Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Genet ; 8(7): e1002815, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22829778

RESUMEN

The YbeB (DUF143) family of uncharacterized proteins is encoded by almost all bacterial and eukaryotic genomes but not archaea. While they have been shown to be associated with ribosomes, their molecular function remains unclear. Here we show that YbeB is a ribosomal silencing factor (RsfA) in the stationary growth phase and during the transition from rich to poor media. A knock-out of the rsfA gene shows two strong phenotypes: (i) the viability of the mutant cells are sharply impaired during stationary phase (as shown by viability competition assays), and (ii) during transition from rich to poor media the mutant cells adapt slowly and show a growth block of more than 10 hours (as shown by growth competition assays). RsfA silences translation by binding to the L14 protein of the large ribosomal subunit and, as a consequence, impairs subunit joining (as shown by molecular modeling, reporter gene analysis, in vitro translation assays, and sucrose gradient analysis). This particular interaction is conserved in all species tested, including Escherichia coli, Treponema pallidum, Streptococcus pneumoniae, Synechocystis PCC 6803, as well as human mitochondria and maize chloroplasts (as demonstrated by yeast two-hybrid tests, pull-downs, and mutagenesis). RsfA is unrelated to the eukaryotic ribosomal anti-association/60S-assembly factor eIF6, which also binds to L14, and is the first such factor in bacteria and organelles. RsfA helps cells to adapt to slow-growth/stationary phase conditions by down-regulating protein synthesis, one of the most energy-consuming processes in both bacterial and eukaryotic cells.


Asunto(s)
Bacterias , Eucariontes , Proteínas Ribosómicas/química , Subunidades Ribosómicas Grandes/química , Bacterias/genética , Bacterias/crecimiento & desarrollo , Bacterias/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Secuencia Conservada , Eucariontes/genética , Eucariontes/crecimiento & desarrollo , Eucariontes/metabolismo , Células HeLa , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Datos de Secuencia Molecular , Filogenia , Unión Proteica , Biosíntesis de Proteínas/genética , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes/metabolismo , Homología de Secuencia de Aminoácido , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Nat Rev Microbiol ; 12(2): 89-100, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24362468

RESUMEN

Ribosomes translate the codon sequence of an mRNA into the amino acid sequence of the corresponding protein. One of the most crucial events is the translocation reaction, which involves movement of both the mRNA and the attached tRNAs by one codon length and is catalysed by the GTPase elongation factor G (EF-G). Interestingly, recent studies have identified a structurally related GTPase, EF4, that catalyses movement of the tRNA2-mRNA complex in the opposite direction when the ribosome stalls, which is known as back-translocation. In this Review, we describe recent insights into the mechanistic basis of both translocation and back-translocation.


Asunto(s)
Bacterias/genética , Traslocación Bacteriana , GTP Fosfohidrolasas/metabolismo , Modelos Moleculares , Factor G de Elongación Peptídica/metabolismo , Ribosomas/fisiología , Bacterias/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/fisiología , Sitios de Unión , GTP Fosfohidrolasas/genética , Guanosina Trifosfato/metabolismo , Hidrólisis , Factor G de Elongación Peptídica/genética , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , ARN de Transferencia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA