Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Sensors (Basel) ; 22(3)2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35161915

RESUMEN

A fully integrated sensor array assisted by pattern recognition algorithm has been a primary candidate for the assessment of complex vapor mixtures based on their chemical fingerprints. Diverse prototypes of electronic nose systems consisting of a multisensory device and a post processing engine have been developed. However, their precision and validity in recognizing chemical vapors are often limited by the collected database and applied classifiers. Here, we present a novel way of preparing the database and distinguishing chemical vapor mixtures with small data acquisition for chemical vapors and their mixtures of interest. The database for individual vapor analytes is expanded and the one for their mixtures is prepared in the first-order approximation. Recognition of individual target vapors of NO2, HCHO, and NH3 and their mixtures was evaluated by applying the support vector machine (SVM) classifier in different conditions of temperature and humidity. The suggested method demonstrated the recognition accuracy of 95.24%. The suggested method can pave a way to analyze gas mixtures in a variety of industrial and safety applications.


Asunto(s)
Monitoreo del Ambiente , Gases , Nariz Electrónica , Gases/análisis , Humedad , Máquina de Vectores de Soporte
2.
Sensors (Basel) ; 21(5)2021 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-33801550

RESUMEN

Some of the shopping malls, airports, hospitals, etc. have underground parking lots where hundreds of vehicles can be parked. However, first-time visitors find it difficult to determine their current location and need to keep moving the vehicle to find an empty parking space. Moreover, they need to remember the parked location, and find a nearby staircase or elevator to move toward the destination. In such a situation, if the user location can be estimated, a new navigation system can be offered, which can assist users. This study presents an underground parking lot navigation system using long-term evolution (LTE) signals. As the proposed system utilizes LTE network signals for which the infrastructure is already installed, no additional infrastructure is required. To estimate the location of the vehicle, the signal strength of the LTE signal is accumulated, and the location of the vehicle is estimated by comparing it with the previously stored database of the LTE received signal strength (RSS). In addition, the acceleration and gyroscope sensors of a smartphone are used to improve the vehicle position estimation performance. The effectiveness of the proposed system is verified by conducting an experiment in a large shopping-mall underground parking lot where approximately 500 vehicles can be parked. From the results of the experiment, an error of less than an average of 10 m was obtained, which shows that seamless navigation is possible using the proposed system even in an environment where GNSS does not function.

3.
Small ; 16(33): e2001580, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32627903

RESUMEN

The applicability of nanomechanical devices for computational approaches is reviewed. The focus is on the representation and processing of information based on nanomechanical bits. Several device concepts are discussed ranging from nano-electromechanical systems in silicon to circuits based on carbon nano-tube switches, combinations of nanomechanical resonators and traditional transistors, and integration into a computing architecture. The strengths of mechanical systems include their scalability, robustness to external electrical shocks, and their low-energy consumption. Hence, they may lead the way to new forms of ultradense memory and alternative routes of computing. In conjunction with quantum mechanical single electron circuits, nano-electromechanical systems may also have potential for quantum computational circuits.

4.
Nanotechnology ; 29(40): 405502, 2018 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-29998847

RESUMEN

Recent advances in nanorobotic manipulation of ferromagnetic nanowires bring new avenues for applications in the biomedical area, such as targeted drug delivery, diagnostics or localized surgery. However, probing a single nanowire and monitoring its dynamics remains a challenge since it demands high precision sensing, high-resolution imaging, and stable operations in fluidic environments. Here, we report on a novel method of imaging and sensing magnetic fields from a single ferromagnetic nanowire with an atomic-scale sensor in diamond, i.e. diamond nitrogen-vacancy (NV) defect center. The distribution of static magnetic fields around a single Co nanowire is mapped out by spatially distributed NV centers and the obtained image is further compared with numerical simulation for quantitative analysis. DC field measurements such as continuous-wave ODMR and Ramsey sequence are used in the paper and sub Gauss level of field sensing is demonstrated. By imaging magnetic fields at a single nanowire level, this work represents an important step toward tracking and probing of ferromagnetic nanowires in biomedical applications.

5.
Opt Express ; 25(10): 11436-11443, 2017 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-28788824

RESUMEN

We present terahertz (THz) transmission control by several uniquely designed patterns of nano-slot antenna array. Collinearly aligned slot antenna arrays have been usually applied to THz filters with frequency band tunability by their geometry. Normally the amplitude in transmission (reflection) in the collinear alignment case can be varied via rotating the azimuthal angle with a sinusoidal trend, which can limit their utilization and performance only at fixed angle between the alignment of the resonant antennas and incident beam polarization. To pursue a variety of metamaterial uses, here, we present polarization-independent THz filters using variously aligned antenna array (asterisk, chlorophyll, and honeycomb patterns) in such counter-intuitive aspects. Besides, unprecedented multi resonance behaviors were observed in chlorophyll and honeycomb patterns, which can be explained with interferences by adjacent structures. The measured spectra were analyzed by harmonic oscillator model with simplified coupling between slots and their adjacent.

6.
Opt Express ; 23(10): 13537-44, 2015 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-26074601

RESUMEN

We experimentally demonstrated supercontinuum generation through a hollow core photonic bandgap fiber (HC-PBGF) filled with DNA nanocrystals modified by copper ions in a solution. Both double-crossover nano DNA structure and copper-ion-modified structure provided a sufficiently high optical nonlinearity within a short length of hollow optical fiber. Adding a higher concentration of copper ion into the DNA nanocrystals, the bandwidth of supercontinuum output was monotonically increased. Finally, we achieved the bandwidth expansion of about 1000 nm to be sufficient for broadband multi-spectrum applications.

7.
Sensors (Basel) ; 15(12): 30683-92, 2015 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-26690165

RESUMEN

Chemical force microscopy analyzes the interactions between various chemical/biochemical moieties in situ. In this work we examined force-distance curves and lateral force to measure the interaction between modified AFM tips and differently functionalized molecular monolayers. Especially for the measurements in gas phase, we investigated the effect of humidity on the analysis of force-distance curves and the images in lateral force mode. Flat chemical patterns composed of different functional groups were made through micro-contact printing and lateral force mode provided more resolved analysis of the chemical patterns. From the images of 1-octadecanethiol/11-mercapto-1-undecanoic acid patterns, the amine group functionalized tip brought out higher contrast of the patterns than an intact silicon nitride tip owing to the additional chemical interaction between carboxyl and amine groups. For more complex chemical interactions, relative chemical affinities toward specific peptides were assessed on the pattern of 1-octadecanethiol/phenyl-terminated alkanethiol. The lateral image of chemical force microscopy reflected specific preference of a peptide to phenyl group as well as the hydrophobic interaction.


Asunto(s)
Gases/química , Microscopía de Fuerza Atómica/métodos , Benceno/química , Ácidos Grasos/química , Péptidos/química , Compuestos de Sulfhidrilo/química
8.
J Nanosci Nanotechnol ; 14(8): 6309-13, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25936109

RESUMEN

The direct spontaneous grafting of 4-nitrophenyl molecules onto n-doped hydrogenated amorphous silicon (a-Si:H) surfaces without external ultraviolet, thermal, or electrochemical energy was invegtigated. Clean n-doped a-Si:H thin films were dipped in a solution of 4-nitrobenzenediazonium salts (PNBD) in acetonitrile. After the modified surfaces were rinsed, they were analyzed qualitatively and quantitatively by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). XPS and AFM results show that the reaction of an n-doped a-Si:H thin film with PNBD self-terminates without polymerization, after 5 h, and the surface number density of 4-nitrophenyl molecules is 4.2 x 10(15)/cm2. These results demonstrate that the spontaneous grafting of nitrophenyl layers onto n-doped a-Si:H thin films is an attractive pathway toward forming interfaces between a-Si:H and organic layers under ambient conditions.


Asunto(s)
Silicio/química , Hidrógeno/química , Microscopía de Fuerza Atómica , Espectroscopía de Fotoelectrones , Propiedades de Superficie
9.
Phys Rev Lett ; 111(19): 197202, 2013 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-24266485

RESUMEN

We demonstrate the transition of a coupled electron shuttle from a stable to a strongly nonlinear response at room temperature. Within this transition we observe the coupled shuttle's response to change from Coulomb controlled to conventional field emission. This parametric process is fully reversible and occurs within a broad frequency range. In combination, the large current and wide frequency band enable energy harvesting applications. The experimental data and the numerical calculations both indicate that the source of the nonlinearity is given by the electromechanical coupling of electron shuttling.

10.
Sensors (Basel) ; 12(12): 16262-73, 2012 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-23443378

RESUMEN

This paper presents a new pattern recognition approach for enhancing the selectivity of gas sensor arrays for clustering intelligent odor detection. The aim of this approach was to accurately classify an odor using pattern recognition in order to enhance the selectivity of gas sensor arrays. This was achieved using an odor monitoring system with a newly developed neural-genetic classification algorithm (NGCA). The system shows the enhancement in the sensitivity of the detected gas. Experiments showed that the proposed NGCA delivered better performance than the previous genetic algorithm (GA) and artificial neural networks (ANN) methods. We also used PCA for data visualization. Our proposed system can enhance the reproducibility, reliability, and selectivity of odor sensor output, so it is expected to be applicable to diverse environmental problems including air pollution, and monitor the air quality of clean-air required buildings such as a kindergartens and hospitals.


Asunto(s)
Gases/análisis , Gases/aislamiento & purificación , Odorantes/análisis , Algoritmos , Análisis por Conglomerados , Gases/clasificación , Humanos , Redes Neurales de la Computación
11.
Nano Lett ; 10(2): 615-9, 2010 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-20058874

RESUMEN

We observe Coulomb blockade in the field-emission current of a metallic island between two electrodes freely suspended by thin tunneling barriers. A third electrode serves as a gating contact to trace the Coulomb staircase of the device. Coulomb blockade is revealed at 77 K in conjunction with field emission. The measurements are in very good agreement with a theoretical model, taking into account orthodox Coulomb blockade and field emission.

12.
Nat Commun ; 12(1): 3741, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34145296

RESUMEN

Despite technological advances in biomolecule detections, evaluation of molecular interactions via potentiometric devices under ion-enriched solutions has remained a long-standing problem. To avoid severe performance degradation of bioelectronics by ionic screening effects, we cover probe surfaces of field effect transistors with a single film of the supported lipid bilayer, and realize respectable potentiometric signals from receptor-ligand bindings irrespective of ionic strength of bulky solutions by placing an ion-free water layer underneath the supported lipid bilayer. High-energy X-ray reflectometry together with the circuit analysis and molecular dynamics simulation discovered biochemical findings that effective electrical signals dominantly originated from the sub-nanoscale conformational change of lipids in the course of receptor-ligand bindings. Beyond thorough analysis on the underlying mechanism at the molecular level, the proposed supported lipid bilayer-field effect transistor platform ensures the world-record level of sensitivity in molecular detection with excellent reproducibility regardless of molecular charges and environmental ionic conditions.


Asunto(s)
Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Membrana Dobles de Lípidos/química , Potenciometría/instrumentación , Potenciometría/métodos , Membrana Celular/metabolismo , Lípidos de la Membrana/metabolismo , Simulación de Dinámica Molecular , Concentración Osmolar , Transistores Electrónicos
13.
Phys Rev Lett ; 105(6): 067204, 2010 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-20868004

RESUMEN

We present spontaneous symmetry breaking in a nanoscale version of a setup prolific in classical mechanics: two coupled nanomechanical pendula. The two pendula are electron shuttles fabricated as nanopillars [D. V. Scheible and R. H. Blick, Appl. Phys. Lett. 84, 4632 (2004).10.1063/1.1759371] and placed between two capacitor plates in a homogeneous electric field. Instead of being mechanically coupled through a spring they exchange electrons, i.e., they shuttle electrons from the source to the drain "capacitor plate." The nonzero dc current through this system by external ac excitation is caused via dynamical symmetry breaking. This symmetry-broken current appears at sub- and superharmonics of the fundamental mode of the coupled system.

14.
Adv Sci (Weinh) ; 7(22): 2002014, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33240761

RESUMEN

The adverse effects of air pollution on respiratory health make air quality monitoring with high spatial and temporal resolutions essential especially in cities. Despite considerable interest and efforts, the application of various types of sensors is considered immature owing to insufficient sensitivity and cross-interference under ambient conditions. Here, a fully integrated chemiresistive sensor array (CSA) with parts-per-trillion sensitivity is demonstrated with its application for on-road NO x monitoring. An analytical model is suggested to describe the kinetics of the sensor responses and quantify molecular binding affinities. Finally, the full characterization of the system is connected to implement on-road measurements on NO x vapor with quantification as its ultimate field application. The obtained results suggest that the CSA shows potential as an essential unit to realize an air-quality monitoring network with high spatial and temporal resolutions.

15.
Nat Commun ; 11(1): 2804, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32499540

RESUMEN

Toward the development of surface-sensitive analytical techniques for biosensors and diagnostic biochip assays, a local integration of low-concentration target materials into the sensing region of interest is essential to improve the sensitivity and reliability of the devices. As a result, the dynamic process of sorting and accurate positioning the nanoparticulate biomolecules within pre-defined micro/nanostructures is critical, however, it remains a huge hurdle for the realization of practical surface-sensitive biosensors and biochips. A scalable, massive, and non-destructive trapping methodology based on dielectrophoretic forces is highly demanded for assembling nanoparticles and biosensing tools. Herein, we propose a vertical nanogap architecture with an electrode-insulator-electrode stack structure, facilitating the generation of strong dielectrophoretic forces at low voltages, to precisely capture and spatiotemporally manipulate nanoparticles and molecular assemblies, including lipid vesicles and amyloid-beta protofibrils/oligomers. Our vertical nanogap platform, allowing low-voltage nanoparticle captures on optical metasurface designs, provides new opportunities for constructing advanced surface-sensitive optoelectronic sensors.


Asunto(s)
Técnicas Biosensibles , Nanopartículas/química , Nanoestructuras/química , Nanotecnología/métodos , Bacillus subtilis , Materiales Biocompatibles , Simulación por Computador , Dimetilpolisiloxanos/química , Electroquímica , Electrodos , Diseño de Equipo , Hongos , Cinética , Lípidos/química , Ensayo de Materiales , Ósmosis , Reproducibilidad de los Resultados
16.
Curr Eye Res ; 44(7): 760-769, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30868918

RESUMEN

Purpose: Apoptotic loss of retinal ganglion cells (RGCs) is involved in various optic neuropathies, and its extent is closely related to visual impairment. Direct imaging and counting of RGCs is beneficial to the evaluation of RGC loss, but these processes are challenging with the conventional techniques, due to the transparency and hypo-reflectivity of RGCs as light-transmitting structures of the retina. Differential interference contrast (DIC) microscopy, which can provide real-time images of transparent specimens, is utilized to image neuronal cells including RGCs in the ganglion cell layer (GCL). Methods: Herein, we show that the neuronal cells within each GCL in an explanted rat retina, including the inner nuclear layer and the outer nuclear layer, can be imaged selectively by transmission-type DIC microscopy. RGCs were also differentiated from non-RGCs by the objective method. Results: RGCs were differentiated from non-RGCs in the GCL by their morphological features on DIC images with the aid of retrograde fluorescence labeling. Loss of RGCs was detected in optic-nerve-transection and retinal-ischemia-reperfusion models by DIC imaging. The images obtained from the reflection-type DIC microscopy were comparable to those from the transmission-type DIC microscopy. Conclusions: This method enables direct optical visualization of RGCs in experimental optic-nerve degeneration, thus providing the opportunity for more accurate evaluation of optic neuropathies as well as more effective investigation of diseases.


Asunto(s)
Axones/patología , Degeneración Nerviosa/patología , Traumatismos del Nervio Óptico/patología , Daño por Reperfusión/patología , Células Ganglionares de la Retina/patología , Animales , Recuento de Células , Diferenciación Celular , Masculino , Microscopía de Contraste de Fase , Traumatismos del Nervio Óptico/diagnóstico por imagen , Ratas , Ratas Sprague-Dawley , Daño por Reperfusión/diagnóstico por imagen
17.
ACS Appl Mater Interfaces ; 10(44): 38581-38587, 2018 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-30295452

RESUMEN

A liquid-permeable concept in a metal-insulator-metal (MIM) structure is proposed to achieve highly sensitive color-tuning property through the change of the effective refractive index of the dielectric insulator layer. A semicontinuous top metal film with nanoapertures, adopted as a transreflective layer for MIM resonator, allows to tailor the nanomorphology of a dielectric layer through selective etching of the underneath insulator layer, resulting in nanopillars and hollow voids in the insulator layer. By allowing outer mediums to enter into the hollow voids of the dielectric layer, such liquid-permeable MIM architecture enables to achieve the wavelength shift as large as 323.5 nm/RIU in the visible range, which is the largest wavelength shift reported so far. Our liquid-permeable approaches indeed provide dramatic color tunablility, a real-time sensing scheme, long-term durability, and reproducibility in a simple and scalable manner.

18.
ACS Sens ; 3(3): 661-669, 2018 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-29411965

RESUMEN

Hollow-structured nanomaterials are presented as an outstanding sensing platform because of their unique combination of high porosity in both the micro- and nanoscale, their biocompatibility, and flexible template applicability. Herein, we introduce a bacterial skeleton method allowing for cost-effective fabrication with nanoscale precision. As a proof-of-concept, we fabricated a hollow SnO2 hemipill network (HSHN) and a hollow Pt-functionalized SnO2 hemipill network (HPN). A superior detecting capability of HPN toward acetone, a diabetes biomarker, was demonstrated at low concentration (200 ppb) under high humidity (RH 80%). The detection limit reaches 3.6 ppb, a level satisfying the minimum requirement for diabetes breath diagnosis. High selectivity of the HPN sensor against C6H6, C7H8, CO, and NO vapors is demonstrated using principal component analysis (PCA), suggesting new applications of HPN for human-activity monitoring and a personal healthcare tool for diagnosing diabetes. The skeleton method can be further employed to mimic nanostructures of biomaterials with unique functionality for broad applications.


Asunto(s)
Acetona/análisis , Bacterias/química , Diabetes Mellitus/diagnóstico , Platino (Metal)/química , Compuestos de Estaño/química , Biomarcadores/análisis , Humanos , Humedad , Tamaño de la Partícula , Porosidad , Propiedades de Superficie
19.
Adv Mater ; 30(27): e1706764, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29775503

RESUMEN

Photosensitive materials contain biologically engineered elements and are constructed using delicate techniques, with special attention devoted to efficiency, stability, and biocompatibility. However, to date, no photosensitive material has been developed to replace damaged visual-systems to detect light and transmit the signal to a neuron in the human body. In the current study, artificial nanovesicle-based photosensitive materials are observed to possess the characteristics of photoreceptors similar to the human eye. The materials exhibit considerably effective spectral characteristics according to each pigment. Four photoreceptors originating from the human eye with color-distinguishability are produced in human embryonic kidney (HEK)-293 cells and partially purified in the form of nanovesicles. Under various wavelengths of visible light, electrochemical measurements are performed to analyze the physiological behavior and kinetics of the photoreceptors, with graphene, performing as an electrode, playing an important role in the lipid bilayer deposition and oxygen reduction processes. Four nanovesicles with different photoreceptors, namely, rhodopsin (Rho), short-, medium-, and longwave sensitive opsin 1 (1SW, 1MW, 1LW), show remarkable color-dependent characteristics, consistent with those of natural human retina. With four different light-emitting diodes for functional verification, the photoreceptors embedded in nanovesicles show remarkably specific color sensitivity. This study demonstrates the potential applications of light-activated platforms in biological optoelectronic industries.

20.
Sci Rep ; 6: 20324, 2016 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-26841708

RESUMEN

Recently, evidence was presented that certain single-walled carbon nanotubes (SWNTs) possess helical defective traces, exhibiting distinct cleaved lines, yet their mechanical characterization remains a challenge. On the basis of the spiral growth model of SWNTs, here we present atomic details of helical defects and investigate how the tensile behaviors of SWNTs change with their presence using molecular dynamics simulations. SWNTs have exhibited substantially lower tensile strength and strain than theoretical results obtained from a seamless tubular structure, whose physical origin cannot be explained either by any known SWNT defects so far. We find that this long-lasting puzzle could be explained by assuming helical defects in SWNTs, exhibiting excellent agreement with experimental observation. The mechanism of this tensile process is elucidated by analyzing atomic stress distribution and evolution, and the effects of the chirality and diameter of SWNTs on this phenomenon are examined based on linear elastic fracture mechanics. This work contributes significantly to our understanding of the growth mechanism, defect hierarchies, and mechanical properties of SWNTs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA