Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Gastroenterology ; 161(1): 196-210, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33745946

RESUMEN

BACKGROUND & AIMS: Understanding the mechanisms by which tumors adapt to therapy is critical for developing effective combination therapeutic approaches to improve clinical outcomes for patients with cancer. METHODS: To identify promising and clinically actionable targets for managing colorectal cancer (CRC), we conducted a patient-centered functional genomics platform that includes approximately 200 genes and paired this with a high-throughput drug screen that includes 262 compounds in four patient-derived xenografts (PDXs) from patients with CRC. RESULTS: Both screening methods identified exportin 1 (XPO1) inhibitors as drivers of DNA damage-induced lethality in CRC. Molecular characterization of the cellular response to XPO1 inhibition uncovered an adaptive mechanism that limited the duration of response in TP53-mutated, but not in TP53-wild-type CRC models. Comprehensive proteomic and transcriptomic characterization revealed that the ATM/ATR-CHK1/2 axes were selectively engaged in TP53-mutant CRC cells upon XPO1 inhibitor treatment and that this response was required for adapting to therapy and escaping cell death. Administration of KPT-8602, an XPO1 inhibitor, followed by AZD-6738, an ATR inhibitor, resulted in dramatic antitumor effects and prolonged survival in TP53-mutant models of CRC. CONCLUSIONS: Our findings anticipate tremendous therapeutic benefit and support the further evaluation of XPO1 inhibitors, especially in combination with DNA damage checkpoint inhibitors, to elicit an enduring clinical response in patients with CRC harboring TP53 mutations.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Biomarcadores de Tumor/genética , Neoplasias Colorrectales/tratamiento farmacológico , Carioferinas/antagonistas & inhibidores , Mutación , Inhibidores de Proteínas Quinasas/administración & dosificación , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores , Proteína p53 Supresora de Tumor/genética , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Bases de Datos Genéticas , Células HCT116 , Células HT29 , Humanos , Indoles/administración & dosificación , Carioferinas/metabolismo , Ratones , Morfolinas/administración & dosificación , Piperazinas/administración & dosificación , Piridinas/administración & dosificación , Pirimidinas/administración & dosificación , Receptores Citoplasmáticos y Nucleares/metabolismo , Sulfonamidas/administración & dosificación , Ensayos Antitumor por Modelo de Xenoinjerto , Proteína Exportina 1
2.
Br J Cancer ; 116(4): 515-523, 2017 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-28118322

RESUMEN

BACKGROUND: Screening of patients for cancer-driving mutations is now used for cancer prognosis, remission scoring and treatment selection. Although recently emerged targeted next-generation sequencing-based approaches offer promising diagnostic capabilities, there are still limitations. There is a pressing clinical need for a well-validated, rapid, cost-effective mutation profiling system in patient specimens. Given their speed and cost-effectiveness, quantitative PCR mutation detection techniques are well suited for the clinical environment. The qBiomarker mutation PCR array has high sensitivity and shorter turnaround times compared with other methods. However, a direct comparison with existing viable alternatives are required to assess its true potential and limitations. METHODS: In this study, we evaluated a panel of 117 patient-derived tumour xenografts by the qBiomarker array and compared with other methods for mutation detection, including Ion AmpliSeq sequencing, whole-exome sequencing and droplet digital PCR. RESULTS: Our broad analysis demonstrates that the qBiomarker's performance is on par with that of other labour-intensive and expensive methods of cancer mutation detection of frequently altered cancer-associated genes, and provides a foundation for supporting its consideration as an option for molecular diagnostics. CONCLUSIONS: This large-scale direct comparison and validation of currently available mutation detection approaches is extremely relevant for the current scenario of precision medicine and will lead to informed choice of screening methodologies, especially in lower budget conditions or time frame limitations.


Asunto(s)
Análisis Mutacional de ADN/métodos , Xenoinjertos , Neoplasias/genética , Animales , Xenoinjertos/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Ratones , Trasplante de Neoplasias , Neoplasias/patología , Reacción en Cadena de la Polimerasa/métodos , Reproducibilidad de los Resultados , Células Tumorales Cultivadas
3.
J Pharmacokinet Pharmacodyn ; 42(4): 401-8, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26138223

RESUMEN

3,3'-Diindolylmethane (DIM) has been investigated as a potential anti-cancer chemopreventive agent in many preclinical and clinical studies. In this study, we sought to characterize the pharmacokinetics of DIM and to build a pharmacokinetic (PK) and pharmacodynamic (PD) model of the DIM-induced gene expression of phase II drug metabolizing enzymes (DME), which potentially links DIM's molecular effects to its in vivo chemopreventive efficacy. DIM (10 mg/kg) was administered intravenously (i.v.) to male Sprague-Dawley rats and blood samples were collected at selected time points for 48 h. The plasma concentration of DIM was determined using a validated HPLC method. The mRNA expression of NQO1, GSTP1 and UGT1A1 in blood lymphocytes was measured using quantitative PCR. An indirect response model was employed to relate the concentration of DIM to the expression of the genes NQO1, GSTP1 and UGT1A1, which were chosen as PD markers for DIM. After i.v. administration, the plasma concentration of DIM declined quickly, and the expression of target genes increased significantly, peaking at 1-2 h and then returning to basal levels after 24 h. The parameters in the PK-PD model were estimated. The PK-PD model aptly described the time delay and magnitude of gene expression induced by DIM. Our results indicate that DIM is effective at inducing various phase II DME, which are capable of detoxify carcinogens. This PK-PD modeling approach provides a framework for evaluating the acute effects of DIM or other similar drugs in clinical trials.


Asunto(s)
Anticarcinógenos/farmacocinética , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Glucuronosiltransferasa/genética , Gutatión-S-Transferasa pi/genética , Indoles/farmacocinética , Modelos Biológicos , NAD(P)H Deshidrogenasa (Quinona)/genética , Animales , Anticarcinógenos/sangre , Anticarcinógenos/farmacología , Indoles/sangre , Indoles/farmacología , Inyecciones Intravenosas , Masculino , Fase II de la Desintoxicación Metabólica , Ratas Sprague-Dawley
4.
Mol Carcinog ; 53(1): 77-84, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22911891

RESUMEN

Mutations in adenomatous polyposis coli (APC) gene are found in more than 80% of colorectal cancer (CRC) patients. The nuclear transcription factor Nrf2 plays a central role in the regulation of oxidative stress and inflammation. Previously, we have shown that chronic inflammation in Nrf2(-/-) (Nrf2 knockout; KO) mice resulted in higher expression of inflammatory markers and cytokines, coupled with higher inflammatory damage to the colonic crypt cells, as compared to the Nrf2(+/+) (wild type; WT) mice. Induction of mutation in the colon by administration of carcinogen, AOM prior to DSS-induced inflammation resulted in higher tumor incidence and numbers in Nrf2KO mice. These results indicate that Nrf2-dependent inhibition of inflammation appears to be critical in inhibiting mutation-initiated colorectal carcinogenesis. In this study, we aim to investigate if loss of Nrf2 would dose-dependently promote intestinal tumorigenesis in Apc(min/+) mice. To demonstrate the in vivo mechanisms, we constructed both Apc mutated and Nrf2 deficient strain Apc(min/+) mice with C57BL/6 Nrf2KO mice to obtain F1, Apc(min/+) ;Nrf2(+/-) and F2, Apc(min/+) ;Nrf2(-/-) mice. Nrf2KO decreased the protein expression of antioxidant enzyme NQO1 in Apc(min/+) . In contrast, Nrf2KO enhanced the expression of inflammatory markers such as COX-2, cPLA, LTB4 in Apc(min/+) . Finally, Nrf2KO resulted in higher level of PCNA and c-Myc expression in intestinal tissue, indicating the deficiency of Nrf2 promotes proliferation of intestinal crypt cells in Apc(min/+) . Taken together, our results suggest that Nrf2KO attenuates anti-oxidative stress pathway, induces inflammation, and increases proliferative potential in the intestinal crypts leading to enhanced intestinal carcinogenesis and adenomas in Apc(min/+) .


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/genética , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Mucosa Intestinal/metabolismo , Factor 2 Relacionado con NF-E2/genética , Estrés Oxidativo/genética , Transducción de Señal , Animales , Proliferación Celular , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Técnicas de Inactivación de Genes , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Pólipos Intestinales/genética , Pólipos Intestinales/patología , Intestinos/patología , Leucotrieno B4/metabolismo , Masculino , Ratones , Ratones Noqueados , NAD(P)H Deshidrogenasa (Quinona)/genética , NAD(P)H Deshidrogenasa (Quinona)/metabolismo
5.
Mol Carcinog ; 52(7): 514-25, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22389237

RESUMEN

Previous clinical and epidemiological studies of vitamin E have used primarily α-tocopherol for the prevention of cancer. However, γ-tocopherol has demonstrated greater anti-inflammatory and anti-tumor activity than α-tocopherol in several animal models of cancer. This study assessed the potential chemopreventive activities of a tocopherol mixture containing 58% γ-tocopherol (γ-TmT) in an established rodent model of mammary carcinogenesis. Female ACI rats were utilized due to their sensitivity to 17ß-estradiol (E2 ) to induce mammary hyperplasia and neoplasia. The rats were implanted subcutaneously with sustained release E2 pellets and given dietary 0.3% or 0.5% γ-TmT for 2 or 10 wk. Serum E2 levels were significantly reduced by the treatment with 0.5% γ-TmT. Serum levels of inflammatory markers, prostaglandin E2 and 8-isoprostane, were suppressed by γ-TmT treatment. Histology of mammary glands showed evidence of epithelial hyperplasia in E2 -treated rats. Immunohistochemical analysis of the mammary glands revealed a decrease in proliferating cell nuclear antigen (PCNA), cyclooxygenase-2 (COX-2), and estrogen receptor α (ERα), while there was an increase in cleaved-caspase 3, peroxisome proliferator-activated receptor γ (PPARγ), and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) in γ-TmT-treated rats. In addition, treatment with γ-TmT resulted in a decrease in the expression of ERα mRNA, whereas mRNA levels of ERß and PPARγ were increased. In conclusion, γ-TmT was shown to suppress inflammatory markers, inhibit E2 -induced cell proliferation, and upregulate PPARγ and Nrf2 expression in mammary hyperplasia, suggesting that γ-TmT may be a promising agent for human breast cancer prevention.


Asunto(s)
Proliferación Celular , Dieta , Receptor alfa de Estrógeno/metabolismo , Neoplasias Mamarias Experimentales/prevención & control , Factor 2 Relacionado con NF-E2/metabolismo , PPAR gamma/metabolismo , Tocoferoles/administración & dosificación , Animales , Antioxidantes/administración & dosificación , Antioxidantes/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Western Blotting , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Estradiol/sangre , Receptor alfa de Estrógeno/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Hiperplasia/metabolismo , Hiperplasia/patología , Hiperplasia/prevención & control , Técnicas para Inmunoenzimas , Mediadores de Inflamación/metabolismo , Neoplasias Mamarias Experimentales/metabolismo , Neoplasias Mamarias Experimentales/patología , Microsomas Hepáticos/metabolismo , Factor 2 Relacionado con NF-E2/genética , PPAR gamma/genética , ARN Mensajero/genética , Ratas , Ratas Endogámicas ACI , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tocoferoles/sangre
6.
Top Curr Chem ; 329: 133-62, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-22836898

RESUMEN

Oxidative stress is caused by an imbalance of reactive oxygen species (ROS)/reactive nitrogen species (RNS) and the antioxidative stress defense systems in cells. ROS/RNS or carcinogen metabolites can attack intracellular proteins, lipids, and nucleic acids, which can result in genetic mutations, carcinogenesis, and other diseases. Nrf2 plays a critical role in the regulation of many antioxidative stress/antioxidant and detoxification enzyme genes, such as glutathione S-transferases (GSTs), NAD(P)H:quinone oxidoreductase 1 (NQO1), UDP-glucuronyl transferases (UGTs), and heme oxygenase-1 (HO-1), directly via the antioxidant response element (ARE). Recently, many studies have shown that dietary phytochemicals possess cancer chemopreventive potential through the induction of Nrf2-mediated antioxidant/detoxification enzymes and anti-inflammatory signaling pathways to protect organisms against cellular damage caused by oxidative stress. In addition, carcinogenesis can be caused by epigenetic alterations such as DNA methylation and histone modifications in tumor-suppressor genes and oncogenes. Interestingly, recent studies have shown that several naturally occurring dietary phytochemicals can epigenetically modify the chromatin, including reactivating Nrf2 via demethylation of CpG islands and the inhibition of histone deacetylases (HDACs) and/or histone acetyltransferases (HATs). The advancement and development of dietary phytochemicals in cancer chemoprevention research requires the integration of the known, and as-yet-unknown, compounds with the Nrf2-mediated antioxidant, detoxification, and anti-inflammatory systems and their in vitro and in vivo epigenetic mechanisms; human clinical efficacy studies must also be performed.


Asunto(s)
Dieta , Epigénesis Genética , Factor 2 Relacionado con NF-E2/fisiología , Neoplasias/prevención & control , Estrés Oxidativo , Fitoterapia , Humanos , Factor 2 Relacionado con NF-E2/genética , Neoplasias/metabolismo , Transducción de Señal
7.
Chem Res Toxicol ; 26(3): 477-85, 2013 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-23441843

RESUMEN

Cancer development has been linked to epigenetic modifications of cancer oncogenes and tumor suppressor genes; in advanced metastatic cancers, severe epigenetic modifications are present. We previously demonstrated that the progression of prostate tumors in TRAMP mice is associated with methylation silencing of the Nrf2 promoter and a reduced level of transcription of Nrf2 and Nrf2 target genes. Radix Angelicae Sinensis (RAS; Danggui) is a medicinal herb and health food supplement that has been widely used in Asia for centuries. Z-Ligustilide (Lig) is one of the bioactive components of RAS. We investigated the potential of Lig and RAS to restore Nrf2 gene expression through epigenetic modification in TRAMP C1 cells. Lig and RAS induced the mRNA and protein expression of endogenous Nrf2 and Nrf2 downstream target genes, such as HO-1, NQO1, and UGT1A1. Bisulfite genomic sequencing revealed that Lig and RAS treatment decreased the level of methylation of the first five CpGs of the Nrf2 promoter. A methylation DNA immunoprecipitation assay demonstrated that Lig and RAS significantly decreased the relative amount of methylated DNA in the Nrf2 gene promoter region. Lig and RAS also inhibited DNA methyltransferase activity in vitro. Collectively, these results suggest that Lig and RAS are able to demethylate the Nrf2 promoter CpGs, resulting in the re-expression of Nrf2 and Nrf2 target genes. Epigenetic modifications of genes, including Nrf2, may therefore contribute to the overall health benefits of RAS, including the anticancer effect of RAS and its bioactive component, Lig.


Asunto(s)
4-Butirolactona/análogos & derivados , Angelica sinensis/química , Antineoplásicos Fitogénicos/farmacología , Medicamentos Herbarios Chinos/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Factor 2 Relacionado con NF-E2/genética , Neoplasias de la Próstata/tratamiento farmacológico , 4-Butirolactona/química , 4-Butirolactona/farmacología , Animales , Antineoplásicos Fitogénicos/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Islas de CpG/efectos de los fármacos , Metilación de ADN/efectos de los fármacos , Medicamentos Herbarios Chinos/química , Epigénesis Genética/efectos de los fármacos , Masculino , Ratones , Regiones Promotoras Genéticas/efectos de los fármacos , Próstata/efectos de los fármacos , Próstata/metabolismo , Próstata/patología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología
8.
Biopharm Drug Dispos ; 34(6): 303-11, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23640758

RESUMEN

The root of Angelica sinensis (Oliv.) Diels (abbreviated as AS) (Danggui) has a long history in Asian herbal medicine. Recently, it was demonstrated that AS possesses anti-cancer and anti-oxidant activities. Because the transcription factor Nrf2 mediates the expression of many cellular anti-oxidative stress genes, including genes that are involved in phase II drug metabolism and anti-oxidative stress, this study sought to investigate whether pure compounds from AS or an AS extract could activate antioxidant response element (ARE)-mediated gene expression and induce anti-inflammatory activities. Z-Ligustilide (Ligu), 3-butylidenephthalide (Buty) and CO2 supercritical fluid-extracted lipophilic AS extract (SFE) were tested in HepG2-C8 cells stabilized with ARE luciferase reporter gene. Ligu and Buty caused significant toxicity only at 100 µm. All three samples induced ARE-luciferase activity; however, SFE at 8.5 µg/ml induced ARE-luciferase activity 2-3 fold more potently than did either of the pure compounds. SFE also significantly increased the endogenous mRNA of Nrf2 and the Nrf2 target anti-oxidative gene NAD(P)H dehydrogenase, quinone 1 (NQO1). The protein expression of NQO1 was also significantly induced by SFE. In RAW 264.7 cells, SFE suppressed lipopolysaccharide (LPS)-induced IL-1ß and TNF-α expression about 2 fold stronger than sulforaphane, whereas both pure compounds and SFE suppressed inflammatory nitric oxide (NO) production. In summary, this study demonstrates that AS has anti-inflammatory effects and activates the Nrf2 pathway, which protects against oxidative stress.


Asunto(s)
4-Butirolactona/análogos & derivados , Angelica sinensis , Antiinflamatorios/farmacología , Factor 2 Relacionado con NF-E2/genética , Anhídridos Ftálicos/farmacología , Extractos Vegetales/farmacología , 4-Butirolactona/farmacología , Animales , Línea Celular Tumoral , Expresión Génica , Células Hep G2 , Humanos , Interleucina-1beta/metabolismo , Ratones , NAD(P)H Deshidrogenasa (Quinona)/genética , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Óxido Nítrico/metabolismo , Fitoquímicos/farmacología , ARN Mensajero/metabolismo , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1 , Factor de Necrosis Tumoral alfa/genética
9.
Mol Carcinog ; 51(10): 761-70, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21837756

RESUMEN

Indole-3-carbinol (I3C) found abundantly in crucifers has been shown to possess anti-cancer effects. The present study aims to examine the chemopreventive effects and the molecular mechanism of I3C, particularly the anti-oxidative stress pathway regulated by nuclear erythroid related factor 2 (Nrf2). HepG2-C8-ARE-luciferase cells were used for Nrf2-ARE activity. TRAMP C1 cells were used to investigate the effects of I3C on Nrf2-mediated genes. To test the chemopreventive efficacy of I3C, transgenic adenocarcinoma of mouse prostate (TRAMP) mice were fed with 1% I3C supplemented diet for 12 or 16 wk. The expression of Nrf2 and its downstream target genes, cell cycle and apoptosis genes were investigated using quantitative real-time polymerase chain reaction (qPCR). The protein expressions of these biomarkers were also investigated using Western blotting. I3C induced antioxidant response element (ARE)-luciferase activity in a dose-dependent manner. Treatments of TRAMP C1 cells with I3C also resulted in the induction of Nrf2-mediated genes. I3C significantly suppressed the incidence of palpable tumor and reduced the genitourinary weight in TRAMP mice. Western blots and qPCR analyses of prostate tissues showed that I3C induced the expression of Nrf2, NAD(P)H quinine oxidoreductase 1 (NQO-1) as well as cell cycle and apoptosis related biomarkers in I3C-fed TRAMP mice. This study demonstrated that the effectiveness of I3C as prostate cancer chemoprevention agent via up-regulation of a novel Nrf2-mediated anti-oxidative stress pathway.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Anticarcinógenos/farmacología , Indoles/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Adenocarcinoma/metabolismo , Adenocarcinoma/prevención & control , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Suplementos Dietéticos , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Ratones , Ratones Transgénicos , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Factor 2 Relacionado con NF-E2/genética , Estrés Oxidativo , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/prevención & control , Elementos de Respuesta/efectos de los fármacos
10.
J Nutr ; 142(5): 818-23, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22457388

RESUMEN

Nuclear factor-erythroid 2-related factor 2 (Nrf2) plays a pivotal role in maintaining cellular redox homeostasis and eliminating reactive toxic species. Nrf2 is epigenetically suppressed due to CpG hypermethylation in prostate tumors from the transgenic adenocarcinoma of the mouse prostate (TRAMP) model. We previously showed that dietary feeding of a γ-tocopherol-rich mixture of tocopherols (γ-TmT) suppressed prostate tumorigenesis in TRAMP mice associated with higher Nrf2 protein expression. We hypothesized that γ-TmT may maintain Nrf2 through epigenetic inhibition of promoter CpG methylation. In this study, 8-wk-old male TRAMP mice were fed 0.1% γ-TmT or a control diet for 16 wk. The methylation in the Nrf2 promoter was inhibited in the prostate of the γ-TmT group compared with the control group. Protein expressions of DNA methyltransferase (DNMT), including DNMT1, DNMT3A, and DNMT3B, were lower in the prostate of the γ-TmT group than in the controls. TRAMP-C1 cells were treated with 30 µmol/L of γ-TmT or blank medium for 5 d. The methylation in the Nrf2 promoter was inhibited in the γ-TmT-treated cells compared with the untreated cells at d 5, and mRNA and protein expressions of Nrf2 and NAD(P)H:quinone oxidoreductase 1 were higher. Interestingly, only DNMT3B was inhibited in the γ-TmT-treated cells compared with the untreated cells. In the aggregate, our findings demonstrate that γ-TmT could inhibit CpG methylation in the Nrf2 promoter in the prostate of TRAMP mice and in TRAMP-C1 cells, which might lead to higher Nrf2 expression and potentially contribute to the prevention of prostate tumorigenesis in this TRAMP model.


Asunto(s)
Adenocarcinoma , Metilación de ADN/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Factor 2 Relacionado con NF-E2/genética , Neoplasias de la Próstata , Miembro 25 de Receptores de Factores de Necrosis Tumoral/genética , gamma-Tocoferol/farmacología , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Animales , Antioxidantes/farmacología , Células Cultivadas , Islas de CpG/efectos de los fármacos , Islas de CpG/genética , Metilación de ADN/genética , Modelos Animales de Enfermedad , Epigénesis Genética/genética , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , NAD(P)H Deshidrogenasa (Quinona)/genética , Regiones Promotoras Genéticas/efectos de los fármacos , Regiones Promotoras Genéticas/fisiología , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo
11.
Chem Res Toxicol ; 25(8): 1574-80, 2012 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-22780686

RESUMEN

Ginseng has long been used in Asian countries for more than 2000 years. Currently, in the "Western World or Western Medicines", many reports have indicated that they have used herbal medicines, and ginseng is one of the most popular herbs. Several recent reports have indicated that the antioxidant/antioxidative stress activities of ginseng play a role in the benefits of ginseng; however, the precise mechanism is lacking. The antioxidant response element (ARE) is a critical regulatory element for the expression of many antioxidant enzymes and phase II/III drug metabolizing/transporter genes, mediated by the transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2). The aim of this study was to examine the potential activation and synergism of Nrf2-ARE-mediated transcriptional activity between three common ginsenosides present in ginseng, ginsenoside Rb1 (Rb1), ginsenoside Rg1 (Rg1), and ginsenoside 20(S)-protopanaxatriol (20S). We tested whether these ginsenosides and their combinations could induce Nrf2-ARE activities in HepG2-C8 cells with stably transfected ARE luciferase reporter gene. Cell proliferation, antioxidant and ARE activities, Western blotting of Nrf2 protein, and qPCR of mRNA of Nrf2 were conducted for Rb1, Rg1, and 20S as well as the combinations of 20S with Rb1 or Rg1. To determine the combination effects, the combination index (CI) was calculated. Rb1 and Rg1 are relatively nontoxic to the cells, while 20S at 50 µM or above significantly inhibited the cell proliferation. Rb1, Rg1, or 20S induced total antioxidant activity and ARE activity in a concentration-dependent manner. Furthermore, combinations of 20S with either Rb1 or Rg1 induced total antioxidant and ARE activity synergistically. The induction of Nrf2 protein and mRNA was also found to be synergistic with the combination treatments. In summary, in this study, we show that ginsenosides Rb1, Rg1, and 20S possess antioxidant activity, transcriptionally activating ARE as well as the potential of synergistic activities. The Nrf2-ARE-mediated antioxidant pathway could play a role for the overall antioxidative stress activities, which could be important for ginseng's health beneficial effects such as cancer chemopreventive activities.


Asunto(s)
Antioxidantes/química , Ginsenósidos/química , Factor 2 Relacionado con NF-E2/metabolismo , Sapogeninas/química , Animales , Elementos de Respuesta Antioxidante/efectos de los fármacos , Antioxidantes/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Sinergismo Farmacológico , Ginsenósidos/farmacología , Células Hep G2 , Humanos , Ratones , Factor 2 Relacionado con NF-E2/genética , Panax/química , Sapogeninas/farmacología
12.
Mol Pharm ; 9(10): 2819-27, 2012 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-22931102

RESUMEN

This study assesses the pharmacokinetics (PK) and pharmacodynamics (PD) of Nrf2-mediated increased expression of phase II drug metabolizing enzymes (DME) and antioxidant enzymes which represents an important component of cancer chemoprevention in rat lymphocytes following intravenous (iv) administration of an anticancer phytochemical sulforaphane (SFN). SFN was administered intravenously to four groups of male Sprague-Dawley JVC rats each group comprising four animals. Blood samples were drawn at selected time points. Plasma were obtained from half of each of the blood samples and analyzed using a validated LC-MS/MS method. Lymphocytes were collected from the remaining blood samples using Ficoll-Paque Plus centrifuge medium. Lymphocyte RNAs were extracted and converted to cDNA, quantitative real-time PCR analyses were performed, and fold changes were calculated against those at time zero for the relative expression of Nrf2-target genes of phase II DME/antioxidant enzymes. PK-PD modeling was conducted based on Jusko's indirect response model (IDR) using GastroPlus and bootstrap method. SFN plasma concentration declined biexponentially and the pharmacokinetic parameters were generated. Rat lymphocyte mRNA expression levels showed no change for GSTM1, SOD, NF-κB, UGT1A1, or UGT1A6. Moderate increases (2-5-fold) over the time zero were seen for HO-1, Nrf2, and NQO1, and significant increases (>5-fold) for GSTT1, GPx1, and Maf. PK-PD analyses using GastroPlus and the bootstrap method provided reasonable fitting for the PK and PD profiles and parameter estimates. Our present study shows that SFN could induce Nrf2-mediated phase II DME/antioxidant mRNA expression for NQO1, GSTT1, Nrf2, GPx, Maf, and HO-1 in rat lymphocytes after iv administration, suggesting that Nrf2-mediated mRNA expression in lymphocytes may serve as surrogate biomarkers. The PK-PD IDR model simultaneously linking the plasma concentrations of SFN and the PD response of lymphocyte mRNA expression is valuable for quantitating Nrf2-mediated effects of SFN. This study may provide a conceptual framework for future clinical PK-PD studies of dietary cancer chemopreventive agents in human.


Asunto(s)
Antineoplásicos/farmacología , Antineoplásicos/farmacocinética , Antioxidantes/metabolismo , Linfocitos/metabolismo , Fase II de la Desintoxicación Metabólica/genética , Tiocianatos/farmacología , Tiocianatos/farmacocinética , Administración Intravenosa , Animales , Isotiocianatos , Linfocitos/efectos de los fármacos , Masculino , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , ARN Mensajero/genética , Ratas , Ratas Sprague-Dawley , Sulfóxidos
13.
ACS Nano ; 16(12): 20021-20033, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36264003

RESUMEN

To address the key challenges in the development of next-generation drug delivery systems (DDS) with desired physicochemical properties to overcome limitations regarding safety, in vivo efficacy, and solid tumor penetration, an ultrasmall folate receptor alpha (FRα) targeted silica nanoparticle (C'Dot) drug conjugate (CDC; or folic acid CDC) was developed. A broad array of methods was employed to screen a panel of CDCs and identify a lead folic acid CDC for clinical development. These included comparing the performance against antibody-drug conjugates (ADCs) in three-dimensional tumor spheroid penetration ability, assessing in vitro/ex vivo cytotoxic efficacy, as well as in vivo therapeutic outcome in multiple cell-line-derived and patient-derived xenograft models. An ultrasmall folic acid CDC, EC112002, was identified as the lead candidate out of >500 folic acid CDC formulations evaluated. Systematic studies demonstrated that the lead formulation, EC112002, exhibited highly specific FRα targeting, multivalent binding properties that would mediate the ability to outcompete endogenous folate in vivo, enzymatic responsive payload cleavage, stability in human plasma, rapid in vivo clearance, and minimal normal organ retention organ distribution in non-tumor-bearing mice. When compared with an anti-FRα-DM4 ADC, EC112002 demonstrated deeper penetration into 3D cell-line-derived tumor spheroids and superior specific cytotoxicity in a panel of 3D patient-derived tumor spheroids, as well as enhanced efficacy in cell-line-derived and patient-derived in vivo tumor xenograft models expressing a range of low to high levels of FRα. With the growing interest in developing clinically translatable, safe, and efficacious DDSs, EC112002 has the potential to address some of the critical limitations of the current systemic drug delivery for cancer management.


Asunto(s)
Receptor 1 de Folato , Sistema de Administración de Fármacos con Nanopartículas , Neoplasias , Animales , Humanos , Ratones , Línea Celular Tumoral , Modelos Animales de Enfermedad , Receptor 1 de Folato/metabolismo , Receptor 1 de Folato/uso terapéutico , Ácido Fólico/química , Nanopartículas/uso terapéutico , Neoplasias/tratamiento farmacológico , Dióxido de Silicio/uso terapéutico
14.
Cancer Metastasis Rev ; 29(3): 483-502, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20798979

RESUMEN

Carcinogenesis is a multi-step process which could be prevented by phytochemicals. Phytochemicals from dietary plants and other plant sources such as herbs are becoming increasingly important sources of anticancer drugs or compounds for cancer chemoprevention or adjuvant chemotherapy. Phytochemicals can prevent cancer initiation, promotion, and progression by exerting anti-inflammatory and anti-oxidative stress effects which are mediated by integrated Nrf2, NF-kappaB, and AP-1 signaling pathways. In addition, phytochemicals from herbal medicinal plants and/or some dietary plants developed in recent years have been shown to induce apoptosis in cancer cells and inhibition of tumor growth in vivo. In advanced tumors, a series of changes involving critical signaling molecules that would drive tumor cells undergoing epithelial-mesenchymal transition and becoming invasive. In this review, we will discuss the potential molecular targets and signaling pathways that mediate tumor onset and metastasis. In addition, we will shed light on some of the phytochemicals that are capable of targeting these signaling pathways which would make them potentially applicable to cancer chemoprevention, treatment and control of cancer progression.


Asunto(s)
Antineoplásicos Fitogénicos/uso terapéutico , Metástasis de la Neoplasia/prevención & control , Neoplasias/prevención & control , Fitoterapia , Animales , Transformación Celular Neoplásica/efectos de los fármacos , Transición Epitelial-Mesenquimal , Humanos , Neoplasias/patología , Transducción de Señal/efectos de los fármacos
15.
Mol Carcinog ; 50(6): 479-86, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21557329

RESUMEN

Ultraviolet (UV) of sunlight is a complete carcinogen that can burn skin, enhance inflammation, and drive skin carcinogenesis. Previously, we have shown that sulforaphane (SFN) inhibited chemically induced skin carcinogenesis via nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and others have shown that broccoli sprout extracts containing high SFN protected against UV-induced skin carcinogenesis in SKH-1 hairless mice. A recent study showed that there was no difference between Nrf2 knockout (Nrf2 KO) and Nrf2 wild-type (WT) BALB/C mice after exposing to high dose of UVB. Since Nrf2 plays critical roles in the anti-oxidative stress/anti-inflammatory responses, it is relevant to assess the role of Nrf2 for photoprotection against UV. In this context, the role of Nrf2 in UVB-induced skin inflammation in Nrf2 WT and Nrf2 KO C57BL/6 mice was studied. A single dose of UVB (300 mJ/cm(2)) resulted in skin inflammation in both WT and Nrf2 KO (-/-) mice (KO mice) at 8 h and 8 d following UVB irradiation. In the WT mice inflammation returned to the basal level to a greater extent when compared to the KO mice. SFN treatment of Nrf2 WT but not Nrf2 KO mice restored the number of sunburn cells back to their basal level by 8 d after UVB irradiation. Additionally, UVB-induced short-term inflammatory biomarkers (interleukin-1ß and interleukin-6) were increased in the KO mice and UVB-induced apoptotic cells in the KO mice were significantly higher as compared to that in the WT. Taken together, our results show that functional Nrf2 confers a protective effect against UVB-induced inflammation, sunburn reaction, and SFN-mediated photoprotective effects in the skin.


Asunto(s)
Anticarcinógenos/uso terapéutico , Dermatitis/tratamiento farmacológico , Dermatitis/patología , Factor 2 Relacionado con NF-E2/fisiología , Tiocianatos/uso terapéutico , Rayos Ultravioleta/efectos adversos , Animales , Dermatitis/etiología , Ensayo de Inmunoadsorción Enzimática , Femenino , Técnicas para Inmunoenzimas , Isotiocianatos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Protectores contra Radiación/uso terapéutico , Sulfóxidos , Quemadura Solar/tratamiento farmacológico , Quemadura Solar/etiología , Quemadura Solar/patología
16.
Biopharm Drug Dispos ; 32(2): 65-75, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21341276

RESUMEN

The pharmacokinetic disposition of a dietary cancer chemopreventive compound dibenzoylmethane (DBM) was studied in male Sprague-Dawley rats after intravenous (i.v.) and oral (p.o.) administrations. Following a single i.v. bolus dose, the mean plasma clearance (CL) of DBM was low compared with the hepatic blood flow. DBM displayed a high volume of distribution (Vss). The elimination terminal t1/2 was long. The mean CL, Vss and AUC0-∞/dose were similar between the i.v. 10 and 10 mg/kg doses. After single oral doses (10, 50 and 250 mg/kg), the absolute oral bioavailability (F*) of DBM was 7.4%-13.6%. The increase in AUC was not proportional to the oral doses, suggesting non-linearity. In silico prediction of oral absorption also demonstrated low DBM absorption in vivo. An oil-in-water nanoemulsion containing DBM was formulated to potentially overcome the low F* due to poor water solubility of DBM, with enhanced oral absorption. Finally, to examine the role of Nrf2 on the pharmacokinetics of DBM, since DBM activates the Nrf2-dependent detoxification pathways, Nrf2 wild-type (+/+) mice and Nrf2 knockout (-/-) mice were utilized. There was an increased systemic plasma exposure of DBM in Nrf2 (-/-) mice, suggesting that the Nrf2 genotype could also play a role in the pharmacokinetic disposition of DBM. Taken together, the results show that DBM has low oral bioavailability which could be due in part to poor water solubility and this could be overcome by a nanotechnology-based drug delivery system and furthermore the Nrf2 genotype could also play a role in the pharmacokinetics of DBM.


Asunto(s)
Anticarcinógenos/farmacocinética , Chalconas/farmacocinética , Factor 2 Relacionado con NF-E2/genética , Nanopartículas , Administración Oral , Animales , Anticarcinógenos/administración & dosificación , Área Bajo la Curva , Disponibilidad Biológica , Chalconas/administración & dosificación , Relación Dosis-Respuesta a Droga , Emulsiones , Semivida , Inyecciones Intravenosas , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nanotecnología , Ratas , Ratas Sprague-Dawley , Solubilidad , Distribución Tisular
17.
Carcinogenesis ; 31(5): 880-5, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-19959557

RESUMEN

Previously, phenethyl isothiocyanate (PEITC) and dibenzoylmethane (DBM) had been shown to inhibit intestinal carcinogenesis in Apc(Min/+) mice. In this study, we investigated the chemopreventive efficacy of PEITC and DBM in the azoxymethane (AOM)-initiated and dextran sodium sulfate (DSS)-promoted colon cancer mouse model and to compare their potential in vivo mechanisms leading to chemoprevention. The mice were fed with diet supplemented with 0.05% PEITC or 1% DBM before or after AOM initiation. Our results showed that AOM/DSS mice fed with PEITC- or DBM-supplemented diet had lower tumor incidence, lower colon tumor multiplicities and smaller polyps as compared with mice fed with the standard AIN-76A diet. PEITC was effective even after AOM initiation, whereas DBM was not as effective when fed after AOM initiation. Hematoxylin and eosin staining showed that mice fed with PEITC or DBM had attenuated loss of crypt, a marker of inflammation. To examine potential in vivo mechanisms involved in chemoprevention, western blotting was performed and showed that inhibition of growth of adenomas by PEITC was associated with an increase of apoptosis (increased cleaved caspase-3 and-7) and cell cycle arrest (increased p21). In contrast DBM's effect on cell cycle arrest and apoptosis markers was not as substantial as PEITC. Instead, DBM showed increased induction of NF-E2-related factor-2 (Nrf2) transcription factor and phase II detoxifying enzymes, which appears to correlate with in vitro cell lines results that DBM is a more potent Nrf2 activator than PEITC. In summary, our present study shows that PEITC and DBM are potent natural dietary compounds for chemoprevention of colon cancer induced by AOM/DSS and appears to be associated with different in vivo mechanism of actions. PEITC's chemopreventive effect appears to be due to induction of apoptosis and cell cycle arrest, whereas DBM's effect is due to prevention of AOM initiation via induction of Nrf2 and phase II detoxifying enzymes.


Asunto(s)
Anticarcinógenos/farmacología , Azoximetano/toxicidad , Chalconas/farmacología , Neoplasias Colorrectales/prevención & control , Sulfato de Dextran/toxicidad , Isotiocianatos/farmacología , Animales , Apoptosis/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Neoplasias Colorrectales/inducido químicamente , Neoplasias Colorrectales/patología , Mucosa Intestinal/patología , Pólipos Intestinales/patología , Masculino , Ratones , Ratones Endogámicos C57BL
18.
Mol Pharm ; 7(6): 2185-93, 2010 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-20831192

RESUMEN

This study is to investigate the role of Nrf2 in suppressing LPS-mediated inflammation in ex vivo macrophages by polyunsaturated fatty acids (PUFA) docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Primary peritoneal macrophages from Nrf2 wild-type (+/+; WT) and Nrf2 knockout (-/-; KO) mice were treated with lipopolysaccharides (LPS) in the presence or absence of DHA or EPA. Quantitative real-time PCR (qPCR) analyses showed that LPS potently induced cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), interleukin-1 beta (IL-1ß), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) in the macrophages collected from Nrf2 (+/+) wild-type mice. DHA and EPA inhibited LPS-induced COX-2, iNOS, IL-1ß, IL-6, or TNF-α, but increased hemeoxygenase (HO-1) expression. DHA was found to be more potent than EPA in inhibiting COX-2, iNOS, IL-1ß, IL-6, and TNF-α mRNA expression. DHA and EPA were also found to induce HO-1 and Nrf2 mRNA with a different dose-response. LPS induced COX-2, iNOS, IL-1ß, IL-6, and TNF-α in the macrophages collected from Nrf2 (-/-) mice as well, however, DHA and EPA suppression of COX-2, iNOS, IL-1ß, IL-6, and TNF-α was attenuated as compared to that in Nrf2 (+/+) macrophages. Taken together, using Western blotting, ELISA and qPCR approaches coupled with Nrf2 (-/-) mice, our study clearly shows for the first time that DHA/EPA would induce Nrf2 signaling pathway and that Nrf2 plays a role in DHA/EPA suppression of LPS-induced inflammation.


Asunto(s)
Ácidos Docosahexaenoicos/farmacología , Ácido Eicosapentaenoico/farmacología , Inflamación/prevención & control , Macrófagos Peritoneales/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Animales , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Hemo-Oxigenasa 1/antagonistas & inhibidores , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Inflamación/inducido químicamente , Interleucina-6/antagonistas & inhibidores , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolisacáridos/antagonistas & inhibidores , Lipopolisacáridos/farmacología , Macrófagos Peritoneales/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 2 Relacionado con NF-E2/deficiencia , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Nitritos/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Relación Estructura-Actividad , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
19.
Nutr Cancer ; 62(6): 789-94, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20661828

RESUMEN

The biological activities of tocotrienols are receiving increasing attention. Herein, we report the efficacy of a mixed-tocotrienol diet against prostate tumorigenesis in the transgenic adenocarcinoma mouse prostate (TRAMP) mouse model. Male TRAMP mice, 8 wk old, were fed 0.1%, 0.3%, or 1% mixed tocotrienols in AIN-76A diet up to 24 wk old. Likewise, a positive control group consisting of male TRAMP mice and a negative control group consisting of wild-type nontransgenic mice were fed regular AIN-76A diet up to 24 wk old. Our results show that mixed-tocotrienol-fed groups had a lower incidence of tumor formation along with a significant reduction in the average wet weight of genitourinary apparatus. Furthermore, mixed tocotrienols significantly reduced the levels of high-grade neoplastic lesions as compared to the positive controls. This decrease in levels of high-grade neoplastic lesions was found to be associated with increased expression of proapoptotic proteins BAD (Bcl(2) antagonist of cell death) and cleaved caspase-3 and cell cycle regulatory proteins cyclin dependent kinase inhibitors p21 and p27. In contrast, the expression of cyclins A and E were found to be decreased in mixed-tocotrienol groups. Taken together, our results show that by modulating cell cycle regulatory proteins and increasing expression of proapoptotic proteins, mixed tocotrienols suppress prostate tumorigenesis in the TRAMP mice.


Asunto(s)
Adenocarcinoma/prevención & control , Anticarcinógenos/administración & dosificación , Neoplasias de la Próstata/prevención & control , Tocotrienoles/administración & dosificación , Animales , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
20.
Acta Pharmacol Sin ; 31(9): 1223-40, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20729872

RESUMEN

AIM: To examine the regulatory crosstalk between the transcription factors Nrf2 and AP-1 in prostate cancer (PCa) by dietary cancer chemopreventive compounds (-)epigallocatechin-3-gallate (EGCG) from green tea and sulforaphane (SFN) from cruciferous vegetables. METHODS: We performed (i) in vitro studies including luciferase reporter gene assays, MTS cell viability assays, and quantitative real-time PCR (qRT-PCR) in PC-3 AP-1 human PCa cells, (ii) in vivo temporal (3 h and 12 h) microarray studies in the prostate of Nrf2-deficient mice that was validated by qRT-PCR, and (iii) in silico bioinformatic analyses to delineate conserved Transcription Factor Binding Sites (TFBS) in the promoter regions of Nrf2 and AP-1, as well as coregulated genes including ATF-2 and ELK-1. RESULTS: Our study shows that AP-1 activation was attenuated by the combinations of SFN (25 micromol/L) and EGCG (20 or 100 micromol/L) in PC-3 cells. Several key Nrf2-dependent genes were down-regulated (3-fold to 35-fold) after in vivo administration of the combination of EGCG (100 mg/kg) and SFN (45 mg/kg). Conserved TFBS signatures were identified in the promoter regions of Nrf2, AP-1, ATF2, and ELK-1 suggesting a potential regulatory mechanism of crosstalk between them. CONCLUSION: Taken together, our present study of transcriptome profiling the gene expression changes induced by dietary phytochemicals SFN and EGCG in Nrf2-deficient mice and in PC-3 cells in vitro demonstrates that the effects of SFN+EGCG could be mediated via concerted modulation of Nrf2 and AP-1 pathways in the prostate.


Asunto(s)
Anticarcinógenos/farmacología , Catequina/análogos & derivados , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Factor 2 Relacionado con NF-E2/genética , Neoplasias de la Próstata/tratamiento farmacológico , Tiocianatos/farmacología , Factor de Transcripción AP-1/genética , Animales , Protocolos de Quimioterapia Combinada Antineoplásica , Sitios de Unión , Catequina/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Isotiocianatos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 2 Relacionado con NF-E2/metabolismo , Regiones Promotoras Genéticas , Neoplasias de la Próstata/genética , Sulfóxidos , Factor de Transcripción AP-1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA