within the 'step-mode' SSPFM. This modification allows for effective probing of local piezoelectric hysteresis loops in ferroelectrics with reversible piezoresponse while removing undesirable electrostatic contribution. This advancement extends the applicability of the technique to a diverse range of ferroelectrics, including semiconductor ferroelectrics and relaxors, promising a more reliable and accurate characterization of their properties.

2.
J Am Chem Soc ; 145(25): 13663-13673, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37329320

RESUMEN

The development of photo-responsive ferroelectrics whose polarization may be remotely controlled by optical means is of fundamental importance for basic research and technological applications. Herein, we report the design and synthesis of a new metal-nitrosyl ferroelectric crystal (DMA)(PIP)[Fe(CN)5(NO)] (1) (DMA = dimethylammonium, PIP = piperidinium) with potential phototunable polarization via a dual-organic-cation molecular design strategy. Compared to the parent non-ferroelectric (MA)2[Fe(CN)5(NO)] (MA = methylammonium) material with a phase transition at 207 K, the introduction of larger dual organic cations both lowers the crystal symmetry affording robust ferroelectricity and increases the energy barrier of molecular motions, endowing 1 with a large polarization of up to 7.6 µC cm-2 and a high Curie temperature (Tc) of 316 K. Infrared spectroscopy shows that the reversible photoisomerization of the nitrosyl ligand is accomplished by light irradiation. Specifically, the ground state with the N-bound nitrosyl ligand conformation can be reversibly switched to both the metastable state I (MSI) with isonitrosyl conformation and the metastable state II (MSII) with side-on nitrosyl conformation. Quantum chemistry calculations suggest that the photoisomerization significantly changes the dipole moment of the [Fe(CN)5(NO)]2- anion, thus leading to three ferroelectric states with different values of macroscopic polarization. Such optical accessibility and controllability of different ferroelectric states via photoinduced nitrosyl linkage isomerization open up a new and attractive route to optically controllable macroscopic polarization.

3.
Small ; 19(42): e2302808, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37357170

RESUMEN

Magnetoelectric (ME) small-scale robotic devices attract great interest from the scientific community due to their unique properties for biomedical applications. Here, novel ME nano hetero-structures based on the biocompatible magnetostrictive MnFe2 O4 (MFO) and ferroelectric Ba0.85 Ca0.15 Zr0.1 Ti0.9 O3 (BCZT) are developed solely via the hydrothermal method for the first time. An increase in the temperature and duration of the hydrothermal synthesis results in increasing the size, improving the purity, and inducing morphology changes of MFO nanoparticles (NPs). A successful formation of a thin epitaxial BCZT-shell with a 2-5 nm thickness is confirmed on the MFO NPs (77 ± 14 nm) preliminarily treated with oleic acid (OA) or polyvinylpyrrolidone (PVP), whereas no shell is revealed on the surface of pristine MFO NPs. High magnetization is revealed for the developed ME NPs based on PVP- and OA-functionalized MFO NPs (18.68 ± 0.13 and 20.74 ± 0.22 emu g-1 , respectively). Moreover, ME NPs demonstrate 95% degradation of a model pollutant Rhodamine B within 2.5 h under an external AC magnetic field (150 mT, 100 Hz). Thus, the developed biocompatible core-shell ME NPs of MFO and BCZT can be considered as a promising tool for non-invasive biomedical applications, environmental remediation, and hydrogen generation for renewable energy sources.

4.
Sensors (Basel) ; 23(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36617132

RESUMEN

Ferroelectric materials attract much attention for applications in resistive memory devices due to the large current difference between insulating and conductive states and the ability of carefully controlling electronic transport via the polarization set-up. Bismuth ferrite films are of special interest due to the combination of high spontaneous polarization and antiferromagnetism, implying the possibility to provide multiple physical mechanisms for data storage and operations. Macroscopic conductivity measurements are often hampered to unambiguously characterize the electric transport, because of the strong influence of the diverse material microstructure. Here, we studied the electronic transport and resistive switching phenomena in polycrystalline bismuth ferrite using advanced conductive atomic force microscopy (CAFM) at different temperatures and electric fields. The new approach to the CAFM spectroscopy and corresponding data analysis are proposed, which allow deep insight into the material band structure at high lateral resolution. Contrary to many studies via macroscopic methods, postulating electromigration of the oxygen vacancies, we demonstrate resistive switching in bismuth ferrite to be caused by the pure electronic processes of trapping/releasing electrons and injection of the electrons by the scanning probe microscopy tip. The electronic transport was shown to be comprehensively described by the combination of the space charge limited current model, while a Schottky barrier at the interface is less important due to the presence of the built-in subsurface charge.

5.
Molecules ; 27(17)2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36080425

RESUMEN

A concept of piezo-responsive hydrogen-bonded π-π-stacked organic frameworks made from Knoevenagel-condensed vanillin-barbiturate conjugates was proposed. Replacement of the substituent at the ether oxygen atom of the vanillin moiety from methyl (compound 3a) to ethyl (compound 3b) changed the appearance of the products from rigid rods to porous structures according to optical microscopy and scanning electron microscopy (SEM), and led to a decrease in the degree of crystallinity of corresponding powders according to X-ray diffractometry (XRD). Quantum chemical calculations of possible dimer models of vanillin-barbiturate conjugates using density functional theory (DFT) revealed that π-π stacking between aryl rings of the vanillin moiety stabilized the dimer to a greater extent than hydrogen bonding between carbonyl oxygen atoms and amide hydrogen atoms. According to piezoresponse force microscopy (PFM), there was a notable decrease in the vertical piezo-coefficient upon transition from rigid rods of compound 3a to irregular-shaped aggregates of compound 3b (average values of d33 coefficient corresponded to 2.74 ± 0.54 pm/V and 0.57 ± 0.11 pm/V), which is comparable to that of lithium niobate (d33 coefficient was 7 pm/V).


Asunto(s)
Barbitúricos , Oxígeno , Barbitúricos/química , Benzaldehídos , Hidrógeno , Enlace de Hidrógeno , Modelos Moleculares
6.
Angew Chem Int Ed Engl ; 61(49): e202213955, 2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36200991

RESUMEN

Design of pyroelectric crystals decoupled from piezoelectricity is not only a topic of scientific curiosity but also demonstrates effects in principle that have the potential to be technologically advantageous. Here we report a new method for the design of such materials. Thus, the co-doping of centrosymmetric crystals with tailor-made guest molecules, as illustrated by the doping of α-glycine with different amino acids (Threonine, Alanine and Serine). The polarization of those crystals displays two distinct contributions, one arising from the difference in dipole moments between guest and host and the other from the displacement of host molecules from their symmetry-related positions. These contributions exhibit different temperature dependences and response to mechanical deformation. Thus, providing a proof of concept for the ability to design pyroelectric materials with reduced piezoelectric coefficient (d22 ) to a minimal value, below the resolution limit of the method (<0.005 pm/V).


Asunto(s)
Aminoácidos , Glicina , Glicina/química , Cristalización , Aminoácidos/química , Alanina/química
7.
Sensors (Basel) ; 21(11)2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34073558

RESUMEN

The analytical solution for the displacements of an anisotropic piezoelectric material in the uniform electric field is presented for practical use in the "global excitation mode" of piezoresponse force microscopy. The solution is given in the Wolfram Mathematica interactive program code, allowing the derivation of the expression of the piezoresponse both in cases of the anisotropic and isotropic elastic properties. The piezoresponse's angular dependencies are analyzed using model lithium niobate and barium titanate single crystals as examples. The validity of the isotropic approximation is verified in comparison to the fully anisotropic solution. The approach developed in the paper is important for the quantitative measurements of the piezoelectric response in nanomaterials as well as for the development of novel piezoelectric materials for the sensors/actuators applications.

8.
J Am Chem Soc ; 142(40): 16990-16998, 2020 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-32921053

RESUMEN

Molecular ferroelectrics are becoming an important area of research due to their ability to form a variety of structures exhibiting the desired properties. However, the precise control over the assembly of molecular building blocks for the design and synthesis of photoresponsive molecular ferroelectrics remains a considerable challenge. Here, we report a new hybrid high-temperature ferroelectric, (Me2NH2)[NaFe(CN)5(NO)], by judiciously assembling inorganic photochromic nitroprusside anion, as the framework building block, and polar organic cation Me2NH2+, as the dipole-moment carrier, into the crystal lattice. Ferroelectricity arises through the synergetic ordering of Me2NH2+ below 408 K. Piezoresponse force microscopy witnessed the presence of 180° ferroelectric domains and evidenced polarization switching by repeatedly applying an external electric field. Irradiation of the N-bound nitrosyl ligand (ground state) leads to two different conformations: isonitrosyl O-bound (metastable state I) and side-on nitrosyl conformation (metastable state II). Such photoisomerization realized in solid-state molecular ferroelectrics allows for the photoswitching between the ferroelectric ground state and the metastable state. These results pave the way for new design approaches toward developing next-generation photostimulated ferroelectric materials at the molecular level.

9.
Nat Mater ; 17(2): 180-186, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29200197

RESUMEN

Piezoelectricity, the linear relationship between stress and induced electrical charge, has attracted recent interest due to its manifestation in biological molecules such as synthetic polypeptides or amino acid crystals, including gamma (γ) glycine. It has also been demonstrated in bone, collagen, elastin and the synthetic bone mineral hydroxyapatite. Piezoelectric coefficients exhibited by these biological materials are generally low, typically in the range of 0.1-10 pm V-1, limiting technological applications. Guided by quantum mechanical calculations we have measured a high shear piezoelectricity (178 pm V-1) in the amino acid crystal beta (ß) glycine, which is of similar magnitude to barium titanate or lead zirconate titanate. Our calculations show that the high piezoelectric coefficients originate from an efficient packing of the molecules along certain crystallographic planes and directions. The highest predicted piezoelectric voltage constant for ß-glycine crystals is 8 V mN-1, which is an order of magnitude larger than the voltage generated by any currently used ceramic or polymer.

10.
Nanotechnology ; 30(22): 225701, 2019 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-30754029

RESUMEN

In this work, a versatile method is proposed to increase the sensitivity of optical sensors based on the localized surface plasmon resonance (LSPR) phenomenon. It combines a physical deposition method with the oblique angle deposition technique, allowing the preparation of plasmonic thin films with tailored porosity. Thin films of Au-TiO2 were deposited by reactive magnetron sputtering in a 3D nanostructure (zigzag growth), at different incidence angles (0° ≤ α ≤ 80°), followed by in-air thermal annealing at 400 °C to induce the growth of the Au nanoparticles. The roughness and surface porosity suffered a gradual increment by increasing the incidence angle. The resulting porous zigzag nanostructures that were obtained also decreased the principal refractive indexes (RIs) of the matrix and favoured the diffusion of Au through grain boundaries, originating broader nanoparticle size distributions. The transmittance minimum of the LSPR band appeared at around 600 nm, leading to a red-shift to about 626 nm for the highest incidence angle α = 80°, due to the presence of larger (scattering) nanoparticles. It is demonstrated that zigzag nanostructures can enhance adsorption sites for LSPR sensing by tailoring the porosity of the thin films. Atmosphere controlled transmittance-LSPR measurements showed that the RI sensitivity of the films is improved for higher incidence angles.

11.
Sci Technol Adv Mater ; 18(1): 172-179, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28458741

RESUMEN

Nanocomposites of diphenylalanine (FF) and carbon based materials provide an opportunity to overcome drawbacks associated with using FF micro- and nanostructures in nanobiotechnology applications, in particular their poor structural stability in liquid solutions. In this study, FF/graphene oxide (GO) composites were found to self-assemble into layered micro- and nanostructures, which exhibited improved thermal and aqueous stability. Dependent on the FF/GO ratio, the solubility of these structures was reduced to 35.65% after 30 min as compared to 92.4% for pure FF samples. Such functional nanocomposites may extend the use of FF structures to e.g. biosensing, electrochemical, electromechanical or electronic applications.

12.
Langmuir ; 32(21): 5267-76, 2016 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-27142946

RESUMEN

Efficiency of lithium-ion batteries largely relies on the performance of battery separator membrane as it controls the mobility and concentration of Li-ions between the anode and cathode electrodes. Recent advances in electrochemical strain microscopy (ESM) prompted the study of Li diffusion and transport at the nanoscale via electromechanical strain developed under an application of inhomogeneous electric field applied via the sharp ESM tip. In this work, we observed unexpectedly high electromechanical strain developed in polymer membranes based on porous poly(vinylidene fluoride) (PVDF) and poly(vinylidene fluoride-co-chlorotrifluoroethylene) (PVDF-CTFE) and, using it, could study a dynamics of electroosmotic flow of electrolyte inside the pores. We show that, independently of the separator membrane, electric field-induced deformation observed by ESM on wetted membrane surfaces can reach up to 10 nm under a moderate bias of 1 V (i.e., more than an order of magnitude higher than that in best piezoceramics). Such a high strain is explained by the electroosmotic flow in a porous media composed of PVDF. It is shown that the strain-based ESM method can be used to extract valuable information such as average pore size, porosity, elasticity of membrane in electrolyte solvent, and membrane-electrolyte affinity expressed in terms of zeta potential. Besides, such systems can, in principle, serve as actuators even in the absence of apparent piezoelectricity in amorphous PVDF.

13.
Phys Chem Chem Phys ; 18(43): 29681-29685, 2016 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-27775117

RESUMEN

The elastic properties of the nanotubes of self-assembled aromatic dipeptide diphenylalanine are investigated by means of Raman spectroscopy and a mass-in-mass 1D model. Analysis of nanotubes' lattice vibrations reveals the essential contribution of the water in the nanochannel core of the tubes to the Young's modulus and high water mobility along the channel. Direct measurements of the Young's modulus performed by nanoindentation confirm the obtained results.

14.
Phys Chem Chem Phys ; 18(45): 31184-31201, 2016 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-27819108

RESUMEN

The effect of praseodymium (Pr), an amphoteric substituent, on phase transition, dielectric relaxation and electrical conductivity has been studied and analysed in 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 (BCZT) ceramics synthesized by a solid state reaction method. Structural investigations showed co-existence of two phases - tetragonal (P4mm) and rhombohedral (R3m) - for compositions with x ≤ 0.05 wt% Pr. Temperature dependent dielectric studies revealed two phase transitions - rhombohedral (R) → tetragonal (T) and T → cubic (C) - that gradually evolved into one T → C transition for x > 0.05 wt% Pr in BCZT. A dielectric relaxation behaviour was observed in the temperature range of 275-500 °C that was attributed to the localized relaxation process (short-range hopping motion of oxygen vacancies) in the bulk of the material. Grain and grain boundary conductivity evaluated from the impedance data revealed that Pr acts as a donor dopant for x ≤ 0.05 wt% while it is an acceptor for higher concentration, in accordance with XRD observations. Defect chemistry analysis for better interpretation of the acquired data is presented. Frequency and temperature dependent ac conductivity studies were also performed and the obtained activation energy values were associated with possible conduction mechanisms.

15.
Microsc Microanal ; 21(1): 154-63, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25555020

RESUMEN

Piezoresponse force microscopy (PFM) provides a novel opportunity to detect picometer-level displacements induced by an electric field applied through a conducting tip of an atomic force microscope (AFM). Recently, it was discovered that superb vertical sensitivity provided by PFM is high enough to monitor electric-field-induced ionic displacements in solids, the technique being referred to as electrochemical strain microscopy (ESM). ESM has been implemented only in multi-frequency detection modes such as dual AC resonance tracking (DART) and band excitation, where the response is recorded within a finite frequency range, typically around the first contact resonance. In this paper, we analyze and compare signal-to-noise ratios of the conventional single-frequency method with multi-frequency regimes of measuring surface displacements. Single-frequency detection ESM is demonstrated using a commercial AFM.

16.
Phys Chem Chem Phys ; 16(10): 4977-81, 2014 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-24477353

RESUMEN

Perovskite-type manganites, such as Pr1-xCaxMnO3, La1-xCaxMnO3 and La1-xSrxMnO3 solid solutions, are set forth as a case study of ferroelectricity formation mechanisms associated with the appearance of site- and bond-centered orbital ordering which breaks structural inversion symmetry. Even though the observation of macroscopic ferroelectricity may be hindered by the finite conductivity of manganites, polarization can still exist in nanoscale volumes. We use Piezoresponse Force Microscopy to probe local bias induced modifications of electrical and electromechanical properties at the manganite surface. Clear bias-induced piezocontrast and local hysteresis loops are observed for La0.89Sr0.11MnO3 and Pr0.60Ca0.40MnO3 compounds providing convincing evidence of the existence of locally induced polar states well above the transition temperature of the CO phase, while the reference samples without CO behavior show no ferroelectric-like response. Such coexistence of ferroelectricity and magnetism in manganites due to the charge ordering (CO) under locally applied electric field opens up a new pathway to expand the phase diagrams of such systems and to achieve spatially localized multiferroic effects with a potential to be used in a new generation of memory cells and data processing circuits.

17.
Mater Today Bio ; 25: 100950, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38318479

RESUMEN

Nerve injuries pose a drastic threat to nerve mobility and sensitivity and lead to permanent dysfunction due to low regenerative capacity of mature neurons. The electrical stimuli that can be provided by electroactive materials are some of the most effective tools for the formation of soft tissues, including nerves. Electric output can provide a distinctly favorable bioelectrical microenvironment, which is especially relevant for the nervous system. Piezoelectric biomaterials have attracted attention in the field of neural tissue engineering owing to their biocompatibility and ability to generate piezoelectric surface charges. In this review, an outlook of the most recent achievements in the field of piezoelectric biomaterials is described with an emphasis on piezoelectric polymers for neural tissue engineering. First, general recommendations for the design of an optimal nerve scaffold are discussed. Then, specific mechanisms determining nerve regeneration via piezoelectric stimulation are considered. Activation of piezoelectric responses via natural body movements, ultrasound, and magnetic fillers is also examined. The use of magnetoelectric materials in combination with alternating magnetic fields is thought to be the most promising due to controllable reproducible cyclic deformations and deep tissue permeation by magnetic fields without tissue heating. In vitro and in vivo applications of nerve guidance scaffolds and conduits made of various piezopolymers are reviewed too. Finally, challenges and prospective research directions regarding piezoelectric biomaterials promoting nerve regeneration are discussed. Thus, the most relevant scientific findings and strategies in neural tissue engineering are described here, and this review may serve as a guideline both for researchers and clinicians.

18.
Nat Commun ; 15(1): 5516, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951494

RESUMEN

Nanoscale flows of liquids can be revealed in various biological processes and underlie a wide range of nanofluidic applications. Though the integral characteristics of these systems, such as permeability and effective diffusion coefficient, can be measured in experiments, the behaviour of the flows within nanochannels is still a matter of speculation. Herein, we used a combination of quadrupolar solid-state NMR spectroscopy, computer simulation, and dynamic vapour sorption measurements to analyse water diffusion inside peptide nanochannels. We detected a helical water flow coexisting with a conventional axial flow that are independent of each other, immiscible, and associated with diffusion coefficients that may differ up to 3 orders of magnitude. The trajectory of the helical flow is dictated by the screw-like distribution of ionic groups within the channel walls, while its flux is governed by external water vapour pressure. Similar flows may occur in other types of nanochannels containing helicoidally distributed ionic groups and be exploited in various nanofluidic lab-on-a-chip devices.

19.
Polymers (Basel) ; 15(14)2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37514524

RESUMEN

This study considers a fabrication of magnetoactive scaffolds based on a copolymer of vinylidene fluoride and trifluoroethylene (P(VDF-TrFE)) and 5, 10, and 15 wt.% of magnetite (Fe3O4) nanoparticles modified with citric (CA) and oleic (OA) acids by solution electrospinning. The synthesized Fe3O4-CA and Fe3O4-OA nanoparticles are similar in particle size and phase composition, but differ in zeta potential values and magnetic properties. Pure P(VDF-TrFE) scaffolds as well as composites with Fe3O4-CA and Fe3O4-OA nanoparticles demonstrate beads-free 1 µm fibers. According to scanning electron (SEM) and transmission electron (TEM) microscopy, fabricated P(VDF-TrFE) scaffolds filled with CA-modified Fe3O4 nanoparticles have a more homogeneous distribution of magnetic filler due to both the high stabilization ability of CA molecules and the affinity of Fe3O4-CA nanoparticles to the solvent used and P(VDF-TrFE) functional groups. The phase composition of pure and composite scaffolds includes a predominant piezoelectric ß-phase, and a γ-phase, to a lesser extent. When adding Fe3O4-CA and Fe3O4-OA nanoparticles, there was no significant decrease in the degree of crystallinity of the P(VDF-TrFE), which, on the contrary, increased up to 76% in the case of composite scaffolds loaded with 15 wt.% of the magnetic fillers. Magnetic properties, mainly saturation magnetization (Ms), are in a good agreement with the content of Fe3O4 nanoparticles and show, among the known magnetoactive PVDF or P(VDF-TrFE) scaffolds, the highest Ms value, equal to 10.0 emu/g in the case of P(VDF-TrFE) composite with 15 wt.% of Fe3O4-CA nanoparticles.

20.
Small Methods ; 7(4): e2201516, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36775977

RESUMEN

Thermoelectric conversion may take a significant share in future energy technologies. Oxide-based thermoelectric composite ceramics attract attention for promising routes for control of electrical and thermal conductivity for enhanced thermoelectric performance. However, the variability of the composite properties responsible for the thermoelectric performance, despite nominally identical preparation routes, is significant, and this cannot be explained without detailed studies of thermal transport at the local scale. Scanning thermal microscopy (SThM) is a scanning probe microscopy method providing access to local thermal properties of materials down to length scales below 100 nm. To date, realistic quantitative SThM is shown mostly for topographically very smooth materials. Here, methods for SThM imaging of bulk ceramic samples with relatively rough surfaces are demonstrated. "Jumping mode" SThM (JM-SThM), which serves to preserve the probe integrity while imaging rough surfaces, is developed and applied. Experiments with real thermoelectric ceramics show that the JM-SThM can be used for meaningful quantitative imaging. Quantitative imaging is performed with the help of calibrated finite-elements model of the SThM probe. The modeling reveals non-negligible effects associated with the distributed nature of the resistive SThM probes used; corrections need to be made depending on probe-sample contact thermal resistance and probe current frequency.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA