Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
IEEE Trans Med Imaging ; PP2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39196746

RESUMEN

The use of machine learning (ML) for cancer staging through medical image analysis has gained substantial interest across medical disciplines. When accompanied by the innovative federated learning (FL) framework, ML techniques can further overcome privacy concerns related to patient data exposure. Given the frequent presence of diverse data modalities within patient records, leveraging FL in a multi-modal learning framework holds considerable promise for cancer staging. However, existing works on multi-modal FL often presume that all data-collecting institutions have access to all data modalities. This oversimplified approach neglects institutions that have access to only a portion of data modalities within the system. In this work, we introduce a novel FL architecture designed to accommodate not only the heterogeneity of data samples, but also the inherent heterogeneity/non-uniformity of data modalities across institutions. We shed light on the challenges associated with varying convergence speeds observed across different data modalities within our FL system. Subsequently, we propose a solution to tackle these challenges by devising a distributed gradient blending and proximity-aware client weighting strategy tailored for multi-modal FL. To show the superiority of our method, we conduct experiments using The Cancer Genome Atlas program (TCGA) datalake considering different cancer types and three modalities of data: mRNA sequences, histopathological image data, and clinical information. Our results further unveil the impact and severity of class-based vs type-based heterogeneity across institutions on the model performance, which widens the perspective to the notion of data heterogeneity in multi-modal FL literature.

2.
Med Image Comput Comput Assist Interv ; 11769: 68-76, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37011270

RESUMEN

Adversarial learning has been proven to be effective for capturing long-range and high-level label consistencies in semantic segmentation. Unique to medical imaging, capturing 3D semantics in an effective yet computationally efficient way remains an open problem. In this study, we address this computational burden by proposing a novel projective adversarial network, called PAN, which incorporates high-level 3D information through 2D projections. Furthermore, we introduce an attention module into our framework that helps for a selective integration of global information directly from our segmentor to our adversarial network. For the clinical application we chose pancreas segmentation from CT scans. Our proposed framework achieved state-of-the-art performance without adding to the complexity of the segmentor.

3.
Med Image Anal ; 51: 101-115, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30399507

RESUMEN

Computer aided diagnosis (CAD) tools help radiologists to reduce diagnostic errors such as missing tumors and misdiagnosis. Vision researchers have been analyzing behaviors of radiologists during screening to understand how and why they miss tumors or misdiagnose. In this regard, eye-trackers have been instrumental in understanding visual search processes of radiologists. However, most relevant studies in this aspect are not compatible with realistic radiology reading rooms. In this study, we aim to develop a paradigm shifting CAD system, called collaborative CAD (C-CAD), that unifies CAD and eye-tracking systems in realistic radiology room settings. We first developed an eye-tracking interface providing radiologists with a real radiology reading room experience. Second, we propose a novel algorithm that unifies eye-tracking data and a CAD system. Specifically, we present a new graph based clustering and sparsification algorithm to transform eye-tracking data (gaze) into a graph model to interpret gaze patterns quantitatively and qualitatively. The proposed C-CAD collaborates with radiologists via eye-tracking technology and helps them to improve their diagnostic decisions. The C-CAD uses radiologists' search efficiency by processing their gaze patterns. Furthermore, the C-CAD incorporates a deep learning algorithm in a newly designed multi-task learning platform to segment and diagnose suspicious areas simultaneously. The proposed C-CAD system has been tested in a lung cancer screening experiment with multiple radiologists, reading low dose chest CTs. Promising results support the efficiency, accuracy and applicability of the proposed C-CAD system in a real radiology room setting. We have also shown that our framework is generalizable to more complex applications such as prostate cancer screening with multi-parametric magnetic resonance imaging (mp-MRI).


Asunto(s)
Aprendizaje Profundo , Diagnóstico por Computador/métodos , Movimientos Oculares , Neoplasias Pulmonares/diagnóstico por imagen , Imagen por Resonancia Magnética , Neoplasias de la Próstata/diagnóstico por imagen , Tomografía Computarizada por Rayos X , Algoritmos , Errores Diagnósticos/prevención & control , Detección Precoz del Cáncer , Femenino , Humanos , Masculino
4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 710-713, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30440495

RESUMEN

Early detection of lung nodules is of great importance in lung cancer screening. Existing research recognizes the critical role played by CAD systems in early detection and diagnosis of lung nodules. However, many CAD systems, which are used as cancer detection tools, produce a lot of false positives (FP) and require a further FP reduction step. Furthermore, guidelines for early diagnosis and treatment of lung cancer are consist of different shape and volume measurements of abnormalities. Segmentation is at the heart of our understanding of nodules morphology making it a major area of interest within the field of computer aided diagnosis systems. This study set out to test the hypothesis that joint learning of false positive (FP) nodule reduction and nodule segmentation can improve the computer aided diagnosis (CAD) systems' performance on both tasks. To support this hypothesis we propose a 3D deep multi-task CNN to tackle these two problems jointly. We tested our system on LUNA16 dataset and achieved an average dice similarity coefficient (DSC) of 91% as segmentation accuracy and a score of nearly 92% for FP reduction. As a proof of our hypothesis, we showed improvements of segmentation and FP reduction tasks over two baselines. Our results support that joint training of these two tasks through a multi-task learning approach improves system performance on both. We also showed that a semi-supervised approach can be used to overcome the limitation of lack of labeled data for the 3D segmentation task.


Asunto(s)
Neoplasias Pulmonares , Diagnóstico por Computador , Detección Precoz del Cáncer , Humanos , Pulmón , Neoplasias Pulmonares/diagnóstico , Tomografía Computarizada por Rayos X
5.
Br J Radiol ; 91(1089): 20170545, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29565644

RESUMEN

Deep learning has demonstrated tremendous revolutionary changes in the computing industry and its effects in radiology and imaging sciences have begun to dramatically change screening paradigms. Specifically, these advances have influenced the development of computer-aided detection and diagnosis (CAD) systems. These technologies have long been thought of as "second-opinion" tools for radiologists and clinicians. However, with significant improvements in deep neural networks, the diagnostic capabilities of learning algorithms are approaching levels of human expertise (radiologists, clinicians etc.), shifting the CAD paradigm from a "second opinion" tool to a more collaborative utility. This paper reviews recently developed CAD systems based on deep learning technologies for breast cancer diagnosis, explains their superiorities with respect to previously established systems, defines the methodologies behind the improved achievements including algorithmic developments, and describes remaining challenges in breast cancer screening and diagnosis. We also discuss possible future directions for new CAD models that continue to change as artificial intelligence algorithms evolve.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Diagnóstico por Computador , Aprendizaje Automático , Redes Neurales de la Computación , Algoritmos , Femenino , Humanos , Imagen por Resonancia Magnética , Mamografía , Ultrasonografía Mamaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA