Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Malar J ; 22(1): 373, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38066610

RESUMEN

BACKGROUND: Anopheles stephensi is an emerging exotic invasive urban malaria vector in East Africa. The World Health Organization recently announced an initiative to take concerted actions to limit this vector's expansion by strengthening surveillance and control in invaded and potentially receptive territories in Africa. This study sought to determine the invasion of An. stephensi in southern Ethiopia. METHODS: A targeted entomological survey, both larvae and adult, was conducted in Hawassa City, southern Ethiopia between November 2022 and February 2023. Anopheles larvae were reared to adults for species identification. CDC light traps and BG Pro traps were used indoors and outdoors overnight at selected houses to collect adult mosquitoes in the study area. Prokopack aspirator was employed to sample indoor resting mosquitoes in the morning. Adults of An. stephensi was identified using morphological keys and then confirmed by PCR. RESULTS: Larvae of An. stephensi were found in 28 (16.6%) of the 169 potential mosquito breeding sites surveyed. Out of 548 adult female Anopheles mosquitoes reared from larvae, 234 (42.7%) were identified as An. stephensi morphologically. A total of 449 female anophelines were caught, of which 53 (12.0%) were An. stephensi. Other anopheline species collected in the study area included Anopheles gambiae sensu lato (s.l.), Anopheles pharoensis, Anopheles coustani, and Anopheles demeilloni. CONCLUSION: This study confirmed the presence of An. stephensi in southern Ethiopia. The presence of both larval and adult stages of this mosquito attests that this species established sympatric colonization with native vector species such as An. gambiae (s.l.) in southern Ethiopia. The findings warrant further investigation on the ecology, behaviour, population genetics, and role of An. stephensi in malaria transmission in Ethiopia.


Asunto(s)
Anopheles , Malaria , Animales , Femenino , Malaria/epidemiología , Etiopía/epidemiología , Mosquitos Vectores , África Oriental , Larva
2.
J Infect Dis ; 223(8): 1456-1465, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-32803223

RESUMEN

To improve food security, investments in irrigated agriculture are anticipated to increase throughout Africa. However, the extent to which environmental changes from water resource development will impact malaria epidemiology remains unclear. This study was designed to compare the sensitivity of molecular markers used in deep amplicon sequencing for evaluating malaria transmission intensities and to assess malaria transmission intensity at various proximities to an irrigation scheme. Compared to ama1, csp, and msp1 amplicons, cpmp required the smallest sample size to detect differences in infection complexity between transmission risk zones. Transmission intensity was highest within 5 km of the irrigation scheme by polymerase chain reaction positivity rate, infection complexity, and linkage disequilibrium. The irrigated area provided a source of parasite infections for the surrounding 2- to 10-km area. This study highlights the suitability of the cpmp amplicon as a measure for transmission intensities and the impact of irrigation on microgeographic epidemiology of malaria parasites.


Asunto(s)
Riego Agrícola , Malaria Falciparum , Animales , Humanos , Kenia/epidemiología , Malaria Falciparum/epidemiología , Malaria Falciparum/transmisión , Proteína 1 de Superficie de Merozoito , Plasmodium
3.
Malar J ; 19(1): 344, 2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-32962693

RESUMEN

BACKGROUND: Despite extensive irrigation development in Ethiopia, limited studies assessed the impact of irrigation on malaria vector mosquito composition, abundance and seasonality. This study aimed to evaluate the impact of sugarcane irrigation on species composition, abundance and seasonality of malaria vectors. METHODS: Adult Anopheles mosquitoes were collected using CDC light traps from three irrigated and three non-irrigated clusters in and around Arjo-Didessa sugarcane irrigation scheme in southwestern Ethiopia. Mosquitoes were surveyed in four seasons: two wet and two dry, in 2018 and 2019. Mosquito species composition, abundance and seasonality were compared between irrigated and non-irrigated clusters. Anopheles mosquitoes were sorted out to species using morphological keys and molecular techniques. Chi square was used to test the relationships between Anopheles species occurrence, and environmental and seasonal parameters. RESULTS: Overall, 2108 female Anopheles mosquitoes comprising of six species were collected. Of these, 92.7% (n = 1954) were from irrigated clusters and 7.3% (n = 154) from the non-irrigated. The Anopheles gambiae complex was the most abundant (67.3%) followed by Anopheles coustani complex (25.3%) and Anopheles pharoensis (5.7%). PCR-based identification revealed that 74.7% (n = 168) of the An. gambiae complex were Anopheles arabiensis and 22.7% (n = 51) Anopheles amharicus. The density of An. gambiae complex (both indoor and outdoor) was higher in irrigated than non-irrigated clusters. The overall anopheline mosquito abundance during the wet seasons (87.2%; n = 1837) was higher than the dry seasons (12.8%; n = 271). CONCLUSION: The ongoing sugarcane irrigation activities in Arjo-Didessa created conditions suitable for malaria transmitting Anopheles species diversity and abundance. This could drive malaria transmission in Arjo-Didessa and its environs in both dry and wet seasons. Currently practiced malaria vector interventions need to be strengthened by including larval source management to reduce vector abundance in the irrigated areas.


Asunto(s)
Riego Agrícola , Anopheles/fisiología , Biodiversidad , Mosquitos Vectores/fisiología , Saccharum , Animales , Etiopía , Femenino , Malaria , Dinámica Poblacional , Saccharum/crecimiento & desarrollo , Estaciones del Año
4.
Malar J ; 18(1): 303, 2019 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-31481092

RESUMEN

BACKGROUND: The impact of large dams on malaria has received widespread attention. However, understanding how dam topography and transmission endemicity influence malaria incidences is limited. METHODS: Data from the European Commission's Joint Research Center and Shuttle Radar Topography Mission were used to determine reservoir perimeters and shoreline slope of African dams. Georeferenced data from the Malaria Atlas Project (MAP) were used to estimate malaria incidence rates in communities near reservoir shorelines. Population data from the WorldPop database were used to estimate the population at risk of malaria around dams in stable and unstable areas. RESULTS: The data showed that people living near (< 5 km) large dams in sub-Saharan Africa grew from 14.4 million in 2000 to 18.7 million in 2015. Overall, across sub-Saharan Africa between 0.7 and 1.6 million malaria cases per year are attributable to large dams. Whilst annual malaria incidence declined markedly in both stable and unstable areas between 2000 and 2015, the malaria impact of dams appeared to increase in unstable areas, but decreased in stable areas. Shoreline slope was found to be the most important malaria risk factor in dam-affected geographies, explaining 41-82% (P < 0.001) of the variation in malaria incidence around reservoirs. CONCLUSION: Gentler, more gradual shoreline slopes were associated with much greater malaria risk. Dam-related environmental variables such as dam topography and shoreline slopes are an important factor that should be considered in efforts to predict and control malaria around dams.


Asunto(s)
Lagos , Malaria/epidemiología , Abastecimiento de Agua , África del Sur del Sahara/epidemiología , Enfermedades Endémicas/estadística & datos numéricos , Humanos , Incidencia , Malaria/transmisión
5.
Malar J ; 18(1): 54, 2019 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-30808343

RESUMEN

BACKGROUND: A growing body of evidence suggests that dams intensify malaria transmission in sub-Saharan Africa. However, the environmental characteristics underpinning patterns in malaria transmission around dams are poorly understood. This study investigated local-scale environmental and meteorological variables linked to malaria transmission around three large dams in Ethiopia. METHODS: Monthly malaria incidence data (2010-2014) were collected from health centres around three dams located at lowland, midland and highland elevations in Ethiopia. Environmental (elevation, distance from the reservoir shoreline, Normalized Difference Vegetation Index (NDVI), monthly reservoir water level, monthly changes in water level) and meteorological (precipitation, and minimum and maximum air temperature) data were analysed to determine their relationship with monthly malaria transmission at each dam using correlation and stepwise multiple regression analysis. RESULTS: Village distance to reservoir shoreline (lagged by 1 and 2 months) and monthly change in water level (lagged by 1 month) were significantly correlated with malaria incidence at all three dams, while NDVI (lagged by 1 and 2 months) and monthly reservoir water level (lagged by 2 months) were found to have a significant influence at only the lowland and midland dams. Precipitation (lagged by 1 and 2 months) was also significantly associated with malaria incidence, but only at the lowland dam, while minimum and maximum air temperatures (lagged by 1 and 2 months) were important factors at only the highland dam. CONCLUSION: This study confirmed that reservoir-associated factors (distance from reservoir shoreline, monthly average reservoir water level, monthly water level change) were important predictors of increased malaria incidence in villages around Ethiopian dams in all elevation settings. Reservoir water level management should be considered as an additional malaria vector control tool to help manage malaria transmission around dams.


Asunto(s)
Transmisión de Enfermedad Infecciosa , Malaria/transmisión , Conceptos Meteorológicos , Etiopía/epidemiología , Femenino , Geografía , Humanos , Incidencia , Masculino , Estudios Retrospectivos , Agua
7.
Malar J ; 15(1): 448, 2016 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-27592590

RESUMEN

BACKGROUND: Sub-Saharan Africa (SSA) has embarked on a new era of dam building to improve food security and promote economic development. Nonetheless, the future impacts of dams on malaria transmission are poorly understood and seldom investigated in the context of climate and demographic change. METHODS: The distribution of malaria in the vicinity of 1268 existing dams in SSA was mapped under the Intergovernmental Panel on Climate Change (IPCC) representative concentration pathways (RCP) 2.6 and 8.5. Population projections and malaria incidence estimates were used to compute population at risk of malaria in both RCPs. Assuming no change in socio-economic interventions that may mitigate impacts, the change in malaria stability and malaria burden in the vicinity of the dams was calculated for the two RCPs through to the 2080s. Results were compared against the 2010 baseline. The annual number of malaria cases associated with dams and climate change was determined for each of the RCPs. RESULTS: The number of dams located in malarious areas is projected to increase in both RCPs. Population growth will add to the risk of transmission. The population at risk of malaria around existing dams and associated reservoirs, is estimated to increase from 15 million in 2010 to 21-23 million in the 2020s, 25-26 million in the 2050s and 28-29 million in the 2080s, depending on RCP. The number of malaria cases associated with dams in malarious areas is expected to increase from 1.1 million in 2010 to 1.2-1.6 million in the 2020s, 2.1-3.0 million in the 2050s and 2.4-3.0 million in the 2080s depending on RCP. The number of cases will always be higher in RCP 8.5 than RCP 2.6. CONCLUSION: In the absence of changes in other factors that affect transmission (e.g., socio-economic), the impact of dams on malaria in SSA will be significantly exacerbated by climate change and increases in population. Areas without malaria transmission at present, which will transition to regions of unstable transmission, may be worst affected. Modifying conventional water management frameworks to improve malaria control, holds the potential to mitigate some of this increase and should be more actively implemented.


Asunto(s)
Cambio Climático , Arquitectura y Construcción de Instituciones de Salud , Malaria/epidemiología , Malaria/transmisión , Agua/parasitología , África del Sur del Sahara/epidemiología , Simulación por Computador , Humanos , Incidencia , Medición de Riesgo
8.
Malar J ; 14: 339, 2015 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-26337834

RESUMEN

BACKGROUND: While there is growing recognition of the malaria impacts of large dams in sub-Saharan Africa, the cumulative malaria impact of reservoirs associated with current and future dam developments has not been quantified. The objective of this study was to estimate the current and predict the future impact of large dams on malaria in different eco-epidemiological settings across sub-Saharan Africa. METHODS: The locations of 1268 existing and 78 planned large dams in sub-Saharan Africa were mapped against the malaria stability index (stable, unstable and no malaria). The Plasmodium falciparum infection rate (PfIR) was determined for populations at different distances (<1, 1-2, 2-5, 5-9 km) from the associated reservoirs using the Malaria Atlas Project (MAP) and WorldPop databases. Results derived from MAP were verified by comparison with the results of detailed epidemiological studies conducted at 11 dams. RESULTS: Of the 1268 existing dams, 723 are located in malarious areas. Currently, about 15 million people live in close proximity (<5 km) to the reservoirs associated with these dams. A total of 1.1 million malaria cases annually are associated with them: 919,000 cases due to the presence of 416 dams in areas of unstable transmission and 204,000 cases due to the presence of 307 dams in areas of stable transmission. Of the 78 planned dams, 60 will be located in malarious areas and these will create an additional 56,000 cases annually. The variation in annual PfIR in communities as a function of distance from reservoirs was statistically significant in areas of unstable transmission but not in areas of stable transmission. CONCLUSION: In sub-Saharan Africa, dams contribute significantly to malaria risk particularly in areas of unstable transmission. Additional malaria control measures are thus required to reduce the impact of dams on malaria.


Asunto(s)
Lagos , Malaria Falciparum/epidemiología , Abastecimiento de Agua , África del Sur del Sahara , Enfermedades Endémicas/estadística & datos numéricos , Humanos , Prevalencia , Características de la Residencia/estadística & datos numéricos , Análisis Espacial
9.
Malar J ; 13: 360, 2014 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-25218697

RESUMEN

BACKGROUND: Irrigation schemes have been blamed for the increase in malaria in many parts of sub-Saharan Africa. However, proper water management could help mitigate malaria around irrigation schemes in this region. This study investigates the link between irrigation and malaria in Central Ethiopia. METHODS: Larval and adult mosquitoes were collected fortnightly between November 2009 and October 2010 from two irrigated and two non-irrigated (control) villages in the Ziway area, Central Ethiopia. Daily canal water releases were recorded during the study period and bi-weekly correlation analysis was done to determine relationships between canal water releases and larval/adult vector densities. Blood meal sources (bovine vs human) and malaria sporozoite infection were tested using enzyme-linked immunosorbent assay (ELISA). Monthly malaria data were also collected from central health centre of the study villages. RESULTS: Monthly malaria incidence was over six-fold higher in the irrigated villages than the non-irrigated villages. The number of anopheline breeding habitats was 3.6 times higher in the irrigated villages than the non-irrigated villages and the most common Anopheles mosquito breeding habitats were waterlogged field puddles, leakage pools from irrigation canals and poorly functioning irrigation canals. Larval and adult anopheline densities were seven- and nine-fold higher in the irrigated villages than in the non-irrigated villages, respectively, during the study period. Anopheles arabiensis was the predominant species in the study area. Plasmodium falciparum sporozoite rates of An. arabiensis and Anopheles pharoensis were significantly higher in the irrigated villages than the non-irrigated villages. The annual entomological inoculation rate (EIR) calculated for the irrigated and non-irrigated villages were 34.8 and 0.25 P. falciparum infective bites per person per year, respectively. A strong positive correlation was found between bi-weekly anopheline larval density and canal water releases. Similarly, there was a strong positive correlation between bi-weekly vector density and canal water releases lagged by two weeks. Furthermore, monthly malaria incidence was strongly correlated with monthly vector density lagged by a month in the irrigated villages. CONCLUSION: The present study revealed that the irrigation schemes resulted in intensified malaria transmission due to poor canal water management. Proper canal water management could reduce vector abundance and malaria transmission in the irrigated villages.


Asunto(s)
Culicidae/parasitología , Insectos Vectores/parasitología , Malaria/prevención & control , Malaria/transmisión , Agua/parasitología , Riego Agrícola , Animales , Etiopía/epidemiología , Humanos , Incidencia , Larva , Malaria/epidemiología , Control de Mosquitos , Estudios Retrospectivos
10.
Res Sq ; 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38559068

RESUMEN

Background: To interrupt residual malaria transmission and achieve successful elimination of P. falciparum in low-transmission settings, the World Health Organization (WHO) recommends the administration of a single dose of 0.25 mg/kg (or 15 mg/kg for adults) primaquine (PQ) combined with artemisinin-based combination therapy (ACT) without glucose-6-phosphate dehydrogenase (G6PD) testing. However, due to the risk of hemolysis in patients with G6PD deficiency (G6PDd), PQ use is not as common. Thus, this study aimed to assess the safety of a single low dose of PQ administered to patients with G6PD deficiency. Methods: An observational cohort study was conducted with patients treated for uncomplicated P. falciparum malaria with either single-dose PQ (0.25 mg/kg) (SLD PQ) + ACT or ACT alone. Microscopy-confirmed uncomplicated P. falciparum malaria patients visiting public health facilities in Arjo Didessa, Southwest Ethiopia, were enrolled in the study from September 2019 to November 2022. Patients with uncomplicated P. falciparum malaria were followed up for 28 days through clinical and laboratory diagnosis, such as measurements of G6PD levels and hemoglobin (Hb) concentrations. G6PD levels were masured by a quantiative biosensor machine. Patient interviews were also conducted, and the type and frequency of clinical complaints were recorded. Hb data were taken on days (D) 7, 14, 21, and 28 following treatment with SLD-PQ + ACT or ACT alone. Results: A total of 249 patients with uncomplicated P. falciparum malaria were enrolled in this study. Of these, 83 (33.3%) patients received ACT alone, and 166 (66.7%) received ACT combined with SLD-PQ treatment. The median age of the patients was 20 (IQR 14) years. G6PD deficiency was found in 17 (6.8%) patients, 14 males and 3 females. There were 6 (7.2%) and 11 (6.6%) phenotypic G6PD-deficient patients in the ACT alone and ACT + SLD-PQ arms, respectively. The mean Hb levels in patients treated with ACT + SLD-PQ were reduced by an average of 0.45 g/dl (95% CI = 0.39 to 0.52) in the posttreatment phase (D7) compared to a reduction of 0.30 g/dl (95% CI = 0.14 to -0.47) in patients treated with ACT alone (P = 0.157). A greater mean Hb reduction was observed on day 7 in the G6PD deficiency group (-0.56 g/dL) than in the G6PD normal group (-0.39 g/dL); however, there was no statistically significant difference (P = 0.359). Overall, D14 losses were 0.10 g/dl (95% CI = -0.00 to 0.20) and 0.05 g/dl (95% CI = -0.123 to 0.22) in patients with and without SLD-PQ, respectively (P = 0.412). Conclusions: Our findings showed that single low-dose primaquine (SLD-PQ) treatment for uncomplicated P. falciparum malaria is safe and does not increase the risk of hemolysis in G6PDd patients. This evidence suggests that the wider deployment of SLD-PQ for P. falciparum is part of a global strategy for eliminating P. falciparum malaria.

11.
PLoS One ; 18(4): e0284247, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37098016

RESUMEN

BACKGROUND: Water resource development practice such as irrigation is key to ensuring economic growth and food security in developing countries. However, unintended public health problems such as malaria linked to such development projects have been a concern. This study aimed to determine the impact of irrigation on malaria incidence and vector mosquito abundance in southern Ethiopia. METHODS: Eight years' malaria morbidity data were extracted from the medical registers of health facilities in both irrigated and non-irrigated settings. Additionally, adult and larval malaria vector surveys were carried out in both irrigated and non-irrigated villages. The trend of malaria incidence, case distribution across age and sex, seasonality, parasite species proportion, and mosquito density were analyzed and compared between irrigated and non-irrigated villages. RESULTS: The result showed that annual mean malaria incidence was 6.3 higher in the irrigated (95% CI: 0.7-33.6) than in the non-irrigated villages (95% CI: 1.2-20.6). Although a remarkable declining trend in malaria incidence was observed for four successive years (2013-2017), a significant resurgence between 2018 and 2020 was noted following the introduction of irrigation schemes. The densities of adult Anopheles mosquitoes were 15-fold higher in the irrigated compared to non-irrigated villages. Of the total potential mosquito-breeding habitats surveyed, the majority (93%) were from irrigated villages. CONCLUSION: Higher malaria incidence, adult Anopheles density, and mosquito-breeding habitat were recorded in the irrigated villages compared to non-irrigated villages. These observations have important implications for the effectiveness of existing malaria interventions. Environmental management could help reduce the breeding of malaria vector mosquitoes around irrigation schemes.


Asunto(s)
Anopheles , Malaria , Animales , Malaria/epidemiología , Anopheles/parasitología , Etiopía/epidemiología , Incidencia , Mosquitos Vectores , Estaciones del Año , Ecosistema
12.
Res Sq ; 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37398112

RESUMEN

Background: Anopheles stephensi is an emerging exotic invasive urban vector of malaria in East Africa. The World Health Organization recently announced an initiative to take concerted actions to limit this vector's expansion by strengthening surveillance and control in invaded and potentially receptive territories in Africa. This study sought to determine the geographic distribution of An. stephensi in southern Ethiopia. Methods: A targeted entomological survey, both larvae and adult, was conducted in Hawassa city, Southern Ethiopia between November 2022 and February 2023. Anopheles Larvae were reared to adults for species identification. CDC light traps and BG Pro traps were used overnight both indoor and outdoor at selected houses to collect adult mosquitoes in the study area. Prokopack Aspirator was employed to sample indoor resting mosquitoes in the morning. Adults of An. stephensi was identified using morphological keys, and then confirmed by PCR. Results: Larvae of An. stephensi were found in 28 (16.6%) of the 169 potential mosquito breeding sites surveyed. Out of 548 adult female Anopheles mosquitoes reared from larvae, 234 (42.7%) were identified to be An. stephensi morphologically. A total of 449 female anophelines were caught, of which 53 (12.0%) were An. stephensi. Other anopheline species collected in the study area included An. gambiae (s.l.), An. pharoensis, An. coustani, and An. demeilloni. Conclusion: The study, for the first time, confirmed the presence of An. stephensi in southern Ethiopia. The presence of both larval and adult stages of this mosquito attest that this species established a sympatric colonization with native vector species such as An. gambiae (s.l.) in Southern Ethiopia. The findings warrant further investigation on the ecology, behavior, population genetics, and role of An. stephensi in malaria transmission in Ethiopia.

13.
Trop Med Int Health ; 17(11): 1320-8, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22909096

RESUMEN

OBJECTIVES: To identify entomological determinants of increased malaria transmission in the vicinity of the Koka reservoir in Central Ethiopia. METHODS: Larval and adult mosquitoes were collected between August 2006 and December 2007 in villages close to (<1km) and farther away from (>6 km) the Koka reservoir. Adult mosquitoes were tested for the source of blood meal and sporozoites. RESULTS: In reservoir villages, shoreline puddles and seepage at the base of the dam were the most productive Anopheles-breeding habitats. In villages farther from the dam (control villages), rain pools were important breeding habitats. About five times more mature anopheline larvae and six times more adult anophelines were found in the villages near the reservoir. Anopheles arabiensis and Anopheles pharoensis were the most abundant species in the reservoir villages throughout the study period. The majority of adult and larval anophelines were collected during the peak malaria transmission season (September-October). Blood meal tests suggested that A. arabiensis fed on humans more commonly (74.6%) than A. pharoensis (62.3%). Plasmodium falciparum-infected A. arabiensis (0.97-1.32%) and A. pharoensis (0.47-0.70%) were present in the reservoir villages. No P. falciparum-infected anophelines were present in the control villages. CONCLUSIONS: The Koka reservoir contributes to increased numbers of productive Anopheles-breeding sites. This is the likely the cause for the greater abundance of malaria vectors and higher number of malaria cases evidenced in the reservoir villages. Complementing current malaria control strategies with source reduction interventions should be considered to reduce malaria in the vicinity of the reservoir.


Asunto(s)
Anopheles/fisiología , Insectos Vectores , Malaria Falciparum/transmisión , Plasmodium falciparum/aislamiento & purificación , Abastecimiento de Agua , Animales , Anopheles/parasitología , Ecosistema , Etiopía , Humanos , Larva/fisiología , Salud Rural , Estaciones del Año , Factores Socioeconómicos
14.
PLoS One ; 17(1): e0261713, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35030201

RESUMEN

BACKGROUND: Indoor residual spraying and insecticide-treated nets are among the key malaria control intervention tools. However, their efficacy is declining due to the development and spread of insecticide resistant vectors. In Ethiopia, several studies reported resistance of An. arabiensis to multiple insecticide classes. However, such data is scarce in irrigated areas of the country where insecticides, pesticides and herbicides are intensively used. Susceptibility of An. gambiae s.l. to existing and new insecticides and resistance mechanisms were assessed in Arjo-Didessa sugarcane plantation area, southwestern Ethiopia. METHODS: Adult An. gambiae s.l. reared from larval/pupal collections of Arjo-Didessa sugarcane irrigation area and its surrounding were tested for their susceptibility to selected insecticides. Randomly selected An. gambiae s.l. (dead and survived) samples were identified to species using species-specific polymerase chain reaction (PCR) and were further analyzed for the presence of knockdown resistance (kdr) alleles using allele-specific PCR. RESULTS: Among the 214 An. gambiae s.l. samples analyzed by PCR, 89% (n = 190) were An. amharicus and 9% (n = 20) were An. arabiensis. Mortality rates of the An. gambiae s.l. exposed to deltamethrin and alphacypermethrin were 85% and 86.8%, respectively. On the other hand, mortalities against pirmiphos-methyl, bendiocarb, propoxur and clothianidin were 100%, 99%, 100% and 100%, respectively. Of those sub-samples (An. amharicus and An. arabiensis) examined for presence of kdr gene, none of them were found to carry the L1014F (West African) allelic mutation. CONCLUSION: Anopheles amharicus and An. arabiensis from Arjo-Didessa sugarcane irrigation area were resistant to pyrethroids which might be synergized by extensive use of agricultural chemicals. Occurrence of pyrethroid resistant malaria vectors could challenge the ongoing malaria control and elimination program in the area unless resistance management strategies are implemented. Given the resistance of An. amharicus to pyrethroids, its behavior and vectorial capacity should be further investigated.


Asunto(s)
Riego Agrícola , Alelos , Anopheles/genética , Resistencia a los Insecticidas/genética , Mosquitos Vectores/genética , Piretrinas , Animales , Etiopía
15.
Sci Rep ; 11(1): 13355, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-34172779

RESUMEN

Expansion of various types of water infrastructure is critical to water security in Africa. To date, analysis of adverse disease impacts has focused mainly on large dams. The aim of this study was to examine the effect of both small and large dams on malaria in four river basins in sub-Saharan Africa (i.e., the Limpopo, Omo-Turkana, Volta and Zambezi river basins). The European Commission's Joint Research Center (JRC) Yearly Water Classification History v1.0 data set was used to identify water bodies in each of the basins. Annual malaria incidence data were obtained from the Malaria Atlas Project (MAP) database for the years 2000, 2005, 2010 and 2015. A total of 4907 small dams and 258 large dams in the four basins, with 14.7million people living close (< 5 km) to their reservoirs in 2015, were analysed. The annual number of malaria cases attributable to dams of either size across the four basins was 0.9-1.7 million depending on the year, of which between 77 and 85% was due to small dams. The majority of these cases occur in areas of stable transmission. Malaria incidence per kilometre of reservoir shoreline varied between years but for small dams was typically 2-7 times greater than that for large dams in the same basin. Between 2000 and 2015, the annual malaria incidence showed a broadly declining trend for both large and small dam reservoirs in areas of stable transmission in all four basins. In conclusion, the malaria impact of dams is far greater than previously recognized. Small and large dams represent hotspots of malaria transmission and, as such, should be a critical focus of future disease control efforts.


Asunto(s)
Malaria/transmisión , Agua/química , África del Sur del Sahara , Manejo de Datos , Humanos , Incidencia , Ríos/microbiología , Abastecimiento de Agua/métodos
16.
Parasit Vectors ; 14(1): 142, 2021 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-33676562

RESUMEN

BACKGROUND: To ensure food security, sub-Saharan Africa has initiated massive water resource development projects, such as irrigated agriculture, in recent years. However, such environmental modifications affect the survivorship and development of mosquitoes, which are vectors of different diseases. This study aimed at determining the effects of irrigation practices on development and survivorship of Anopheles gambiae s.l. in Ethiopia. METHODS: A life table experiment was conducted to examine the effect of environmental modification on survivorship of both immature and adult An. gambiae s.l. in irrigated and non-irrigated areas. The pupation rate and development time of the immatures and adult longevity and fecundity were compared between the two settings. RESULTS: The estimated mean survival time of female An. gambiae s.l. in the irrigated and non-irrigated areas was 37.9 and 31.3 days, respectively. A survival analysis showed that adult females of An. gambiae s.l. placed in an irrigated area lived significantly longer than those in a non-irrigated area (χ2 = 18.3, df = 1, P <0.001), and An. gambiae s.l. females lived significantly longer than males in both areas (P < 0.001). CONCLUSIONS: Adult An. gambiae s.l. survivorship was found to be enhanced in the irrigated area compared to non-irrigated area. Longer survival of adult mosquitoes in irrigated areas could have important implications for vectorial capacity and hence malaria transmission.


Asunto(s)
Riego Agrícola , Agricultura/normas , Anopheles/fisiología , Saccharum , Agricultura/métodos , Animales , Anopheles/crecimiento & desarrollo , Ecosistema , Etiopía , Femenino , Masculino , Control de Mosquitos , Estaciones del Año
17.
Sci Rep ; 11(1): 10150, 2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33980945

RESUMEN

Larval source management has gained renewed interest as a malaria control strategy in Africa but the widespread and transient nature of larval breeding sites poses a challenge to its implementation. To address this problem, we propose combining an integrated high resolution (50 m) distributed hydrological model and remotely sensed data to simulate potential malaria vector aquatic habitats. The novelty of our approach lies in its consideration of irrigation practices and its ability to resolve complex ponding processes that contribute to potential larval habitats. The simulation was performed for the year of 2018 using ParFlow-Common Land Model (CLM) in a sugarcane plantation in the Oromia region, Ethiopia to examine the effects of rainfall and irrigation. The model was calibrated using field observations of larval habitats to successfully predict ponding at all surveyed locations from the validation dataset. Results show that without irrigation, at least half of the area inside the farms had a 40% probability of potential larval habitat occurrence. With irrigation, the probability increased to 56%. Irrigation dampened the seasonality of the potential larval habitats such that the peak larval habitat occurrence window during the rainy season was extended into the dry season. Furthermore, the stability of the habitats was prolonged, with a significant shift from semi-permanent to permanent habitats. Our study provides a hydrological perspective on the impact of environmental modification on malaria vector ecology, which can potentially inform malaria control strategies through better water management.


Asunto(s)
Ecosistema , Malaria/epidemiología , Malaria/transmisión , Modelos Teóricos , Mosquitos Vectores/parasitología , Algoritmos , Animales , Vectores de Enfermedades , Etiopía/epidemiología , Geografía , Humanos , Hidrología , Larva , Malaria/parasitología , Estaciones del Año , Análisis Espacio-Temporal
18.
Trop Med Int Health ; 15(1): 41-50, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19917039

RESUMEN

OBJECTIVE: To assess the impact of a small-scale irrigation scheme in Ziway area, a semi-arid area in the Central Ethiopian Rift Valley, on malaria transmission. METHOD: Parasitological, entomological and socio-economic studies were conducted in a village with and a village without irrigation. Blood smear samples were taken from individuals during the dry and wet seasons of 2005/2006. Socio-economic data were collected from household heads and key agricultural and health informants through interviews and questionnaires. Larval and adult mosquitoes were sampled during the dry and short wet seasons of 2006. Female anopheline mosquitoes were tested by enzyme-linked immunosorbent assay for blood meal sources and sporozoite infections. RESULTS: Malaria prevalence was higher in the irrigated village (19%, P < 0.05) than the non-irrigated village (16%). In the irrigated village, malaria prevalence was higher in the dry season than in the wet season while the reverse occurred in the non-irrigated village. Households with access to irrigation had larger farm land sizes and higher incomes, but also higher prevalence of malaria. Larval and adult abundance of the malaria vectors, Anopheles arabiensis and Anopheles pharoensis, was higher in the irrigated than in the non-irrigated village throughout the study period. Furthermore, the abundance of An. pharoensis was significantly higher than that of An. arabiensis during the dry irrigated period of the year. Canal leakage pools, irrigated fields and irrigation canals were the major breeding habitats of the two vector mosquitoes. Plasmodium falciparum sporozoite infection rates of 1.18% and 0.66% were determined for An. arabiensis and An. pharoensis in the irrigated village. Peak biting activities of the vectors occurred before 22:00 h, which is a source of concern that the effectiveness of ITNs may be compromised as the mosquitoes feed on blood before people go to bed. CONCLUSION: Irrigation schemes along the Ethiopian Rift Valley may intensify malaria by increasing the level of prevalence during the dry season. To reduce the intensity of malaria transmission in the small-scale irrigation schemes currently in operation in Ethiopia, year-round source reduction by using proper irrigation water management, coupled with health education, needs to be incorporated into the existing malaria control strategies.


Asunto(s)
Malaria Falciparum/epidemiología , Malaria Vivax/epidemiología , Abastecimiento de Agua , Adolescente , Adulto , Distribución por Edad , Anciano , Agricultura , Animales , Anopheles/clasificación , Anopheles/crecimiento & desarrollo , Anopheles/parasitología , Niño , Preescolar , Ecosistema , Etiopía/epidemiología , Femenino , Encuestas Epidemiológicas , Humanos , Lactante , Insectos Vectores/clasificación , Insectos Vectores/crecimiento & desarrollo , Insectos Vectores/parasitología , Malaria Falciparum/transmisión , Malaria Vivax/transmisión , Masculino , Persona de Mediana Edad , Prevalencia , Salud Rural/estadística & datos numéricos , Estaciones del Año , Factores Socioeconómicos , Adulto Joven
19.
Infect Dis Poverty ; 9(1): 9, 2020 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-31987056

RESUMEN

BACKGROUND: Irrigated agriculture is key to increase agricultural productivity and ensure food security in Africa. However, unintended negative public health impacts (e.g. malaria) of such environmental modification have been a challenge. This study assessed the diversity and distribution of breeding habitats of malaria vector mosquitoes around Arjo-Dedessa irrigation development site in Southwest Ethiopia. METHODS: Anopheline mosquito larvae were surveyed from two agroecosystems, 'irrigated' and 'non-irrigated' areas during the dry (December 2017-February 2018) and wet (June 2018-August 2018) seasons. Mosquito habitat diversity and larval abundance were compared between the irrigated and non-irrigated areas. The association between anopheline mosquito larvae occurrence and environmental parameters was analysed using Pearson chi-square. Multiple logistic regression analysis was used to determine primary parameters that influence the occurrence of anopheline larvae. RESULTS: Overall, 319 aquatic habitats were surveyed during the study period. Around 60% (n = 152) of the habitats were positive for anopheline mosquito larvae, of which 63.8% (n = 97) and 36.2% (n = 55) were from irrigated and non-irrigated areas, respectively. The number of anopheline positive habitats was two-fold higher in irrigated than non-irrigated areas. Anopheline larval abundance in the irrigated area was 16.6% higher than the non-irrigated area. Pearson's chi-square analysis showed that season (χ2 = 63.122, df = 1, P < 0.001), agroecosystem (being irrigated or non-irrigated) (χ2 = 6.448, df = 1, P = 0.011), and turbidity (χ2 = 7.296, df = 2, P = 0.025) had a significant association with larval anopheline occurrence. CONCLUSIONS: The study showed a higher anopheline mosquito breeding habitat diversity, larval occurrence and abundance in the irrigated than non-irrigated areas in both dry and wet seasons. This indicates that irrigation development activities contribute to proliferation of suitable mosquito breeding habitats that could increase the risk of malaria transmission. Incorporating larval source management into routine malaria vector control strategies could help reduce mosquito population density and malaria transmission around irrigation schemes.


Asunto(s)
Riego Agrícola , Distribución Animal , Anopheles/fisiología , Ecosistema , Control de Mosquitos , Mosquitos Vectores/fisiología , Animales , Anopheles/crecimiento & desarrollo , Etiopía , Larva/fisiología , Mosquitos Vectores/crecimiento & desarrollo , Estaciones del Año
20.
PLoS One ; 15(12): e0244447, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33373422

RESUMEN

Rapidly increasing pyrethroid insecticide resistance and changes in vector biting and resting behavior pose serious challenges in malaria control. Mosquito repellents, especially spatial repellents, have received much attention from industry. We attempted to simulate interactions between mosquitoes and repellents using a machine learning method, the Self-Propelled Particle (SPP) model, which we modified to include attractiveness/repellency effects. We simulated a random walk scenario and scenarios with insecticide susceptible/resistant mosquitoes against repellent alone and against repellent plus attractant (to mimic a human host). Simulation results indicated that without attractant/repellent, mosquitoes would fly anywhere in the cage at random. With attractant, all mosquitoes were attracted to the source of the odor by the end. With repellent, all insecticide-susceptible mosquitoes eventually moved to the corner of the cage farthest from the repellent release point, whereas, a high proportion of highly resistant mosquitoes might reach the attractant release point (the human) earlier in the simulation. At fixed concentration, a high proportion of mosquitoes could be able to reach the host when the relative repellency efficacy (compare to attractant efficacy) was <1, whereas, no mosquitoes reached the host when the relative repellency efficacy was > 1. This result implies that repellent may not be sufficient against highly physiologically insecticide resistant mosquitoes, since very high concentrations of repellent are neither practically feasible nor cost-effective.


Asunto(s)
Anopheles/fisiología , Conducta de Búsqueda de Hospedador/efectos de los fármacos , Repelentes de Insectos/farmacología , Malaria/prevención & control , Mosquitos Vectores/fisiología , Animales , Anopheles/efectos de los fármacos , Simulación por Computador , Vuelo Animal/efectos de los fármacos , Vuelo Animal/fisiología , Conducta de Búsqueda de Hospedador/fisiología , Humanos , Resistencia a los Insecticidas/fisiología , Insecticidas/farmacología , Aprendizaje Automático , Modelos Biológicos , Control de Mosquitos/métodos , Mosquitos Vectores/efectos de los fármacos , Odorantes , Piretrinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA