Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
New Phytol ; 217(3): 1213-1229, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29315638

RESUMEN

Some soil fungi in the Leotiomycetes form ericoid mycorrhizal (ERM) symbioses with Ericaceae. In the harsh habitats in which they occur, ERM plant survival relies on nutrient mobilization from soil organic matter (SOM) by their fungal partners. The characterization of the fungal genetic machinery underpinning both the symbiotic lifestyle and SOM degradation is needed to understand ERM symbiosis functioning and evolution, and its impact on soil carbon (C) turnover. We sequenced the genomes of the ERM fungi Meliniomyces bicolor, M. variabilis, Oidiodendron maius and Rhizoscyphus ericae, and compared their gene repertoires with those of fungi with different lifestyles (ecto- and orchid mycorrhiza, endophytes, saprotrophs, pathogens). We also identified fungal transcripts induced in symbiosis. The ERM fungal gene contents for polysaccharide-degrading enzymes, lipases, proteases and enzymes involved in secondary metabolism are closer to those of saprotrophs and pathogens than to those of ectomycorrhizal symbionts. The fungal genes most highly upregulated in symbiosis are those coding for fungal and plant cell wall-degrading enzymes (CWDEs), lipases, proteases, transporters and mycorrhiza-induced small secreted proteins (MiSSPs). The ERM fungal gene repertoire reveals a capacity for a dual saprotrophic and biotrophic lifestyle. This may reflect an incomplete transition from saprotrophy to the mycorrhizal habit, or a versatile life strategy similar to fungal endophytes.


Asunto(s)
Genómica , Micorrizas/genética , Plantas/microbiología , Simbiosis/genética , Transcriptoma/genética , Secuencia Conservada/genética , Hongos/clasificación , Hongos/genética , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Filogenia , Metabolismo Secundario/genética , Especificidad por Sustrato , Regulación hacia Arriba/genética
2.
Mycorrhiza ; 26(6): 609-21, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27075897

RESUMEN

Transcriptomics and genomics data recently obtained from the arbuscular mycorrhizal (AM) fungus Rhizophagus irregularis have offered new opportunities to decipher the contribution of the fungal partner to the establishment of the symbiotic association. The large number of genes which do not show similarity to known proteins witnesses the uniqueness of this group of plant-associated fungi. In this work, we characterize a gene that was called RiPEIP1 (Preferentially Expressed In Planta). Its expression is strongly induced in the intraradical phase, including arbuscules, and follows the expression profile of the Medicago truncatula phosphate transporter MtPT4, a molecular marker of a functional symbiosis. Indeed, mtpt4 mutant plants, which exhibit low mycorrhizal colonization and an accelerated arbuscule turnover, also show a reduced RiPEIP1 mRNA abundance. To further characterize RiPEIP1, in the absence of genetic transformation protocols for AM fungi, we took advantage of two different fungal heterologous systems. When expressed as a GFP fusion in yeast cells, RiPEIP1 localizes in the endomembrane system, in particular to the endoplasmic reticulum, which is consistent with the in silico prediction of four transmembrane domains. We then generated RiPEIP1-expressing strains of the fungus Oidiodendron maius, ericoid endomycorrhizal fungus for which transformation protocols are available. Roots of Vaccinium myrtillus colonized by RiPEIP1-expressing transgenic strains showed a higher mycorrhization level compared to roots colonized by the O. maius wild-type strain, suggesting that RiPEIP1 may regulate the root colonization process.


Asunto(s)
Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica/fisiología , Glomeromycota/metabolismo , Medicago truncatula/microbiología , Micorrizas/genética , Micorrizas/metabolismo , Proteínas Fúngicas/genética , Glomeromycota/genética , Proteínas Fluorescentes Verdes/metabolismo , Raíces de Plantas/microbiología , Levaduras/genética , Levaduras/metabolismo
3.
Fungal Genet Biol ; 52: 53-64, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23232015

RESUMEN

Two full-length cDNAs (OmZnT1 and OmFET) encoding membrane transporters were identified by yeast functional screening in the heavy metal tolerant ericoid mycorrhizal isolate Oidiodendron maius Zn. OmZnT1 belongs to the Zn-Type subfamily of the cation diffusion facilitators, whereas OmFET belongs to the family of iron permeases. Their properties were investigated in yeast by functional complementation of mutants affected in metal uptake and metal tolerance. Heterologous expression of OmZnT1 and OmFET in a Zn-sensitive yeast mutant restored the wild-type phenotype. Additionally, OmZnT1 expression also restored cobalt tolerance in a Co-sensitive mutant. A GFP fusion protein revealed that OmZnT1 was targeted to the endoplasmic reticulum membrane, a result consistent with a function for OmZnT1 in metal sequestration. Similarly to other iron permeases, OmFET-GFP was localized on the plasma membrane. OmFET restored the growth of uptake-defective strains for iron and zinc. Zinc-sensitive yeast mutants expressing OmFET specifically accumulated magnesium, as compared to cells transformed with the empty vector. We suggest that OmFET may counteract zinc toxicity by increasing entry of magnesium into the cell.


Asunto(s)
Ascomicetos/enzimología , Proteínas de Transporte de Membrana/metabolismo , Intoxicación , Zinc/metabolismo , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Intoxicación por Metales Pesados , Hierro/metabolismo , Proteínas de Transporte de Membrana/genética , Zinc/química
4.
Front Microbiol ; 11: 341, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32210940

RESUMEN

The success of Ericaceae in stressful habitats enriched in heavy metals has been ascribed to the distinctive abilities of their mycorrhizal fungal partners to withstand heavy metal stress and to enhance metal tolerance in the host plant. Whereas heavy metal tolerance has been extensively investigated in some ericoid mycorrhizal (ERM) fungi, the molecular and cellular mechanisms that extend tolerance to the host plant are currently unknown. Here, we show a reduced Cd content in Cd-exposed mycorrhizal roots of Vaccinium myrtillus colonized by a metal tolerant isolate of the fungus Oidiodendron maius as compared to non-mycorrhizal roots. To better understand this phenotype, we applied Next Generation Sequencing technologies to analyze gene expression in V. myrtillus and O. maius Zn grown under normal and Cd-stressed conditions, in the free living and in the mycorrhizal status. The results clearly showed that Cd had a stronger impact on plant gene expression than symbiosis, whereas fungal gene expression was mainly regulated by symbiosis. The higher abundance of transcripts coding for stress related proteins in non-mycorrhizal roots may be related to the higher Cd content. Regulated plant metal transporters have been identified that may play a role in reducing Cd content in mycorrhizal roots exposed to this metal.

5.
Front Plant Sci ; 9: 546, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29765384

RESUMEN

Mutualistic and pathogenic plant-colonizing fungi use effector molecules to manipulate the host cell metabolism to allow plant tissue invasion. Some small secreted proteins (SSPs) have been identified as fungal effectors in both ectomycorrhizal and arbuscular mycorrhizal fungi, but it is currently unknown whether SSPs also play a role as effectors in other mycorrhizal associations. Ericoid mycorrhiza is a specific endomycorrhizal type that involves symbiotic fungi mostly belonging to the Leotiomycetes (Ascomycetes) and plants in the family Ericaceae. Genomic and RNASeq data from the ericoid mycorrhizal fungus Oidiodendron maius led to the identification of several symbiosis-upregulated genes encoding putative SSPs. OmSSP1, the most highly symbiosis up-regulated SSP, was found to share some features with fungal hydrophobins, even though it lacks the Pfam hydrophobin domain. Sequence alignment with other hydrophobins and hydrophobin-like fungal proteins placed OmSSP1 within Class I hydrophobins. However, the predicted features of OmSSP1 may suggest a distinct type of hydrophobin-like proteins. The presence of a predicted signal peptide and a yeast-based signal sequence trap assay demonstrate that OmSSP1 is secreted. OmSSP1 null-mutants showed a reduced capacity to form ericoid mycorrhiza with Vaccinium myrtillus roots, suggesting a role as effectors in the ericoid mycorrhizal interaction.

6.
Nat Genet ; 47(4): 410-5, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25706625

RESUMEN

To elucidate the genetic bases of mycorrhizal lifestyle evolution, we sequenced new fungal genomes, including 13 ectomycorrhizal (ECM), orchid (ORM) and ericoid (ERM) species, and five saprotrophs, which we analyzed along with other fungal genomes. Ectomycorrhizal fungi have a reduced complement of genes encoding plant cell wall-degrading enzymes (PCWDEs), as compared to their ancestral wood decayers. Nevertheless, they have retained a unique array of PCWDEs, thus suggesting that they possess diverse abilities to decompose lignocellulose. Similar functional categories of nonorthologous genes are induced in symbiosis. Of induced genes, 7-38% are orphan genes, including genes that encode secreted effector-like proteins. Convergent evolution of the mycorrhizal habit in fungi occurred via the repeated evolution of a 'symbiosis toolkit', with reduced numbers of PCWDEs and lineage-specific suites of mycorrhiza-induced genes.


Asunto(s)
Genoma Fúngico/genética , Micorrizas/genética , Selección Genética , Simbiosis/genética , Virulencia/genética , Secuencia de Bases , Evolución Molecular , Eliminación de Gen , Regulación Fúngica de la Expresión Génica/genética , Datos de Secuencia Molecular , Micorrizas/patogenicidad , Filogenia , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Raíces de Plantas/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA