Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(11)2023 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-37299881

RESUMEN

The use of IoT technology is rapidly increasing in healthcare development and smart healthcare system for fitness programs, monitoring, data analysis, etc. To improve the efficiency of monitoring, various studies have been conducted in this field to achieve improved precision. The architecture proposed herein is based on IoT integrated with a cloud system in which power absorption and accuracy are major concerns. We discuss and analyze development in this domain to improve the performance of IoT systems related to health care. Standards of communication for IoT data transmission and reception can help to understand the exact power absorption in different devices to achieve improved performance for healthcare development. We also systematically analyze the use of IoT in healthcare systems using cloud features, as well as the performance and limitations of IoT in this field. Furthermore, we discuss the design of an IoT system for efficient monitoring of various healthcare issues in elderly people and limitations of an existing system in terms of resources, power absorption and security when implemented in different devices as per requirements. Blood pressure and heartbeat monitoring in pregnant women are examples of high-intensity applications of NB-IoT (narrowband IoT), technology that supports widespread communication with a very low data cost and minimum processing complexity and battery lifespan. This article also focuses on analysis of the performance of narrowband IoT in terms of delay and throughput using single- and multinode approaches. We performed analysis using the message queuing telemetry transport protocol (MQTTP), which was found to be efficient compared to the limited application protocol (LAP) in sending information from sensors.


Asunto(s)
Comunicación , Análisis de Datos , Anciano , Femenino , Humanos , Embarazo , Presión Sanguínea , Suministros de Energía Eléctrica , Ejercicio Físico , Internet de las Cosas , Nube Computacional
2.
Sci Rep ; 14(1): 3436, 2024 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-38341482

RESUMEN

To identify risk factors for smoking among pregnant women, and adverse perinatal outcomes among pregnant women. A case-control study of singleton full-term pregnant women who gave birth at a university hospital in Jordan in June 2020. Pregnant women were divided into three groups according to their smoking status, active, passive, and non-smokers. They were interviewed using a semi-structured questionnaire that included demographic data, current pregnancy history, and neonatal outcomes. Low-level maternal education, unemployment, secondary antenatal care, and having a smoking husband were identified as risk factors for smoke exposure among pregnant women. The risk for cesarean section was ninefold higher in nulliparous smoking women. Women with low family income, those who did not receive information about the hazards of smoking, unemployed passive smoking women, and multiparty raised the risk of neonatal intensive care unit admission among active smoking women. This risk increased in active and passive women with lower levels of education, and inactive smoking women with low family income by 25 times compared to women with a higher level of education. Smoking is associated with adverse perinatal outcomes. Appropriate preventive strategies should address modifiable risk factors for smoking during pregnancy.


Asunto(s)
Cesárea , Resultado del Embarazo , Recién Nacido , Embarazo , Femenino , Humanos , Estudios de Casos y Controles , Fumar/efectos adversos , Parto
3.
Data Brief ; 55: 110763, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39156669

RESUMEN

Groundnut (Arachis hypogaea) is a widely cultivated legume crop that plays a vital role in global agriculture and food security. It is a major source of vegetable oil and protein for human consumption, as well as a cash crop for farmers in many regions. Despite the importance of this crop to household food security and income, diseases, particularly Leaf spot (early and late), Alternaria leaf spot, Rust, and Rosette, have had a significant impact on its production. Deep learning (DL) techniques, especially convolutional neural networks (CNNs), have demonstrated significant ability for early diagnosis of the plant leaf diseases. However, the availability of groundnut-specific datasets for training and evaluation of DL models is limited, hindering the development and benchmarking of groundnut-related deep learning applications. Therefore, this study provides a dataset of groundnut leaf images, both diseased and healthy, captured in real cultivation fields at Ramchandrapur, Purba Medinipur, West Bengal, using a smartphone camera. The dataset contains a total of 1720 original images, that can be utilized to train DL models to detect groundnut leaf diseases at an early stage. Additionally, we provide baseline results of applying state-of-the-art CNN architectures on the dataset for groundnut disease classification, demonstrating the potential of the dataset for advancing groundnut-related research using deep learning. The aim of creating this dataset is to facilitate in the creation of sophisticated methods that will aid farmers accurately identify diseases and enhance groundnut yields.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA