Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
NPJ Vaccines ; 6(1): 18, 2021 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-33514749

RESUMEN

Burkholderia pseudomallei is a Gram-negative, facultative intracellular bacillus that causes the disease melioidosis. B. pseudomallei expresses a number of proteins that contribute to its intracellular survival in the mammalian host. We previously demonstrated that immunization with OMVs derived from B. pseudomallei grown in nutrient-rich media protects mice against lethal disease. Here, we evaluated if OMVs derived from B. pseudomallei grown under macrophage-mimicking growth conditions could be enriched with intracellular-stage proteins in order to improve the vaccine. We show that OMVs produced in this manner (M9 OMVs) contain proteins associated with intracellular survival yet are non-toxic to living cells. Immunization of mice provides significant protection against pulmonary infection similar to that achieved with a live attenuated vaccine and is associated with increased IgG, CD4+, and CD8+ T cells. OMVs possess inherent adjuvanticity and drive DC activation and maturation. These results indicate that M9 OMVs constitute a new promising vaccine against melioidosis.

2.
Vaccines (Basel) ; 5(4)2017 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-29232837

RESUMEN

Burkholderia mallei is a Gram-negative, non-motile, facultative intracellular bacillus and the causative agent of glanders, a highly contagious zoonotic disease. B. mallei is naturally resistant to multiple antibiotics and there is concern for its potential use as a bioweapon, making the development of a vaccine against B. mallei of critical importance. We have previously demonstrated that immunization with multivalent outer membrane vesicles (OMV) derived from B. pseudomallei provide significant protection against pneumonic melioidosis. Given that many virulence determinants are highly conserved between the two species, we sought to determine if the B. pseudomallei OMV vaccine could cross-protect against B. mallei. We immunized C57Bl/6 mice and rhesus macaques with B. pseudomallei OMVs and subsequently challenged animals with aerosolized B. mallei. Immunization with B. pseudomallei OMVs significantly protected mice against B. mallei and the protection observed was comparable to that achieved with a live attenuated vaccine. OMV immunization induced the production of B.mallei-specific serum IgG and a mixed Th1/Th17 CD4 and CD8 T cell response in mice. Additionally, immunization of rhesus macaques with B. pseudomallei OMVs provided protection against glanders and induced B.mallei-specific serum IgG in non-human primates. These results demonstrate the ability of the multivalent OMV vaccine platform to elicit cross-protection against closely-related intracellular pathogens and to induce robust humoral and cellular immune responses against shared protective antigens.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA