Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Org Chem ; 88(13): 9167-9186, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37343240

RESUMEN

Fusapyrones are fungal metabolites, which have been reported to have broad-spectrum antibacterial and antifungal properties. Despite the first members of this chemical class being described three decades prior, many aspects of their structures have remained unresolved, thereby constraining efforts to fully understand structure-activity relationships within this metabolite family and impeding the design of streamlined syntheses. Among the main challenges posed by fusapyrones is the incorporation of several single and groups of stereocenters separated by atoms with freely rotating bonds, which have proven unyielding to spectroscopic analyses. In this study, we obtained a series of new (2-5 and 7-9) and previously reported fusapyrones (1 and 6), which were subjected to a combination of spectroscopic, chemical, and computational techniques enabling us to offer proposals for their full structures, as well as provide a pathway to reinterpreting the absolute configurations of other published fusapyrone metabolites. Biological testing of the fusapyrones revealed their abilities to inhibit and disrupt biofilms made by the human fungal pathogen, Candida albicans. These results show that fusapyrones reduce hyphae formation in C. albicans, as well as decrease the surface adherence capabilities of planktonic cells and cells transitioning into early-stage biofilm formation.


Asunto(s)
Antifúngicos , Candida albicans , Humanos , Antifúngicos/farmacología , Antifúngicos/química , Pironas/farmacología , Biopelículas
2.
Molecules ; 27(21)2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36364218

RESUMEN

Peucedanum japonicum (Umbelliferae) is widely distributed throughout Southeast Asian countries. The root of this plant is used in traditional medicine to treat colds and pain, whereas the young leaves are considered an edible vegetable. In this study, the differences in coumarin profiles for different parts of P. japonicum including the flowers, roots, leaves, and stems were compared using ultra-performance liquid chromatography time-of-flight mass spectrometry. Twenty-eight compounds were tentatively identified, including three compounds found in the genus Peucedanum for the first time. Principal component analysis using the data set of the measured mass values and intensities of the compounds exhibited distinct clustering of the flower, leaf, stem, and root samples. In addition, their anticancer activities were screened using an Aldo-keto reductase (AKR)1C1 assay on A549 human non-small-cell lung cancer cells and the flower extract inhibited AKR1C1 activity. Based on these results, seven compounds were selected as potential markers to distinguish between the flower part versus the root, stem, and leaf parts using an orthogonal partial least-squares discriminant analysis. This study is the first to provide information on the comparison of coumarin profiles from different parts of P. japonicum as well as their AKR1C1 inhibitory activities. Taken together, the flowers of P. japonicum offer a new use related to the efficacy of overcoming anticancer drug resistance, and may be a promising source for the isolation of active lead compounds.


Asunto(s)
Apiaceae , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Apiaceae/química , Cumarinas/farmacología , Aldo-Ceto Reductasas
3.
Phytochem Anal ; 32(6): 1067-1073, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33786911

RESUMEN

INTRODUCTION: Quantitative nuclear magnetic resonance (qNMR) is one of the effective and reliable quantification tools for natural product research. Myelochroa leucotyliza belongs to the genus Myelochroa, a common foliose lichen genus found in the Korean Peninsula, and has not been quantitatively analysed using NMR. Previous chemical studies on M. leucotyliza have been limited to the main components by traditional thin-layer chromatography (TLC) experiments. OBJECTIVE: We explored the stability of atranorin, a major component of M. leucotyliza, in methanol and acetone using NMR and characterised the changes in the chemical profiles of the lichen extracts in methanol and acetone using qNMR. METHODOLOGY: Atranorin transformation in the presence of methanol was analysed using time-dependent proton (1 H)-NMR analysis (600 MHz NMR spectrometer). A 1 H qNMR (qHNMR) method was established using dimethyl sulfone as the internal standard for quantifying the selected components isolated from M. leucotyliza. Homogenous mixtures of the samples were dissolved in deuterated chloroform. RESULTS: Time-dependent 1 H-NMR experiments revealed that atranorin (5) from lichen M. leucotyliza decomposed into atraric acid (1) and methyl haemmatommate (2) in methanol. Four components were identified from M. leucotyliza: 1, 2, usnic acid (4), and 5, and their respective contents were determined using qHNMR. The percentages (w/w) of 1, 2, and 4 in the methanol extract were calculated as 5.66%, 0.69%, and 0.90%, while those of 1, 4, and 5 in the acetone extract were 1.70%, 1.68%, and 19.11%, respectively. CONCLUSION: We used qHNMR to effectively analyse quantitative compositional variations in two different M. leucotyliza extracts and reliably determined the chemical conversion of the unstable compound atranorin.


Asunto(s)
Líquenes , Cromatografía en Capa Delgada , Hidroxibenzoatos , Parmeliaceae , Solventes
4.
J Nat Prod ; 83(6): 2010-2024, 2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32510949

RESUMEN

The structures of four leucinostatin analogues (1-4) from Ophiocordyceps spp. and Purpureocillium spp. were determined together with six known leucinostatins [leucinostatins B (5), A (6), B2 (7), A2 (8), F (9), and D (10)]. The structures of the metabolites were established using a combination of analytical methods including HRESIMS and MS/MS experiments, 1D and 2D NMR spectroscopy, chiral HPLC, and advanced Marfey's analysis of the acid hydrolysate, as well as additional empirical and chemical methods. Compounds 1-10 were evaluated for their biological effects on triple negative breast cancer (TNBC) cells. Leucinostatins 1-10 showed selective cytostatic activities in MDA-MB-453 and SUM185PE cells representing the luminal androgen receptor subtype of TNBC. This selective activity motivated further investigation into the mechanism of action of leucinostatin B (5). The results demonstrate that this peptidic fungal metabolite rapidly inhibits mTORC1 signaling in leucinostatin-sensitive TNBC cell lines, but not in leucinostatin-resistant cells. Leucinostatins have been shown to repress mitochondrial respiration through inhibition of the ATP synthase, and we demonstrated that both the mTORC1 signaling and LAR-selective activities of 5 were recapitulated by oligomycin. Thus, inhibition of the ATP synthase with either leucinostatin B or oligomycin is sufficient to selectively impede mTORC1 signaling and inhibit the growth of LAR-subtype cells.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Ascomicetos/química , Cordyceps/química , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Línea Celular Tumoral , Cromatografía Líquida de Alta Presión , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Hidrólisis , Espectroscopía de Resonancia Magnética , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Consumo de Oxígeno , Receptores Androgénicos/efectos de los fármacos , Espectrometría de Masa por Ionización de Electrospray
5.
J Nat Prod ; 83(3): 584-592, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32105068

RESUMEN

An extract prepared from the fruit of Choerospondias axillaris exhibited differential cytotoxic effects when tested in a panel of pediatric cancer cell lines [Ewing sarcoma (A-673), rhabdomyosarcoma (SJCRH30), medulloblastoma (D283), and hepatoblastoma (Hep293TT)]. Bioassay-guided fractionation led to the purification of five new hydroquinone-based metabolites, choerosponols A-E (1-5), bearing unsaturated hydrocarbon chains. The structures of the natural products were determined using a combination of 1D and 2D NMR, HRESIMS, ECD spectroscopy, and Mosher ester analyses. The purified compounds were evaluated for their antiproliferative and cytotoxic activities, revealing that 1, which contains a benzofuran moiety, exhibited over 50-fold selective antiproliferative activity against Ewing sarcoma and medulloblastoma cells with growth inhibitory (GI50) values of 0.19 and 0.07 µM, respectively. The effects of 1 were evaluated in a larger panel of cancer cell lines, and these data were used in turn to interrogate the Project Achilles cancer dependency database, leading to the identification of the MCT1 transporter as a functional target of 1. These data highlight the utility of publicly available cancer dependency databases such as Project Achilles to facilitate the identification of the mechanisms of action of compounds with selective activities among cancer cell lines, which can be a major challenge in natural products drug discovery.


Asunto(s)
Anacardiaceae/química , Antineoplásicos Fitogénicos/farmacología , Extractos Vegetales/farmacología , Línea Celular Tumoral , Frutas/química , Humanos , Estructura Molecular , Fitoquímicos/farmacología , Vietnam
6.
Bioorg Chem ; 102: 104095, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32721777

RESUMEN

Bioassay-guided fractionation of a 90% ethanol extract of Periostracum Cicadae led to the isolation of two new N-acetyldopamine dimers (1a/1b) along with six known dimers (2a/2b, 3a/3b, and 4a/4b) and two monomers (5a/5b); compounds 2a/2b, 4a/4b and 5a/5b were newly isolated from this material. All compounds were isolated as enantiomeric mixtures and each enantiomer was successfully separated by chiral-phase HPLC. The structures including absolute configurations were confirmed by high-resolution electrospray ionization mass spectrometry (HR-ESIMS), 1D/2D nuclear magnetic resonance (NMR) spectroscopy, 1H iterative Full Spin Analysis (HiFSA), and electronic circular dichroism (ECD) spectroscopy. Subsequently, the bioactivities of these isolates were evaluated via CD4+ T cell differentiations, which are critical for immune responses and inflammation. The results revealed that compound 5b was observed to enhance the IFN-γ+ Th1 differentiation, which may have a potential for cancer immunotherapy.


Asunto(s)
Dopamina/análogos & derivados , Hemípteros/química , Animales , Diferenciación Celular/efectos de los fármacos , Dopamina/química , Dopamina/aislamiento & purificación , Dopamina/farmacología , Relación Dosis-Respuesta a Droga , Ratones , Ratones Endogámicos C57BL , Estructura Molecular , Relación Estructura-Actividad , Células TH1 , Células Th17
7.
Molecules ; 24(7)2019 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-30934890

RESUMEN

Catalpa ovata (Bignoniaceae) is widely distributed throughout Korea, China, and Japan. This study investigated the anti-inflammatory effects of catalpalactone isolated from C. ovata in lipopolysaccharide (LPS)-induced RAW264.7 cells. Catalpalactone significantly inhibited nitric oxide (NO) production and inducible NO synthase (iNOS) expression in LPS-induced RAW264.7 cells. The levels of cytokines such as interleukin-6 and tumor necrosis factor-α were reduced under catalpalactone exposure in LPS-induced RAW264.7 cells. Additionally, catalpalactone suppressed signal transducer and activator of transcription 1 (STAT-1) protein expression and interferon-ß (IFN-ß) production. Treatment with catalpalactone prevented interferon regulatory factor 3 (IRF3) and nuclear factor-κB (NF-κB) activation. Taken together, these results suggest that the anti-inflammatory effects of catalpalactone are associated with the suppression of NO production and iNOS expression through the inhibition of IRF3, NF-κB, and IFN-ß/STAT-1 activation.


Asunto(s)
Antiinflamatorios/farmacología , Bignoniaceae/química , Lactonas/farmacología , Macrófagos/efectos de los fármacos , Extractos Vegetales/farmacología , Animales , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Citocinas/genética , Citocinas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Mediadores de Inflamación/metabolismo , Lactonas/química , Lactonas/aislamiento & purificación , Lipopolisacáridos/inmunología , Activación de Macrófagos/efectos de los fármacos , Activación de Macrófagos/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , FN-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Células RAW 264.7
8.
Bioorg Med Chem Lett ; 27(14): 3065-3070, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28571822

RESUMEN

A new coumarin, (-)-cis-(3'R,4'R)-4'-O-angeloylkhellactone-3'-O-ß-d-glucopyranoside (1) and two new chalcones, 3'-[(2E)-5-carboxy-3-methyl-2-pentenyl]-4,2',4'-trihydroxychalcone (4) and (±)-4,2',4'-trihydroxy-3'-{2-hydroxy-2-[tetrahydro-2-methyl-5-(1-methylethenyl)-2-furanyl]ethyl}chalcone (5) were isolated from the aerial parts of Angelica keiskei (Umbelliferae), together with six known compounds: (R)-O-isobutyroyllomatin (2), 3'-O-methylvaginol (3), (-)-jejuchalcone F (6), isoliquiritigenin (7), davidigenin (8), and (±)-liquiritigenin (9). The structures of the new compounds were determined by interpretation of their spectroscopic data including 1D and 2D NMR data. All known compounds (2, 3, and 6-9) were isolated as constituents of A. keiskei for the first time. To identify novel hepatocyte proliferation inducer for liver regeneration, 1-9 were evaluated for their cell proliferative effects using a Hep3B human hepatoma cell line. All isolates exhibited cell proliferative effects compared to untreated control (DMSO). Cytoprotective effects against oxidative stress induced by glucose oxidase were also examined on Hep3B cells and mouse fibroblast NIH3T3 cells and all compounds showed significant dose-dependent protection against oxidative stress.


Asunto(s)
Angelica/química , Fenoles/química , Fenoles/farmacología , Angelica/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Espectroscopía de Resonancia Magnética , Ratones , Conformación Molecular , Células 3T3 NIH , Estrés Oxidativo/efectos de los fármacos , Fenoles/aislamiento & purificación
9.
J Nat Prod ; 80(8): 2240-2251, 2017 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-28787158

RESUMEN

Ten new glycosides, 6,10-O-di-trans-feruloyl catalpol (1), 6,6'-O-di-trans-feruloyl catalpol (2), 3,4-dihydro-6-O-di-trans-feruloyl catalpol (10), (8R,7'S,8'R)-lariciresinol 9'-O-ß-d-(6-O-trans-feruloyl)glucopyranoside (17), and ovatosides A-F (18-22, 24), were isolated from the stem bark of Catalpa ovata along with 19 known compounds. All isolates, except 6 (catalposide) and 9 (6-O-veratroyl catalpol), were found to scavenge peroxynitrite (ONOO-) formed by 3-morpholinosydnonimine. In particular, 12 compounds showed potent activity, with IC50 values in the range 0.14-2.2 µM.


Asunto(s)
Bignoniaceae/química , Furanos/química , Furanos/aislamiento & purificación , Glucósidos/química , Glucósidos/aislamiento & purificación , Glicósidos/química , Glicósidos/aislamiento & purificación , Glucósidos Iridoides/química , Glucósidos Iridoides/aislamiento & purificación , Iridoides/química , Iridoides/aislamiento & purificación , Lignanos/química , Lignanos/aislamiento & purificación , Ácido Peroxinitroso/química , Ácido Peroxinitroso/aislamiento & purificación , Concentración 50 Inhibidora , Estructura Molecular , Tallos de la Planta
10.
J Nat Prod ; 78(10): 2481-7, 2015 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-26431394

RESUMEN

Five new chalcones, 4,2',4'-trihydroxy-3'-[(2E,5E)-7-methoxy-3,7-dimethyl-2,5-octadienyl]chalcone (1), (±)-4,2',4'-trihydroxy-3'-[(2E)-6-hydroxy-7-methoxy-3,7-dimethyl-2-octenyl]chalcone (2), 4,2',4'-trihydroxy-3'-[(2E)-3-methyl-5-(1,3-dioxolan-2-yl)-2-pentenyl]chalcone (3), 2',3'-furano-4-hydroxy-4'-methoxychalcone (4), and (±)-4-hydroxy-2',3'-(2,3-dihydro-2-methoxyfurano)-4'-methoxychalcone (5), were isolated from the aerial parts of Angelica keiskei Koidzumi together with eight known chalcones, 6-13, which were identified as (±)-4,2',4'-trihydroxy-3'-[(6E)-2-hydroxy-7-methyl-3-methylene-6-octenyl]chalcone (6), xanthoangelol (7), xanthoangelol F (8), xanthoangelol G (9), 4-hydroxyderricin (10), xanthoangelol D (11), xanthoangelol E (12), and xanthoangelol H (13), respectively. Chalcones 1-13 were evaluated for their promoter activity on heat shock protein 25 (hsp25, murine form of human hsp27). Compounds 1 and 6 activated the hsp25 promoter by 21.9- and 29.2-fold of untreated control at 10 µM, respectively. Further protein expression patterns of heat shock factor 1 (HSF1), HSP70, and HSP27 by 1 and 6 were examined. Compound 6 increased the expression of HSF1, HSP70, and HSP27 by 4.3-, 1.5-, and 4.6-fold of untreated control, respectively, without any significant cellular cytotoxicities, whereas 1 did not induce any expression of these proteins. As a result, 6 seems to be a prospective HSP inducer.


Asunto(s)
Angelica/química , Chalconas , Proteínas de Choque Térmico/efectos de los fármacos , Western Blotting , Supervivencia Celular/efectos de los fármacos , Chalcona/análogos & derivados , Chalconas/química , Chalconas/aislamiento & purificación , Chalconas/farmacología , Proteínas de Choque Térmico HSP27/efectos de los fármacos , Proteínas HSP70 de Choque Térmico , Péptidos y Proteínas de Señalización Intracelular/efectos de los fármacos , Estructura Molecular , Componentes Aéreos de las Plantas/química , Reacción en Cadena de la Polimerasa , Proteínas Serina-Treonina Quinasas/efectos de los fármacos , República de Corea
11.
Molecules ; 20(4): 5965-74, 2015 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-25854758

RESUMEN

A new compound, 9,10-dihydro-5-methoxy-8-methyl-2,7-phenanthrenediol (1), was isolated from the roots of Stemona tuberosa Lour. (Stemonaceae) together with two new optically active compounds, (2S,4'R,8'R)-3,4-δ-dehydrotocopherol (2) and (2R,4'R,8'R)-3,4-δ-dehydrotocopherol (3). The structures of compounds 1-3 were determined on the basis of spectroscopic data analysis. Compounds 2 and 3 were each purified from a stereoisomeric mixture of 2 and 3 by preparative HPLC using a chiral column for the first time. The absolute configurations at C-2 of 2 and 3 were determined by Circular Dichroism (CD) experiments. As a part of the research to find natural wound healing agents, all isolates and the mixture of 2 and 3 were evaluated for their cell proliferative effects using a mouse fibroblast NIH3T3 and a HeLa human cervical cancer cell line. As a result, 1, 2, 3, or the mixture of 2 and 3 showed 41.6%, 78.4%, 118.6%, 38.2% increases of cell proliferation in the mouse fibroblast NIH3T3 respectively, compared to 28.4% increase of δ-tocopherol. Moreover, none of them induced cancer cell proliferation. Therefore, 3,4-δ-dehydrotocopherols, especially pure isomers 2 and 3 can be suggested as potential wound healing agents.


Asunto(s)
Fenantrenos/química , Fenantrenos/farmacología , Stemonaceae/química , Tocoferoles/química , Tocoferoles/farmacología , Animales , Proliferación Celular/efectos de los fármacos , Células HeLa , Humanos , Ratones , Estructura Molecular , Células 3T3 NIH , Fenantrenos/aislamiento & purificación , Raíces de Plantas/química , Tocoferoles/aislamiento & purificación
12.
Bioorg Med Chem Lett ; 24(5): 1403-6, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24507928

RESUMEN

A novel biological activity of psoralidin as an agonist for both estrogen receptor (ER)α and ERß agonist has been demonstrated in our study. Psoralidin has been characterized as a full ER agonist, which activates the classical ER-signaling pathway in both ER-positive human breast and endometrial cell lines as well as non-human cultured cells transiently expressing either ERα or ERß. The estrogenic activity was determined using the relative expression levels of either reporter or the endogenous genes dependent on the agonist-bound ER to the estrogen response element (ERE). Psoralidin at 10 µM was able to induce the maximum reporter gene expression corresponding to that of E2-treated cells and such activation of the ERE-reporter gene by psoralidin was completely abolished by the cotreatment of a pure ER antagonist, implying that the biological activities of psoralidin are mediated by ER. Psoralidin was also able to induce the endogenous estrogen-responsive gene, pS2, in human breast cancer cells MCF-7. It was observed that activation of the classical ER-signaling pathway by psoralidin is mediated via induction of ER conformation by psoralidin and direct binding of the psoralidin-ER complex to the EREs present in the promoter region of estrogen-responsive genes, as shown by chromatin immunoprecipitation assay results. Finally, molecular docking of psoralidin to the ligand binding pocket of the ERα showed that psoralidin is able to mimic the binding interactions of E2, and thus, it could act as an ER agonist in the cellular environment.


Asunto(s)
Benzofuranos/química , Cumarinas/química , Psoralea/química , Receptores de Estrógenos/metabolismo , Benzofuranos/aislamiento & purificación , Benzofuranos/farmacología , Sitios de Unión , Línea Celular , Proliferación Celular/efectos de los fármacos , Cumarinas/aislamiento & purificación , Cumarinas/farmacología , Receptor alfa de Estrógeno/agonistas , Receptor alfa de Estrógeno/metabolismo , Receptor beta de Estrógeno/agonistas , Receptor beta de Estrógeno/metabolismo , Femenino , Humanos , Simulación del Acoplamiento Molecular , Unión Proteica , Estructura Terciaria de Proteína , Psoralea/metabolismo , Receptores de Estrógenos/agonistas , Transducción de Señal/efectos de los fármacos
13.
BMC Complement Altern Med ; 14: 513, 2014 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-25528348

RESUMEN

BACKGROUND: Stemona tuberosa has long been used in Korean and Chinese medicine to ameliorate various lung diseases such as pneumonia and bronchitis. However, it has not yet been proven that Stemona tuberosa has positive effects on lung inflammation. METHODS: Stemona tuberosa extract (ST) was orally administered to C57BL/6 mice 2 hr before exposure to CS for 2 weeks. Twenty-four hours after the last CS exposure, mice were sacrificed to investigate the changes in the expression of cytokines such as tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), chemokines such as keratinocyte-derived chemokine (KC) and inflammatory cells such as macrophages, neutrophils, and lymphocytes from bronchoalveolar lavage fluid (BALF). Furthermore, we compared the effect of ST on lung tissue morphology between the fresh air, CS exposure, and ST treatment groups. RESULTS: ST significantly decreased the numbers of total cells, macrophages, neutrophils, and lymphocytes in the BALF of mice that were exposed to CS. Additionally, ST reduced the levels of cytokines (TNF-α, IL-6) and the tested chemokine (KC) in BALF, as measured by enzyme-linked immunosorbent assay (ELISA). We also estimated the mean alveolar airspace (MAA) via morphometric analysis of lung tissues stained with hematoxylin and eosin (H&E). We found that ST inhibited the alveolar airspace enlargement induced by CS exposure. Furthermore, we observed that the lung tissues of mice treated with ST showed ameliorated epithelial hyperplasia of the bronchioles compared with those of mice exposed only to CS. CONCLUSIONS: These results indicate that Stemona tuberosa has significant effects on lung inflammation in a subacute CS-induced mouse model. According to these outcomes, Stemona tuberosa may represent a novel therapeutic herb for the treatment of lung diseases including COPD.


Asunto(s)
Citocinas/metabolismo , Leucocitos/metabolismo , Pulmón/efectos de los fármacos , Fitoterapia , Extractos Vegetales/uso terapéutico , Neumonía/tratamiento farmacológico , Stemonaceae , Animales , Líquido del Lavado Bronquioalveolar/citología , Recuento de Células , Quimiocinas/metabolismo , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Femenino , Interleucina-6/metabolismo , Pulmón/metabolismo , Pulmón/patología , Linfocitos , Macrófagos , Ratones , Ratones Endogámicos C57BL , Neutrófilos , Extractos Vegetales/farmacología , Neumonía/inducido químicamente , Neumonía/metabolismo , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/patología , Contaminación por Humo de Tabaco/efectos adversos , Factor de Necrosis Tumoral alfa/metabolismo
14.
Chem Biodivers ; 11(12): 1954-62, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25491339

RESUMEN

Tuberostemonine stereoisomers are natural alkaloids found in Stemona tuberosa, that are known to have anti-inflammatory and anti-infective properties. Tuberostemonine alkaloids inhibit inflammation by suppressing the expression of inflammatory mediators such as cyclooxygenase and nitric oxide synthase. However, the direct immunomodulatory properties of tuberostemonine alkaloids in T cells have not been elucidated so far. In this study, the activities in T cells of tuberostemonine N (TbN) and a novel alkaloid, tuberostemonine O (TbO), isolated from S. tuberosa, were investigated. Although TbN did not have a significant effect on cytokine production in splenic T cells, TbO selectively suppressed interleukin (IL)-2 production. Moreover, TbO, but not TbN, significantly inhibited IL-2 production by primary CD4(+) T cells and delayed the T-cell proliferation in a dose-dependent manner. Addition of excess recombinant IL-2 restored the decreased cell-division rates in TbO-treated CD4(+) T cells to control levels. Collectively, these findings suggest that the immunomodulatory effects of TbO occurred by the suppression of IL-2 expression and IL-2-induced T-cell proliferation, suggesting a potential beneficial role of tuberostemonine alkaloids for the control of chronic inflammatory and autoimmune diseases caused by hyperactivated T cells.


Asunto(s)
Alcaloides/farmacología , Linfocitos T CD4-Positivos/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Interleucina-2/biosíntesis , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/metabolismo , Humanos
15.
Int J Biol Macromol ; 263(Pt 2): 130356, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38395283

RESUMEN

Mesenchymal stem cell (MSC)-based therapies show great potential in treating various diseases. However, control of the fate of injected cells needs to be improved. In this work, we developed an efficient methodology for modulating chondrogenic differentiation of MSCs. We fabricated heterospheroids with two sustained-release depots, a quaternized chitosan microsphere (QCS-MP) and a poly (lactic-co-glycolic acid) microsphere (PLGA-MP). The results show that heterospheroids composed of 1 × 104 to 5 × 104 MSCs formed rapidly during incubation in methylcellulose medium and maintained high cell viability in long-term culture. The MPs were uniformly distributed in the heterospheroids, as shown by confocal laser scanning microscopy. Incorporation of transforming growth factor beta 3 into QCS-MPs and of dexamethasone into PLGA-MPs significantly promoted the expression of chondrogenic genes and high accumulation of glycosaminoglycan in heterospheroids. Changes in crucial metabolites in the dual drug depot-engineered heterospheroids were also evaluated using 1H NMR-based metabolomics analysis to verify their successful chondrogenic differentiation. Our heterospheroid fabrication platform could be used in tissue engineering to study the effects of various therapeutic agents on stem cell fate.


Asunto(s)
Quitosano , Células Madre Mesenquimatosas , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/farmacología , Microesferas , Quitosano/farmacología , Ácido Poliglicólico/farmacología , Ácido Láctico/farmacología , Glicoles , Preparaciones de Acción Retardada/farmacología , Células Cultivadas , Diferenciación Celular , Condrogénesis
16.
Phytochemistry ; 219: 113974, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38211847

RESUMEN

Twenty-one angular dihydropyranocoumarins and a linear furanocoumarin, including four previously undescribed compounds (1-4), were isolated from the flowers of Peucedanum japonicum (Umbelliferae). The structures of 1-4, along with their absolute stereochemistry, were determined to be (3'S,4'S)-3'-O-propanoyl-4'-O-(3‴-methyl-2‴-butenoyl)khellactone (1), (3'S,4'S)-3'-O-propanoyl-4'-O-(2‴-methyl-2‴Z-butenoyl)khellactone (2), (3'S,4'S)-3'-O-propanoyl-4'-O-(2‴-methylbutanoyl)khellactone (3), and (3'S,4'S)-3'-O-(2″-methylpropanoyl)-4'-O-(3‴-methyl-2‴-butenoyl)khellactone (4) using one- and two-dimensional nuclear magnetic resonance, high-resolution electrospray ionization mass spectroscopy, and electronic circular dichroism spectroscopy. In addition, the absolute configuration of the three angular dihydropyranocoumarins (5-7) was determined for the first time in this study. Among the previously reported compounds isolated in this study, 8 and 9 were isolated for the first time from the genus Peucedanum, whereas 10 and 11 were previously unreported and had not been isolated from P. japonicum to date. Furthermore, all isolated compounds were evaluated for their aldo-keto reductase 1C1 inhibitory activities on A549 human non-small-cell lung cancer cells. Compounds 10 and 12 exhibited substantial AKR1C1 inhibitory activities with IC50 values of 35.8 ± 0.9 and 44.2 ± 1.5 µM, respectively.


Asunto(s)
Apiaceae , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Flores , Aldo-Ceto Reductasas
17.
bioRxiv ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38798440

RESUMEN

Understanding the distribution of hundreds of thousands of plant metabolites across the plant kingdom presents a challenge. To address this, we curated publicly available LC-MS/MS data from 19,075 plant extracts and developed the plantMASST reference database encompassing 246 botanical families, 1,469 genera, and 2,793 species. This taxonomically focused database facilitates the exploration of plant-derived molecules using tandem mass spectrometry (MS/MS) spectra. This tool will aid in drug discovery, biosynthesis, (chemo)taxonomy, and the evolutionary ecology of herbivore interactions.

18.
Chem Biodivers ; 10(7): 1322-7, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23847077

RESUMEN

The barks of Eucommia ulmoides (Eucommiae Cortex, Eucommiaceae) have been used as a traditional medicine in Korea, Japan, and China to treat hypertension, reinforce the muscles and bones, and recover the damaged liver and kidney functions. Among these traditional uses, to establish the recovery effects on the damaged organs on the basis of phytochemistry, the barks of E. ulmoides have been investigated to afford three known phenolic compounds, coniferaldehyde glucoside (1), bartsioside (2), and feretoside (3), which were found in the family Eucommiaceae for the first time. The compounds 1-3 were evaluated for their inducible activities on the heat shock factor 1 (HSF1), and heat shock proteins (HSPs) 27 and 70, along with four compounds, geniposide (4), geniposidic acid (5), pinoresinol diglucoside (6), and liriodendrin (7), which were previously reported from E. ulmoides. Compounds 1-7 increased expression of HSF1 by a factor of 1.214, 1.144, 1.153, 1.114, 1.159, 1.041, and 1.167 at 3 µM, respectively. Coniferaldehyde glucoside (1) showed the most effective increase of HSF1 and induced successive expressions of HSP27 and HSP70 in a dose-dependent manner without cellular cytotoxicity, suggesting a possible application as a HSP inducer to act as cytoprotective agent.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Eucommiaceae/química , Sustancias Protectoras/química , Factores de Transcripción/metabolismo , Línea Celular , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Factores de Transcripción del Choque Térmico , Humanos , Medicina Tradicional de Asia Oriental , Corteza de la Planta/química , Regiones Promotoras Genéticas , Sustancias Protectoras/aislamiento & purificación , Sustancias Protectoras/farmacología
19.
Pharmaceuticals (Basel) ; 16(5)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37242522

RESUMEN

Angelica keiskei is a perennial plant, belonging to the Apiaceae family and originating from Japan. This plant has been reported to act as a diuretic, analeptic, antidiabetic, hypertensive, tumor, galactagogue, and laxative. The mechanism of action of A. keiskei is not known, but previous studies have suggested that it may act as an antioxidant. In this work, we used Drosophila melanogaster to evaluate the impact of A. keiskei on lifespan and healthspan and its potential anti-aging mechanism by conducting multiple assays on three fly strains: w1118, chico, and JIV. We observed that the extract extended lifespan and improved healthspan in a sex- and strain-dependent manner. A. keiskei extended lifespan and improved reproductive fitness in female flies and either had no effect or decreased survival and physical performance in males. The extract protected against the superoxide generator paraquat in both sexes. These sex-specific effects suggest that A. keiskei may act through age-specific pathways such as the insulin and insulin-like growth factor signaling (IIS) pathways. Upon examination, we found that the increased survival of A. keiskei-fed females was dependent on the presence of the insulin receptor substrate chico, supporting the role of IIS in the action of A. keiskei.

20.
Nat Commun ; 14(1): 2593, 2023 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-37147330

RESUMEN

Programmed cell death protein 1 (PD-1), expressed on tumor-infiltrating T cells, is a T cell exhaustion marker. The mechanisms underlying PD-1 upregulation in CD4 T cells remain unknown. Here we develop nutrient-deprived media and a conditional knockout female mouse model to study the mechanism underlying PD-1 upregulation. Reduced methionine increases PD-1 expression on CD4 T cells. The genetic ablation of SLC43A2 in cancer cells restores methionine metabolism in CD4 T cells, increasing the intracellular levels of S-adenosylmethionine and yielding H3K79me2. Reduced H3K79me2 due to methionine deprivation downregulates AMPK, upregulates PD-1 expression and impairs antitumor immunity in CD4 T cells. Methionine supplementation restores H3K79 methylation and AMPK expression, lowering PD-1 levels. AMPK-deficient CD4 T cells exhibit increased endoplasmic reticulum stress and Xbp1s transcript levels. Our results demonstrate that AMPK is a methionine-dependent regulator of the epigenetic control of PD-1 expression in CD4 T cells, a metabolic checkpoint for CD4 T cell exhaustion.


Asunto(s)
Linfocitos T CD4-Positivos , Neoplasias , Receptor de Muerte Celular Programada 1 , Animales , Femenino , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Linfocitos T CD8-positivos , Metionina/metabolismo , Ratones Noqueados , Neoplasias/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Racemetionina/metabolismo , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA