Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Nanosci Nanotechnol ; 18(3): 1777-1781, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29448658

RESUMEN

The surface plasmon resonance (SPR) properties of Au/Ag bimetallic thin-film nanostructures were investigated to improve the chemical stability and the figure of merit (FOM) in the SPR sensors. The SPR characteristics such as resonance angle, extinction ratio, and full width half maximum (FWHM) were calculated by the simulation of the finite-difference time-domain method and were measured using the laser with a 632.8 nm wavelength in the Kretschmann-Raether configuration. The measured resonance angle, extinction ratio, FWHM of Au(20 nm)/Ag(20 nm) thin-film nanostructure were found to be 44°, 0.8, and 1.4°, respectively. The FOM values were determined to be 56.9 for Au/Ag bimetallic thin-film, 47.9 for Au(50 nm) single thin-film, and 89.1 for Ag(50 nm) single thin-film. Also the sensitivity values were about 53.5, 57.0, and 57.8°/RIU for Au(50 nm), Ag(50 nm), and Au(20 nm)/Ag(20 nm) thin-film nanostructures in the SPR sensors, respectively. The SPR properties of Au/Ag bimetallic thin-film nanostructures were compared with those of the Au and Ag single thin-film nanostructures.

2.
J Nanosci Nanotechnol ; 18(3): 1913-1916, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29448682

RESUMEN

A double layered plasmonic device based on transferring technique with polystyrene nano-beads is analyzed and demonstrated to increase the sensing characteristics of plasmonic sensor system. The double layered plasmonic devices are calculated using the three-dimensional finite-difference time-domain method for the width and thickness of the nano-hole structures. The double layered plasmonic devices with different diameters of the Au nano-hole are fabricated by transferring method with commercially available chloromethyl latex with a diameter of 0.42 µm. The optimum sensing characteristic of the proposed plasmonic device is obtained with the film and the hole thickness of 15 and 15 nm in the 246 nm wide nano-hole size. The best sensitivity of the proposed plasmonic sensor is 67.7 degree/RIU when the sensitivity of the conventional plasmonic sensor is 42.2 degree/RIU.

3.
ACS Appl Mater Interfaces ; 11(50): 47247-47252, 2019 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-31746181

RESUMEN

The modulation of the electrical properties of graphene and its device configurations for low-power consumption are important in developing graphene-based logic electronics. Here, we demonstrate the change in the charge transport in graphene from ambipolar to unipolar using surface charge transfer doping of the polymer electrolyte. Unipolar graphene field-effect transistors (GFETs) were obtained by the surface treatment of poly(acrylic acid) (PAA) for p-type and poly(ethyleneimine) (PEI) for n-type as polymer-electrolyte gates. In addition, lithium perchlorate (LiClO4) in a polymer matrix can be used for the low-gate voltage operation of GFETs (less than ±3 V) because of its high gating efficiency. Using polymer-electrolyte-gated GFETs, complementary graphene inverters were fabricated with a voltage swing of 57% and maximum voltage gain (Vgain) of 1.1 at a low supply voltage (VDD = 1 V). This is expected to facilitate the development of graphene-based logic devices with low-cost, low-power, and flexible electronics.

4.
Opt Express ; 16(25): 21053-8, 2008 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-19065245

RESUMEN

Novel triangular ring resonators combining extremely small multimode-interference (MMI) coupler, low loss total internal reflection (TIR) mirrors, and semiconductor optical amplifiers are reported for the first time. The MMI length of 90 microm is among the shortest reported. The incidence angle of the TIR mirror inside the resonator is 22 degrees. A free-spectral range of approximately 2 nm is observed near 1550 nm along with an on-off ratio of 17 dB. The triangular resonators with a sharp angle are very attractive components due to their promise of compact size and high levels of integration. Therefore, large numbers of resonators can be integrated on a chip to increase functionality in future optical wavelength division multiplexing system.


Asunto(s)
Diseño Asistido por Computadora , Lentes , Modelos Teóricos , Refractometría/instrumentación , Simulación por Computador , Diseño de Equipo , Análisis de Falla de Equipo , Luz , Miniaturización , Dispersión de Radiación , Semiconductores , Integración de Sistemas , Vibración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA