Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Mol Plant Microbe Interact ; 30(9): 691-700, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28510484

RESUMEN

The root-infecting necrotrophic fungal pathogen Rhizoctoniasolani causes significant disease to all the world's major food crops. As a model for pathogenesis of legumes, we have examined the interaction of R. solani AG8 with Medicago truncatula. RNAseq analysis of the moderately resistant M. truncatula accession A17 and highly susceptible sickle (skl) mutant (defective in ethylene sensing) identified major early transcriptional reprogramming in A17. Responses specific to A17 included components of ethylene signaling, reactive oxygen species metabolism, and consistent upregulation of the isoflavonoid biosynthesis pathway. Mass spectrometry revealed accumulation of the isoflavonoid-related compounds liquiritigenin, formononetin, medicarpin, and biochanin A in A17. Overexpression of an isoflavone synthase in M. truncatula roots increased isoflavonoid accumulation and resistance to R. solani. Addition of exogenous medicarpin suggested this phytoalexin may be one of several isoflavonoids required to contribute to resistance to R. solani. Together, these results provide evidence for the role of ethylene-mediated accumulation of isoflavonoids during defense against root pathogens in legumes. The involvement of ethylene signaling and isoflavonoids in the regulation of both symbiont-legume and pathogen-legume interactions in the same tissue may suggest tight regulation of these responses are required in the root tissue.


Asunto(s)
Resistencia a la Enfermedad , Etilenos/metabolismo , Isoflavonas/metabolismo , Medicago truncatula/microbiología , Enfermedades de las Plantas/microbiología , Raíces de Plantas/microbiología , Rhizoctonia/fisiología , Transducción de Señal , Vías Biosintéticas/genética , Resistencia a la Enfermedad/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Medicago truncatula/genética , Medicago truncatula/inmunología , Medicago truncatula/metabolismo , Metaboloma/genética , Mutación/genética , Fenotipo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Rhizoctonia/crecimiento & desarrollo , Transcripción Genética
2.
BMC Genomics ; 17: 191, 2016 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-26945779

RESUMEN

BACKGROUND: Soil-borne fungi of the Fusarium oxysporum species complex cause devastating wilt disease on many crops including legumes that supply human dietary protein needs across many parts of the globe. We present and compare draft genome assemblies for three legume-infecting formae speciales (ff. spp.): F. oxysporum f. sp. ciceris (Foc-38-1) and f. sp. pisi (Fop-37622), significant pathogens of chickpea and pea respectively, the world's second and third most important grain legumes, and lastly f. sp. medicaginis (Fom-5190a) for which we developed a model legume pathosystem utilising Medicago truncatula. RESULTS: Focusing on the identification of pathogenicity gene content, we leveraged the reference genomes of Fusarium pathogens F. oxysporum f. sp. lycopersici (tomato-infecting) and F. solani (pea-infecting) and their well-characterised core and dispensable chromosomes to predict genomic organisation in the newly sequenced legume-infecting isolates. Dispensable chromosomes are not essential for growth and in Fusarium species are known to be enriched in host-specificity and pathogenicity-associated genes. Comparative genomics of the publicly available Fusarium species revealed differential patterns of sequence conservation across F. oxysporum formae speciales, with legume-pathogenic formae speciales not exhibiting greater sequence conservation between them relative to non-legume-infecting formae speciales, possibly indicating the lack of a common ancestral source for legume pathogenicity. Combining predicted dispensable gene content with in planta expression in the model legume-infecting isolate, we identified small conserved regions and candidate effectors, four of which shared greatest similarity to proteins from another legume-infecting ff. spp. CONCLUSIONS: We demonstrate that distinction of core and potential dispensable genomic regions of novel F. oxysporum genomes is an effective tool to facilitate effector discovery and the identification of gene content possibly linked to host specificity. While the legume-infecting isolates didn't share large genomic regions of pathogenicity-related content, smaller regions and candidate effector proteins were highly conserved, suggesting that they may play specific roles in inducing disease on legume hosts.


Asunto(s)
Fabaceae/microbiología , Fusarium/genética , Genoma Fúngico , Hibridación Genómica Comparativa , Secuencia Conservada , ADN de Hongos/genética , Proteínas Fúngicas/genética , Fusarium/clasificación , Especificidad del Huésped , Anotación de Secuencia Molecular , Filogenia , Enfermedades de las Plantas/microbiología , Análisis de Secuencia de ADN
3.
Mol Plant Microbe Interact ; 28(9): 1049-58, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26035128

RESUMEN

Jasmonic acid (JA) is an essential hormone in plant development and defense responses in Arabidopsis thaliana. Exogenous treatment with JA has recently been shown to alter root exudate profiles and the composition of root-associated bacterial communities. However, it is currently unknown whether disruptions of the JA in the rhizosphere affect root exudation profiles and the relative abundance of bacteria and archaea in the rhizosphere. In the present study, two Arabidopsis mutants that are disrupted in different branches of the jasmonate pathway, namely myc2 and med25, were cultivated in nutrient solution and soil to profile root exudates and bacterial and archaeal communities, respectively. Compared with the wild type, both mutants showed distinct exudation patterns, including lower amounts of asparagine, ornithine, and tryptophan, as well as distinct bacterial and archaeal community composition, as illustrated by an increased abundance of Streptomyces, Bacillus, and Lysinibacillus taxa in the med25 rhizosphere and an Enterobacteriaceae population in myc2. Alternatively, the Clostridiales population was less abundant in the rhizosphere of both mutants. Similarities between plant genotypes were highly correlated, as determined by operational taxonomic units in the rhizosphere and metabolites in root exudates. This strongly suggests that root exudates play a major role in modulating changes in microbial community composition upon plant defense responses.


Asunto(s)
Arabidopsis/fisiología , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Exudados de Plantas/fisiología , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Transducción de Señal/fisiología , Consorcios Microbianos , Microbiología del Suelo
4.
Nat Biotechnol ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769424

RESUMEN

The construction of synthetic gene circuits in plants has been limited by a lack of orthogonal and modular parts. Here, we implement a CRISPR (clustered regularly interspaced short palindromic repeats) interference (CRISPRi)-based reversible gene circuit platform in plants. We create a toolkit of engineered repressible promoters of different strengths and construct NOT and NOR gates in Arabidopsis thaliana protoplasts. We determine the optimal processing system to express single guide RNAs from RNA Pol II promoters to introduce NOR gate programmability for interfacing with host regulatory sequences. The performance of a NOR gate in stably transformed Arabidopsis plants demonstrates the system's programmability and reversibility in a complex multicellular organism. Furthermore, cross-species activity of CRISPRi-based logic gates is shown in Physcomitrium patens, Triticum aestivum and Brassica napus protoplasts. Layering multiple NOR gates together creates OR, NIMPLY and AND logic functions, highlighting the modularity of our system. Our CRISPRi circuits are orthogonal, compact, reversible, programmable and modular and provide a platform for sophisticated spatiotemporal control of gene expression in plants.

5.
Semin Cell Dev Biol ; 22(7): 741-8, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21803167

RESUMEN

Since its original discovery in yeast, the Mediator complex has been identified in a wide range of organisms across the eukaryotic kingdom. Despite being experimentally purified from a number of fungal and metazoan organisms, it was not until 2007, thirteen years after its initial discovery, that the Mediator complex was successfully isolated from plants. With a number of papers now beginning to emerge on the plant Mediator complex, this review aims to provide an overview of the diverse functions that have been identified for individual plant Mediator subunits. In addition to demonstrating roles in plant development, flowering, hormone signaling and biotic and abiotic stress tolerance; recent findings have revealed novel functions for plant Mediator subunits, including mRNA, miRNA and rRNA processing, as well as controlling DNA and protein stability. These diverse activities have expanded the known functions of the Mediator complex and demonstrate a variety of new insights that have been gained from investigations into the plant Mediator complex. Future directions for research into this multi-functional protein complex will be discussed.


Asunto(s)
Complejo Mediador/genética , Complejo Mediador/metabolismo , Plantas/genética , Plantas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al ADN , Flores/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Desarrollo de la Planta , Procesamiento Postranscripcional del ARN , ARN no Traducido/biosíntesis , Transducción de Señal , Estrés Fisiológico , Transcripción Genética
6.
Plant Physiol ; 160(1): 541-55, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22822211

RESUMEN

The PHYTOCHROME AND FLOWERING TIME1 gene encoding the MEDIATOR25 (MED25) subunit of the eukaryotic Mediator complex is a positive regulator of jasmonate (JA)-responsive gene expression in Arabidopsis (Arabidopsis thaliana). Based on the function of the Mediator complex as a bridge between DNA-bound transcriptional activators and the RNA polymerase II complex, MED25 has been hypothesized to function in association with transcriptional regulators of the JA pathway. However, it is currently not known mechanistically how MED25 functions to regulate JA-responsive gene expression. In this study, we show that MED25 physically interacts with several key transcriptional regulators of the JA signaling pathway, including the APETALA2 (AP2)/ETHYLENE RESPONSE FACTOR (ERF) transcription factors OCTADECANOID-RESPONSIVE ARABIDOPSIS AP2/ERF59 and ERF1 as well as the master regulator MYC2. Physical interaction detected between MED25 and four group IX AP2/ERF transcription factors was shown to require the activator interaction domain of MED25 as well as the recently discovered Conserved Motif IX-1/EDLL transcription activation motif of MED25-interacting AP2/ERFs. Using transcriptional activation experiments, we also show that OCTADECANOID-RESPONSIVE ARABIDOPSIS AP2/ERF59- and ERF1-dependent activation of PLANT DEFENSIN1.2 as well as MYC2-dependent activation of VEGETATIVE STORAGE PROTEIN1 requires a functional MED25. In addition, MED25 is required for MYC2-dependent repression of pathogen defense genes. These results suggest an important role for MED25 as an integrative hub within the Mediator complex during the regulation of JA-associated gene expression.


Asunto(s)
Acetatos/farmacología , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Ciclopentanos/farmacología , Regulación de la Expresión Génica de las Plantas , Proteínas Nucleares/metabolismo , Oxilipinas/farmacología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Secuencia Conservada , Proteínas de Unión al ADN , Genes de Plantas , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Datos de Secuencia Molecular , Proteínas Nucleares/genética , Unión Proteica , Mapeo de Interacción de Proteínas , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional , Técnicas del Sistema de Dos Híbridos
7.
Nat Biotechnol ; 40(12): 1862-1872, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35788565

RESUMEN

Plant biotechnology predominantly relies on a restricted set of genetic parts with limited capability to customize spatiotemporal and conditional expression patterns. Synthetic gene circuits have the potential to integrate multiple customizable input signals through a processing unit constructed from biological parts to produce a predictable and programmable output. Here we present a suite of functional recombinase-based gene circuits for use in plants. We first established a range of key gene circuit components compatible with plant cell functionality. We then used these to develop a range of operational logic gates using the identify function (activation) and negation function (repression) in Arabidopsis protoplasts and in vivo, demonstrating their utility for programmable manipulation of transcriptional activity in a complex multicellular organism. Specifically, using recombinases and plant control elements, we activated transgenes in YES, OR and AND gates and repressed them in NOT, NOR and NAND gates; we also implemented the A NIMPLY B gate that combines activation and repression. Through use of genetic recombination, these circuits create stable long-term changes in expression and recording of past stimuli. This highly compact programmable gene circuit platform provides new capabilities for engineering sophisticated transcriptional programs and previously unrealized traits into plants.


Asunto(s)
Reprogramación Celular , Redes Reguladoras de Genes , Reprogramación Celular/genética , Redes Reguladoras de Genes/genética , Plantas/genética , Lógica , Recombinasas/genética , Biología Sintética
8.
Mol Plant Microbe Interact ; 24(6): 733-48, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21281113

RESUMEN

Fusarium oxysporum is a root-infecting fungal pathogen that causes wilt disease on a broad range of plant species, including the model plant Arabidopsis thaliana. Currently, very little is known about the molecular or physiological processes that are activated in the host during infection and the roles these processes play in resistance and susceptibility to F. oxysporum. In this study, we analyzed global gene expression profiles of F. oxysporum-infected Arabidopsis plants. Genes involved in jasmonate biosynthesis as well as jasmonate-dependent defense were coordinately induced by F. oxysporum. Similarly, tryptophan pathway genes, including those involved in both indole-glucosinolate and auxin biosynthesis, were upregulated in both the leaves and the roots of inoculated plants. Analysis of plants expressing the DR5:GUS construct suggested that root auxin homeostasis was altered during F. oxysporum infection. However, Arabidopsis mutants with altered auxin and tryptophan-derived metabolites such as indole-glucosinolates and camalexin did not show an altered resistance to this pathogen. In contrast, several auxin-signaling mutants were more resistant to F. oxysporum. Chemical or genetic alteration of polar auxin transport also conferred increased pathogen resistance. Our results suggest that, similarly to many other pathogenic and nonpathogenic or beneficial soil organisms, F. oxysporum requires components of auxin signaling and transport to colonize the plant more effectively. Potential mechanisms of auxin signaling and transport-mediated F. oxysporum susceptibility are discussed.


Asunto(s)
Arabidopsis/metabolismo , Arabidopsis/microbiología , Fusarium/fisiología , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/microbiología , Transducción de Señal/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico/fisiología , Ciclopentanos/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Indoles/metabolismo , Mutación , Oxilipinas/metabolismo , Enfermedades de las Plantas/microbiología , Raíces de Plantas/metabolismo , Ácido Salicílico/metabolismo , Tiazoles/metabolismo
9.
Sci Rep ; 11(1): 2546, 2021 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-33510286

RESUMEN

Rhizoctonia solani causes damaging yield losses on most major food crops. R. solani isolates belonging to anastomosis group 8 (AG8) are soil-borne, root-infecting pathogens with a broad host range. AG8 isolates can cause disease on wheat, canola and legumes, however Arabidopsis thaliana is heretofore thought to possess non-host resistance as A. thaliana ecotypes, including the reference strain Col-0, are resistant to AG8 infection. Using a mitochondria-targeted redox sensor (mt-roGFP2) and cell death staining, we demonstrate that both AG8 and a host isolate (AG2-1) of R. solani are able to infect A. thaliana roots. Above ground tissue of A. thaliana was found to be resistant to AG8 but not AG2. Genetic analysis revealed that ethylene, jasmonate and PENETRATION2-mediated defense pathways work together to provide resistance to AG8 in the leaves which subsequently enable tolerance of root infections. Overall, we demonstrate a significant difference in defense capabilities of above and below ground tissue in providing resistance to R. solani AG8 in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/microbiología , Ciclopentanos/metabolismo , Etilenos/metabolismo , N-Glicosil Hidrolasas/metabolismo , Oxilipinas/metabolismo , Enfermedades de las Plantas/microbiología , Transducción de Señal , Resistencia a la Enfermedad , Interacciones Huésped-Patógeno , Inmunohistoquímica , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Rhizoctonia , Estrés Fisiológico
10.
PLoS One ; 12(4): e0176022, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28441405

RESUMEN

The conserved protein complex known as Mediator conveys transcriptional signals by acting as an intermediary between transcription factors and RNA polymerase II. As a result, Mediator subunits play multiple roles in regulating developmental as well as abiotic and biotic stress pathways. In this report we identify the head domain subunits MEDIATOR18 and MEDIATOR20 as important susceptibility factors for Fusarium oxysporum infection in Arabidopsis thaliana. Mutants of MED18 and MED20 display down-regulation of genes associated with jasmonate signaling and biosynthesis while up-regulation of salicylic acid associated pathogenesis related genes and reactive oxygen producing and scavenging genes. We propose that MED18 and MED20 form a sub-domain within Mediator that controls the balance of salicylic acid and jasmonate associated defense pathways.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/microbiología , Fusarium/fisiología , Complejo Mediador/genética , Enfermedades de las Plantas/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Susceptibilidad a Enfermedades , Regulación hacia Abajo , Regulación de la Expresión Génica de las Plantas , Complejo Mediador/metabolismo , Oxilipinas/metabolismo , Enfermedades de las Plantas/microbiología , Ácido Salicílico/metabolismo , Regulación hacia Arriba
11.
PLoS One ; 12(6): e0179640, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28640868

RESUMEN

Mediator is a multiprotein transcriptional co-regulator complex composed of four modules; Head, Middle, Tail, and Kinase. It conveys signals from promoter-bound transcriptional regulators to RNA polymerase II and thus plays an essential role in eukaryotic gene regulation. We describe subunit localization and activities of Mediator in Arabidopsis through metabolome and transcriptome analyses from a set of Mediator mutants. Functional metabolomic analysis based on the metabolite profiles of Mediator mutants using multivariate statistical analysis and heat-map visualization shows that different subunit mutants display distinct metabolite profiles, which cluster according to the reported localization of the corresponding subunits in yeast. Based on these results, we suggest localization of previously unassigned plant Mediator subunits to specific modules. We also describe novel roles for individual subunits in development, and demonstrate changes in gene expression patterns and specific metabolite levels in med18 and med25, which can explain their phenotypes. We find that med18 displays levels of phytoalexins normally found in wild type plants only after exposure to pathogens. Our results indicate that different Mediator subunits are involved in specific signaling pathways that control developmental processes and tolerance to pathogen infections.


Asunto(s)
Arabidopsis/metabolismo , Metabolómica , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al ADN , Galactolípidos/metabolismo , Perfilación de la Expresión Génica , Glucosinolatos/metabolismo , Complejo Mediador/genética , Complejo Mediador/metabolismo , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Oxilipinas/metabolismo , Fenoles/metabolismo , Triptófano/metabolismo
12.
PLoS One ; 11(3): e0152548, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27031952

RESUMEN

Rhizoctonia solani is a nectrotrophic fungal pathogen that causes billions of dollars of damage to agriculture worldwide and infects a broad host range including wheat, rice, potato and legumes. In this study we identify wheat genes that are differentially expressed in response to the R. solani isolate, AG8, using microarray technology. A significant number of wheat genes identified in this screen were involved in reactive oxygen species (ROS) production and redox regulation. Levels of ROS species were increased in wheat root tissue following R. solani infection as determined by Nitro Blue Tetrazolium (NBT), 3,3'-diaminobenzidine (DAB) and titanium sulphate measurements. Pathogen/ROS related genes from R. solani were also tested for expression patterns upon wheat infection. TmpL, a R. solani gene homologous to a gene associated with ROS regulation in Alternaria brassicicola, and OAH, a R. solani gene homologous to oxaloacetate acetylhydrolase which has been shown to produce oxalic acid in Sclerotinia sclerotiorum, were highly induced in R. solani when infecting wheat. We speculate that the interplay between the wheat and R. solani ROS generating proteins may be important for determining the outcome of the wheat/R. solani interaction.


Asunto(s)
Especies Reactivas de Oxígeno/metabolismo , Rhizoctonia/fisiología , Triticum/genética , Peróxido de Hidrógeno/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Brotes de la Planta/genética , Brotes de la Planta/metabolismo , Brotes de la Planta/microbiología , ARN de Planta/aislamiento & purificación , ARN de Planta/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Triticum/metabolismo , Triticum/microbiología
13.
Plant Signal Behav ; 9(12): e977710, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25482759

RESUMEN

Plants face many different concurrent and consecutive abiotic and biotic stresses during their lifetime. Roots can be infected by numerous pathogens and parasitic organisms. Unlike foliar pathogens, root pathogens have not been explored enough to fully understand root-pathogen interactions and the underlying mechanism of defense and resistance. PR gene expression, structural responses, secondary metabolite and root exudate production, as well as the recruitment of plant defense-assisting "soldier" rhizosphere microbes all assist in root defense against pathogens and herbivores. With new high-throughput molecular tools becoming available and more affordable, now is the opportune time to take a deep look below the ground. In this addendum, we focus on soil-borne Fusarium oxysporum as a pathogen and the options plants have to defend themselves against these hard-to-control pathogens.


Asunto(s)
Fusarium/fisiología , Raíces de Plantas/inmunología , Raíces de Plantas/microbiología , Rizosfera , Modelos Biológicos
14.
Sci Rep ; 4: 5584, 2014 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-24998294

RESUMEN

Fusarium oxysporum is a root-infecting fungal pathogen that causes wilt disease on a broad range of plant species, including Arabidopsis thaliana. Investigation of the defense response against this pathogen had primarily been conducted using leaf tissue and little was known about the root defense response. In this study, we profiled the expression of root genes after infection with F. oxysporum by microarray analysis. In contrast to the leaf response, root tissue did not show a strong induction of defense-associated gene expression and instead showed a greater proportion of repressed genes. Screening insertion mutants from differentially expressed genes in the microarray uncovered a role for the transcription factor ETHYLENE RESPONSE FACTOR72 (ERF72) in susceptibility to F. oxysporum. Due to the role of ERF72 in suppressing programmed cell death and detoxifying reactive oxygen species (ROS), we examined the pub22/pub23/pub24 U-box type E3 ubiquitin ligase triple mutant which is known to possess enhanced ROS production in response to pathogen challenge. We found that the pub22/23/24 mutant is more resistant to F. oxysporum infection, suggesting that a heightened innate immune response provides protection against F. oxysporum. We conclude that root-mediated defenses against soil-borne pathogens can be provided at multiple levels.


Asunto(s)
Arabidopsis/genética , Resistencia a la Enfermedad/genética , Fusarium/fisiología , Enfermedades de las Plantas/microbiología , Raíces de Plantas/genética , Arabidopsis/metabolismo , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Interacciones Huésped-Patógeno , Mutación , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma
15.
PLoS One ; 8(8): e70289, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23940555

RESUMEN

Reactive oxygen species (ROS) are produced in plant cells in response to diverse biotic and abiotic stresses as well as during normal growth and development. Although a large number of transcription factor (TF) genes are up- or down-regulated by ROS, currently very little is known about the functions of these TFs during oxidative stress. In this work, we examined the role of ERF6 (ETHYLENE RESPONSE FACTOR6), an AP2/ERF domain-containing TF, during oxidative stress responses in Arabidopsis. Mutant analyses showed that NADPH oxidase (RbohD) and calcium signaling are required for ROS-responsive expression of ERF6. erf6 insertion mutant plants showed reduced growth and increased H2O2 and anthocyanin levels. Expression analyses of selected ROS-responsive genes during oxidative stress identified several differentially expressed genes in the erf6 mutant. In particular, a number of ROS responsive genes, such as ZAT12, HSFs, WRKYs, MAPKs, RBOHs, DHAR1, APX4, and CAT1 were more strongly induced by H2O2 in erf6 plants than in wild-type. In contrast, MDAR3, CAT3, VTC2 and EX1 showed reduced expression levels in the erf6 mutant. Taken together, our results indicate that ERF6 plays an important role as a positive antioxidant regulator during plant growth and in response to biotic and abiotic stresses.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Arabidopsis/genética , Catalasa/genética , Catalasa/metabolismo , NADPH Oxidasas/metabolismo , Estrés Oxidativo , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Factores de Transcripción/genética
16.
Plant Signal Behav ; 5(6): 718-20, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20383062

RESUMEN

Jasmonate (JA) signaling plays an important role in regulating both plant defense and development. We have recently reported that the phytochrome and flowering time1 (PFT1) gene, which encodes the mediator25 subunit of the plant Mediator complex, is a key regulator of JA regulated transcription. We showed that the pft1 mutant had attenuated expression of a wide range of JA responsive genes and altered resistance to fungal pathogens. Here we examine the position of PFT1/MED25 within the JA pathway and discuss its role in "mediating" the JA response.

17.
Plant Cell ; 21(8): 2237-52, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19671879

RESUMEN

Jasmonate signaling plays an important role in both plant defense and development. Here, we have identified a subunit of the Mediator complex as a regulator of the jasmonate signaling pathway in Arabidopsis thaliana. The Mediator complex is a conserved multiprotein complex that acts as a universal adaptor between transcription factors and the RNA polymerase II transcriptional machinery. We report that the PHYTOCHROME AND FLOWERING TIME1 (PFT1) gene, which encodes the MEDIATOR25 subunit of Mediator, is required for jasmonate-dependent defense gene expression and resistance to leaf-infecting necrotrophic fungal pathogens. Conversely, PFT1 appears to confer susceptibility to Fusarium oxysporum, a root-infecting hemibiotrophic fungal pathogen known to hijack jasmonate responses for disease development. Consistent with this, jasmonate gene expression was suppressed in the pft1 mutant during infection with F. oxysporum. In addition, a wheat (Triticum aestivum) homolog of PFT1 complemented the defense and the developmental phenotypes of the pft1 mutant, suggesting that the jasmonate signaling functions of PFT1 may be conserved in higher plants. Overall, our results identify an important control point in the regulation of the jasmonate signaling pathway within the transcriptional machinery.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Arabidopsis/microbiología , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fusarium/patogenicidad , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/microbiología , Transducción de Señal/genética , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA