RESUMEN
The delivery market in Republic of Korea has experienced significant growth, leading to a surge in motorcycle-related accidents. However, there is a lack of comprehensive data collection systems for motorcycle safety management. This study focused on designing and implementing a foundational data collection system to monitor and evaluate motorcycle driving behavior. To achieve this, eleven risky behaviors were defined, identified using image-based, GIS-based, and inertial-sensor-based methods. A motorcycle-mounted sensing device was installed to assess driving, with drivers reviewing their patterns through an app and all data monitored via a web interface. The system was applied and tested using a testbed. This study is significant as it successfully conducted foundational data collection for motorcycle safety management and designed and implemented a system for monitoring and evaluation.
RESUMEN
We used biophysical modeling to examine a fundamental, yet unresolved, question regarding how particular lateral amygdala (LA) neurons are assigned to fear memory traces. This revealed that neurons with high intrinsic excitability are more likely to be integrated into the memory trace, but that competitive synaptic interactions also play a critical role. Indeed, when the ratio of intrinsically excitable cells was increased or decreased, the number of plastic cells remained relatively constant. Analysis of the connectivity of plastic and nonplastic cells revealed that subsets of principal LA neurons effectively band together by virtue of their excitatory interconnections to suppress plasticity in other principal cells via the recruitment of inhibitory interneurons.
Asunto(s)
Amígdala del Cerebelo/fisiología , Miedo/fisiología , Memoria/fisiología , Modelos Neurológicos , Neuronas/fisiología , Transmisión Sináptica , Amígdala del Cerebelo/citología , Animales , Humanos , Plasticidad NeuronalRESUMEN
The relative contributions of plasticity in the amygdala vs. its afferent pathways to conditioned fear remain controversial. Some believe that thalamic and cortical neurons transmitting information about the conditioned stimulus (CS) to the lateral amygdala (LA) serve a relay function. Others maintain that thalamic and/or cortical plasticity is critically involved in fear conditioning. To address this question, we developed a large-scale biophysical model of the LA that could reproduce earlier findings regarding the cellular correlates of fear conditioning in LA. We then conducted model experiments that examined whether fear memories depend on (1) training-induced increases in the responsiveness of thalamic and cortical neurons projecting to LA, (2) plasticity at the synapses they form in LA, and/or (3) plasticity at synapses between LA neurons. These tests revealed that training-induced increases in the responsiveness of afferent neurons are required for fear memory formation. However, once the memory has been formed, this factor is no longer required because the efficacy of the synapses that thalamic and cortical neurons form with LA cells has augmented enough to maintain the memory. In contrast, our model experiments suggest that plasticity at synapses between LA neurons plays a minor role in maintaining the fear memory.
Asunto(s)
Amígdala del Cerebelo/fisiología , Miedo/fisiología , Memoria/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Animales , Condicionamiento Psicológico/fisiología , Humanos , Redes Neurales de la ComputaciónRESUMEN
Wafer-scale growth of single crystal thin films of metals, semiconductors, and insulators is crucial for manufacturing high-performance electronic and optical devices, but still challenging from both scientific and industrial perspectives. Recently, unconventional advanced synthetic approaches have been attempted and have made remarkable progress in diversifying the species of producible single crystal thin films. This review introduces several new synthetic approaches to produce large-area single crystal thin films of various materials according to the concepts and principles.
RESUMEN
Understanding the relationship between land use/land cover (LULC) and land surface temperature (LST) has long been an area of interest in urban and environmental study fields. To examine this, existing studies have utilized both white-box and black-box approaches, including regression, decision tree, and artificial intelligence models. To overcome the limitations of previous models, this study adopted the explainable artificial intelligence (XAI) approach in examining the relationships between LULC and LST. By integrating the XGBoost and SHAP model, we developed the LST prediction model in Seoul and estimated the LST reduction effects after specific LULC changes. Results showed that the prediction accuracy of LST was maximized when landscape, topographic, and LULC features within a 150 m buffer radius were adopted as independent variables. Specifically, the existence of surrounding built-up and vegetation areas were found to be the most influencing factors in explaining LST. In this study, after the LULC changes from expressway to green areas, approximately 1.5 °C of decreasing LST was predicted. The findings of our study can be utilized for assessing and monitoring the thermal environmental impact of urban planning and projects. Also, this study can contribute to determining the priorities of different policy measures for improving the thermal environment.
Asunto(s)
Inteligencia Artificial , Monitoreo del Ambiente , Monitoreo del Ambiente/métodos , Temperatura , Planificación de Ciudades , SeúlRESUMEN
Although multicomponent inorganic thin films (metal-oxides, -carbides, -nitrides, and -chalcogenides) have been synthesized by polymer-assisted deposition (PAD), synthesis of high-performance transparent conducting oxides (TCOs) has been rarely reported. TCO requires (i) removal of impurities, (ii) high-density oxide film, (iii) homogeneity in crystal structures and film morphology, and (iv) controllable elemental doping. This study performs a systematic investigation on preparation of stable multicomponent metal-polymer complex solutions by removing the counteranions in the solution. This study also proposes accurate acid-base titration for each metal species in order to minimize the amount of PEI, thus maximizing the density of the film. As a representative TCO, Sn-doped In2O3 (ITO) films have been achieved. The ITO film has an excellent sheet resistance (24.5 Ω/sq) at 93% optical transparency, with a figure of merit of 2.1 × 10-2 Ω-1, which is comparable to the best.