Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Cell ; 177(6): 1405-1418.e17, 2019 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-31130379

RESUMEN

How do genes modify cellular growth to create morphological diversity? We study this problem in two related plants with differently shaped leaves: Arabidopsis thaliana (simple leaf shape) and Cardamine hirsuta (complex shape with leaflets). We use live imaging, modeling, and genetics to deconstruct these organ-level differences into their cell-level constituents: growth amount, direction, and differentiation. We show that leaf shape depends on the interplay of two growth modes: a conserved organ-wide growth mode that reflects differentiation; and a local, directional mode that involves the patterning of growth foci along the leaf edge. Shape diversity results from the distinct effects of two homeobox genes on these growth modes: SHOOTMERISTEMLESS broadens organ-wide growth relative to edge-patterning, enabling leaflet emergence, while REDUCED COMPLEXITY inhibits growth locally around emerging leaflets, accentuating shape differences created by patterning. We demonstrate the predictivity of our findings by reconstructing key features of C. hirsuta leaf morphology in A. thaliana. VIDEO ABSTRACT.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Cardamine/crecimiento & desarrollo , Hojas de la Planta/crecimiento & desarrollo , Arabidopsis/genética , Cardamine/genética , Linaje de la Célula/genética , Biología Computacional/métodos , Regulación de la Expresión Génica de las Plantas/genética , Hojas de la Planta/genética , Proteínas de Plantas/metabolismo
2.
Genes Dev ; 32(21-22): 1361-1366, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30366902

RESUMEN

How the interplay between cell- and tissue-level processes produces correctly proportioned organs is a key problem in biology. In plants, the relative size of leaves compared with their lateral appendages, called stipules, varies tremendously throughout development and evolution, yet relevant mechanisms remain unknown. Here we use genetics, live imaging, and modeling to show that in Arabidopsis leaves, the LATE MERISTEM IDENTITY1 (LMI1) homeodomain protein regulates stipule proportions via an endoreduplication-dependent trade-off that limits tissue size despite increasing cell growth. LM1 acts through directly activating the conserved mitosis blocker WEE1, which is sufficient to bypass the LMI1 requirement for leaf proportionality.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Endorreduplicación , Proteínas de Homeodominio/fisiología , Factores de Transcripción/fisiología , Arabidopsis/anatomía & histología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Hojas de la Planta/anatomía & histología , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Hojas de la Planta/ultraestructura , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Development ; 149(14)2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35894230

RESUMEN

Coordination of growth, patterning and differentiation is required for shaping organs in multicellular organisms. In plants, cell growth is controlled by positional information, yet the behavior of individual cells is often highly heterogeneous. The origin of this variability is still unclear. Using time-lapse imaging, we determined the source and relevance of cellular growth variability in developing organs of Arabidopsis thaliana. We show that growth is more heterogeneous in the leaf blade than in the midrib and petiole, correlating with higher local differences in growth rates between neighboring cells in the blade. This local growth variability coincides with developing stomata. Stomatal lineages follow a specific, time-dependent growth program that is different from that of their surroundings. Quantification of cellular dynamics in the leaves of a mutant lacking stomata, as well as analysis of floral organs, supports the idea that growth variability is mainly driven by stomata differentiation. Thus, the cell-autonomous behavior of specialized cells is the main source of local growth variability in otherwise homogeneously growing tissue. Those growth differences are buffered by the immediate neighbors of stomata and trichomes to achieve robust organ shapes.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Diferenciación Celular/genética , Proliferación Celular , Hojas de la Planta , Estomas de Plantas
4.
Plant Physiol ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39106417

RESUMEN

Plant organs have evolved into diverse shapes for specialized functions despite emerging as simple protrusions at the shoot apex. Cauline leaves serve as photosynthetic organs and protective structures for emerging floral buds. However, the growth patterns underlying this dual function remain unknown. Here, we investigate the developmental dynamics shaping Arabidopsis (Arabidopsis thaliana) cauline leaves underlying their functional diversification from other laminar organs. We show that cauline leaves display a significant delay in overall elongation compared to rosette leaves. Using live imaging, we reveal that their functional divergence hinges on early modulation of the timing of cell differentiation and cellular growth rates. In contrast to rosette leaves and sepals, cell differentiation is delayed in cauline leaves, fostering extended proliferation, prolonged morphogenetic activity, and growth redistribution within the organ. Notably, cauline leaf growth is transiently suppressed during the early stages, keeping the leaf small and unfolded during the initiation of the first flowers. Our findings highlight the unique developmental timing of cauline leaves, underlying their shift from an early protective role to a later photosynthetic function.

5.
Plant Physiol ; 188(2): 769-781, 2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-34618064

RESUMEN

Development of multicellular organisms is a complex process involving precise coordination of growth among individual cells. Understanding organogenesis requires measurements of cellular behaviors over space and time. In plants, such a quantitative approach has been successfully used to dissect organ development in both leaves and external floral organs, such as sepals. However, the observation of floral reproductive organs is hampered as they develop inside tightly closed floral buds, and are therefore difficult to access for imaging. We developed a confocal time-lapse imaging method, applied here to Arabidopsis (Arabidopsis thaliana), which allows full quantitative characterization of the development of stamens, the male reproductive organs. Our lineage tracing reveals the early specification of the filament and the anther. Formation of the anther lobes is associated with a temporal increase of growth at the lobe surface that correlates with intensive growth of the developing locule. Filament development is very dynamic and passes through three distinct phases: (1) initial intense, anisotropic growth, and high cell proliferation; (2) restriction of growth and proliferation to the filament proximal region; and (3) resumption of intense and anisotropic growth, displaced to the distal portion of the filament, without cell proliferation. This quantitative atlas of cellular growth dynamics provides a solid framework for future studies into stamen development.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Proliferación Celular , Flores/crecimiento & desarrollo , Células Vegetales/fisiología , Arabidopsis/citología , Flores/citología
7.
Development ; 144(23): 4398-4405, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29183944

RESUMEN

Organs form with remarkably consistent sizes and shapes during development, whereas a high variability in growth is observed at the cell level. Given this contrast, it is unclear how such consistency in organ scale can emerge from cellular behavior. Here, we examine an intermediate scale, the growth of clones of cells in Arabidopsis sepals. Each clone consists of the progeny of a single progenitor cell. At early stages, we find that clones derived from a small progenitor cell grow faster than those derived from a large progenitor cell. This results in a reduction in clone size variability, a phenomenon we refer to as size uniformization. By contrast, at later stages of clone growth, clones change their growth pattern to enhance size variability, when clones derived from larger progenitor cells grow faster than those derived from smaller progenitor cells. Finally, we find that, at early stages, fast growing clones exhibit greater cell growth heterogeneity. Thus, cellular variability in growth might contribute to a decrease in the variability of clones throughout the sepal.


Asunto(s)
Arabidopsis/citología , Arabidopsis/crecimiento & desarrollo , Diferenciación Celular , División Celular , Tamaño de la Célula , Células Clonales/citología , Flores/citología , Flores/crecimiento & desarrollo , Modelos Biológicos , Desarrollo de la Planta/fisiología , Células Madre/citología
8.
New Phytol ; 243(1): 10-13, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38548692
9.
J Exp Bot ; 70(14): 3573-3585, 2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31037307

RESUMEN

Plant organs arise through complex interactions between biological and physical factors that control morphogenesis. While there has been tremendous progress in the understanding of the genetics behind development, we know much less about how mechanical forces control growth in plants. In recent years, new multidisciplinary research combining genetics, live-imaging, physics, and computational modeling has begun to fill this gap by revealing the crucial role of biomechanics in the establishment of plant organs. In this review, we provide an overview of our current understanding of growth during initiation, patterning, and expansion of shoot lateral organs. We discuss how growth is controlled by physical forces, and how mechanical stresses generated during growth can control morphogenesis at the level of both cells and tissues. Understanding the mechanical basis of growth and morphogenesis in plants is in its early days, and many puzzling facts are yet to be deciphered.


Asunto(s)
Brotes de la Planta/química , Brotes de la Planta/crecimiento & desarrollo , Fenómenos Biomecánicos , Pared Celular/química , Meristema/química , Meristema/crecimiento & desarrollo , Células Vegetales/química , Desarrollo de la Planta , Estrés Mecánico
10.
Plant Physiol ; 175(2): 886-903, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28860156

RESUMEN

Four petals characterize the flowers of most species in the Brassicaceae family, and this phenotype is generally robust to genetic and environmental variation. A variable petal number distinguishes the flowers of Cardamine hirsuta from those of its close relative Arabidopsis (Arabidopsis thaliana), and allelic variation at many loci contribute to this trait. However, it is less clear whether C. hirsuta petal number varies in response to seasonal changes in environment. To address this question, we assessed whether petal number responds to a suite of environmental and endogenous cues that regulate flowering time in C. hirsuta We found that petal number showed seasonal variation in C. hirsuta, such that spring flowering plants developed more petals than those flowering in summer. Conditions associated with spring flowering, including cool ambient temperature, short photoperiod, and vernalization, all increased petal number in C. hirsuta Cool temperature caused the strongest increase in petal number and lengthened the time interval over which floral meristems matured. We performed live imaging of early flower development and showed that floral buds developed more slowly at 15°C versus 20°C. This extended phase of floral meristem formation, coupled with slower growth of sepals at 15°C, produced larger intersepal regions with more space available for petal initiation. In summary, the growth and maturation of floral buds is associated with variable petal number in C. hirsuta and responds to seasonal changes in ambient temperature.


Asunto(s)
Arabidopsis/fisiología , Brassicaceae/fisiología , Flores/genética , Fotoperiodo , Alelos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/ultraestructura , Brassicaceae/genética , Brassicaceae/crecimiento & desarrollo , Brassicaceae/ultraestructura , Frío , Flores/crecimiento & desarrollo , Flores/fisiología , Flores/ultraestructura , Fenotipo , Estaciones del Año
12.
Nucleic Acids Res ; 42(2): 1224-44, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24137006

RESUMEN

How alternative splicing (AS) is regulated in plants has not yet been elucidated. Previously, we have shown that the nuclear cap-binding protein complex (AtCBC) is involved in AS in Arabidopsis thaliana. Here we show that both subunits of AtCBC (AtCBP20 and AtCBP80) interact with SERRATE (AtSE), a protein involved in the microRNA biogenesis pathway. Moreover, using a high-resolution reverse transcriptase-polymerase chain reaction AS system we have found that AtSE influences AS in a similar way to the cap-binding complex (CBC), preferentially affecting selection of 5' splice site of first introns. The AtSE protein acts in cooperation with AtCBC: many changes observed in the mutant lacking the correct SERRATE activity were common to those observed in the cbp mutants. Interestingly, significant changes in AS of some genes were also observed in other mutants of plant microRNA biogenesis pathway, hyl1-2 and dcl1-7, but a majority of them did not correspond to the changes observed in the se-1 mutant. Thus, the role of SERRATE in AS regulation is distinct from that of HYL1 and DCL1, and is similar to the regulation of AS in which CBC is involved.


Asunto(s)
Empalme Alternativo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Unión al Calcio/metabolismo , Regulación de la Expresión Génica de las Plantas , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas de la Membrana/metabolismo , Arabidopsis/metabolismo , Núcleo Celular/metabolismo , MicroARNs/metabolismo , Mutación , Complejo Proteico Nuclear de Unión a la Caperuza/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Serrate-Jagged
13.
Curr Biol ; 34(3): 541-556.e15, 2024 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-38244542

RESUMEN

How is time encoded into organ growth and morphogenesis? We address this question by investigating heteroblasty, where leaf development and form are modified with progressing plant age. By combining morphometric analyses, fate-mapping through live-imaging, computational analyses, and genetics, we identify age-dependent changes in cell-cycle-associated growth and histogenesis that underpin leaf heteroblasty. We show that in juvenile leaves, cell proliferation competence is rapidly released in a "proliferation burst" coupled with fast growth, whereas in adult leaves, proliferative growth is sustained for longer and at a slower rate. These effects are mediated by the SPL9 transcription factor in response to inputs from both shoot age and individual leaf maturation along the proximodistal axis. SPL9 acts by activating CyclinD3 family genes, which are sufficient to bypass the requirement for SPL9 in the control of leaf shape and in heteroblastic reprogramming of cellular growth. In conclusion, we have identified a mechanism that bridges across cell, tissue, and whole-organism scales by linking cell-cycle-associated growth control to age-dependent changes in organ geometry.


Asunto(s)
Hojas de la Planta , Factores de Transcripción , Factores de Transcripción/metabolismo , Proliferación Celular , División Celular , Morfogénesis , Regulación de la Expresión Génica de las Plantas
14.
Nat Commun ; 15(1): 2912, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575617

RESUMEN

Morphogenesis requires the coordination of cellular behaviors along developmental axes. In plants, gradients of growth and differentiation are typically established along a single longitudinal primordium axis to control global organ shape. Yet, it remains unclear how these gradients are locally adjusted to regulate the formation of complex organs that consist of diverse tissue types. Here we combine quantitative live imaging at cellular resolution with genetics, and chemical treatments to understand the formation of Arabidopsis thaliana female reproductive organ (gynoecium). We show that, contrary to other aerial organs, gynoecium shape is determined by two orthogonal, time-shifted differentiation gradients. An early mediolateral gradient controls valve morphogenesis while a late, longitudinal gradient regulates style differentiation. Local, tissue-dependent action of these gradients serves to fine-tune the common developmental program governing organ morphogenesis to ensure the specialized function of the gynoecium.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Frutas/metabolismo , Flores/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Morfogénesis , Regulación de la Expresión Génica de las Plantas
15.
Plant Physiol ; 159(4): 1501-10, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22723086

RESUMEN

Phyllotaxis, the regular arrangement of leaves and flowers around the stem, is a key feature of plant architecture. Current models propose that the spatiotemporal regulation of organ initiation is controlled by a positive feedback loop between the plant hormone auxin and its efflux carrier PIN-FORMED1 (PIN1). Consequently, pin1 mutants give rise to naked inflorescence stalks with few or no flowers, indicating that PIN1 plays a crucial role in organ initiation. However, pin1 mutants do produce leaves. In order to understand the regulatory mechanisms controlling leaf initiation in Arabidopsis (Arabidopsis thaliana) rosettes, we have characterized the vegetative pin1 phenotype in detail. We show that although the timing of leaf initiation in vegetative pin1 mutants is variable and divergence angles clearly deviate from the canonical 137° value, leaves are not positioned at random during early developmental stages. Our data further indicate that other PIN proteins are unlikely to explain the persistence of leaf initiation and positioning during pin1 vegetative development. Thus, phyllotaxis appears to be more complex than suggested by current mechanistic models.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/metabolismo , Genes Reporteros , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Meristema/metabolismo , Meristema/ultraestructura , Mutación/genética , Hojas de la Planta/anatomía & histología , Proteínas Recombinantes de Fusión/metabolismo
16.
Elife ; 112022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35510843

RESUMEN

Positional information is a central concept in developmental biology. In developing organs, positional information can be idealized as a local coordinate system that arises from morphogen gradients controlled by organizers at key locations. This offers a plausible mechanism for the integration of the molecular networks operating in individual cells into the spatially coordinated multicellular responses necessary for the organization of emergent forms. Understanding how positional cues guide morphogenesis requires the quantification of gene expression and growth dynamics in the context of their underlying coordinate systems. Here, we present recent advances in the MorphoGraphX software (Barbier de Reuille et al., 2015⁠) that implement a generalized framework to annotate developing organs with local coordinate systems. These coordinate systems introduce an organ-centric spatial context to microscopy data, allowing gene expression and growth to be quantified and compared in the context of the positional information thought to control them.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Programas Informáticos , Morfogénesis/fisiología
18.
Plants (Basel) ; 10(5)2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33919177

RESUMEN

Gynoecium development is dependent on gene regulation and hormonal pathway interactions. The phytohormones auxin and cytokinin are involved in many developmental programs, where cytokinin is normally important for cell division and meristem activity, while auxin induces cell differentiation and organ initiation in the shoot. The MADS-box transcription factor AGAMOUS (AG) is important for the development of the reproductive structures of the flower. Here, we focus on the relationship between AG and cytokinin in Arabidopsis thaliana, and use the weak ag-12 and the strong ag-1 allele. We found that cytokinin induces carpeloid features in an AG-dependent manner and the expression of the transcription factors CRC, SHP2, and SPT that are involved in carpel development. AG is important for gynoecium development, and contributes to regulating, or else directly regulates CRC, SHP2, and SPT. All four genes respond to either reduced or induced cytokinin signaling and have the potential to be regulated by cytokinin via the type-B ARR proteins. We generated a model of a gene regulatory network, where cytokinin signaling is mainly upstream and in parallel with AG activity.

19.
Front Plant Sci ; 12: 736212, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34630486

RESUMEN

Specialized photosynthetic organs have appeared several times independently during the evolution of land plants. Phyllids, the leaf-like organs of bryophytes such as mosses or leafy liverworts, display a simple morphology, with a small number of cells and cell types and lack typical vascular tissue which contrasts greatly with flowering plants. Despite this, the leaf structures of these two plant types share many morphological characteristics. In this review, we summarize the current understanding of leaf morphogenesis in the model moss Physcomitrium patens, focusing on the underlying cellular patterns and molecular regulatory mechanisms. We discuss this knowledge in an evolutionary context and identify parallels between moss and flowering plant leaf development. Finally, we propose potential research directions that may help to answer fundamental questions in plant development using moss leaves as a model system.

20.
Curr Biol ; 31(6): 1154-1164.e3, 2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33417884

RESUMEN

Tissue bending is vital to plant development, as exemplified by apical hook formation during seedling emergence by bending of the hypocotyl. How tissue bending is coordinated during development remains poorly understood, especially in plants where cells are attached via rigid cell walls. Asymmetric distribution of the plant hormone auxin underlies differential cell elongation during apical hook formation. Yet the underlying mechanism remains unclear. Here, we demonstrate spatial correlation between asymmetric auxin distribution, methylesterified homogalacturonan (HG) pectin, and mechanical properties of the epidermal layer of the hypocotyl in Arabidopsis. Genetic and cell biological approaches show that this mechanochemical asymmetry is essential for differential cell elongation. We show that asymmetric auxin distribution underlies differential HG methylesterification, and conversely changes in HG methylesterification impact the auxin response domain. Our results suggest that a positive feedback loop between auxin distribution and HG methylesterification underpins asymmetric cell wall mechanochemical properties to promote tissue bending and seedling emergence.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Esterificación , Retroalimentación Fisiológica , Hipocótilo/metabolismo , Metilación , Pectinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA