Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
2.
PLoS Pathog ; 17(12): e1010092, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34914812

RESUMEN

The development of safe and effective vaccines to prevent SARS-CoV-2 infections remains an urgent priority worldwide. We have used a recombinant vesicular stomatitis virus (rVSV)-based prime-boost immunization strategy to develop an effective COVID-19 vaccine candidate. We have constructed VSV genomes carrying exogenous genes resulting in the production of avirulent rVSV carrying the full-length spike protein (SF), the S1 subunit, or the receptor-binding domain (RBD) plus envelope (E) protein of SARS-CoV-2. Adding the honeybee melittin signal peptide (msp) to the N-terminus enhanced the protein expression, and adding the VSV G protein transmembrane domain and the cytoplasmic tail (Gtc) enhanced protein incorporation into pseudotype VSV. All rVSVs expressed three different forms of SARS-CoV-2 spike proteins, but chimeras with VSV-Gtc demonstrated the highest rVSV-associated expression. In immunized mice, rVSV with chimeric S protein-Gtc derivatives induced the highest level of potent neutralizing antibodies and T cell responses, and rVSV harboring the full-length msp-SF-Gtc proved to be the superior immunogen. More importantly, rVSV-msp-SF-Gtc vaccinated animals were completely protected from a subsequent SARS-CoV-2 challenge. Overall, we have developed an efficient strategy to induce a protective response in SARS-CoV-2 challenged immunized mice. Vaccination with our rVSV-based vector may be an effective solution in the global fight against COVID-19.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Vacunas contra la COVID-19/administración & dosificación , COVID-19/prevención & control , Glicoproteína de la Espiga del Coronavirus/inmunología , Virus de la Estomatitis Vesicular Indiana/genética , Enzima Convertidora de Angiotensina 2/genética , Animales , COVID-19/inmunología , COVID-19/virología , Vacunas contra la COVID-19/genética , Chlorocebus aethiops , Humanos , Inmunización , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células Vero , Proteínas Virales/genética , Proteínas Virales/inmunología
3.
J Gen Virol ; 102(4)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33913804

RESUMEN

The development of a vaccine to prevent Zika virus (ZIKV) infection has been one of the priorities in infectious disease research in recent years. There have been numerous attempts to develop an effective vaccine against ZIKV. It is imperative to choose the safest and the most effective ZIKV vaccine from all candidate vaccines to control this infection globally. We have employed a dual serotype of prime-boost recombinant vesicular stomatitis virus (VSV) vaccine strategy, to develop a ZIKV vaccine candidate, using a type 1 IFN-receptor knock-out (Ifnar-/-) mouse model for challenge studies. Prime vaccination with an attenuated recombinant VSV Indiana serotype (rVSVInd) carrying a genetically modified ZIKV envelope (E) protein gene followed by boost vaccination with attenuated recombinant VSV New Jersey serotype (rVSVNJ) carrying the same E gene induced robust adaptive immune responses. In particular, rVSV carrying the ZIKV E gene with the honeybee melittin signal peptide (msp) at the N terminus and VSV G protein transmembrane domain and cytoplasmic tail (Gtc) at the C terminus of the E gene induced strong protective immune responses. This vaccine regimen induced highly potent neutralizing antibodies and T cell responses in the absence of an adjuvant and protected Ifnar-/- mice from a lethal dose of the ZIKV challenge.


Asunto(s)
Virus de la Estomatitis Vesicular New Jersey/inmunología , Proteínas del Envoltorio Viral/inmunología , Vacunas Virales/inmunología , Infección por el Virus Zika/prevención & control , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Chlorocebus aethiops , Cricetinae , Células HEK293 , Humanos , Inmunidad , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Vero
4.
Retrovirology ; 13(1): 82, 2016 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-27894306

RESUMEN

BACKGROUND: Vaccination with inactivated (killed) whole-virus particles has been used to prevent a wide range of viral diseases. However, for an HIV vaccine this approach has been largely negated due to inherent safety concerns, despite the ability of killed whole-virus vaccines to generate a strong, predominantly antibody-mediated immune response in vivo. HIV-1 Clade B NL4-3 was genetically modified by deleting the nef and vpu genes and substituting the coding sequence for the Env signal peptide with that of honeybee melittin signal peptide to produce a less virulent and more replication efficient virus. This genetically modified virus (gmHIV-1NL4-3) was inactivated and formulated as a killed whole-HIV vaccine, and then used for a Phase I human clinical trial (Trial Registration: Clinical Trials NCT01546818). The gmHIV-1NL4-3 was propagated in the A3.01 human T cell line followed by virus purification and inactivation with aldrithiol-2 and γ-irradiation. Thirty-three HIV-1 positive volunteers receiving cART were recruited for this observer-blinded, placebo-controlled Phase I human clinical trial to assess the safety and immunogenicity. RESULTS: Genetically modified and killed whole-HIV-1 vaccine, SAV001, was well tolerated with no serious adverse events. HIV-1NL4-3-specific PCR showed neither evidence of vaccine virus replication in the vaccine virus-infected human T lymphocytes in vitro nor in the participating volunteers receiving SAV001 vaccine. Furthermore, SAV001 with adjuvant significantly increased the pre-existing antibody response to HIV-1 proteins. Antibodies in the plasma of vaccinees were also found to recognize HIV-1 envelope protein on the surface of infected cells as well as showing an enhancement of broadly neutralizing antibodies inhibiting tier I and II of HIV-1 B, D, and A subtypes. CONCLUSION: The killed whole-HIV vaccine, SAV001, is safe and triggers anti-HIV immune responses. It remains to be determined through an appropriate trial whether this immune response prevents HIV infection.


Asunto(s)
Vacunas contra el SIDA , Anticuerpos Neutralizantes/sangre , Anticuerpos Anti-VIH/sangre , Infecciones por VIH/prevención & control , VIH-1/inmunología , Inmunogenicidad Vacunal , Vacunas contra el SIDA/administración & dosificación , Vacunas contra el SIDA/efectos adversos , Vacunas contra el SIDA/inmunología , Adulto , Animales , Anticuerpos Neutralizantes/inmunología , Abejas/genética , Femenino , Productos del Gen nef/genética , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/inmunología , VIH-1/genética , Proteínas del Virus de la Inmunodeficiencia Humana/genética , Humanos , Masculino , Persona de Mediana Edad , Señales de Clasificación de Proteína , Vacunas de Productos Inactivados/administración & dosificación , Vacunas de Productos Inactivados/efectos adversos , Vacunas de Productos Inactivados/inmunología , Proteínas Reguladoras y Accesorias Virales/genética , Adulto Joven
5.
J Virol ; 89(12): 6338-51, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25855732

RESUMEN

UNLABELLED: To take advantage of live recombinant vesicular stomatitis viruses (rVSVs) as vaccine vectors for their high yield and for their induction of strong and long-lasting immune responses, it is necessary to make live vaccine vectors safe for use without losing their immunogenicity. We have generated safer and highly efficient recombinant VSV vaccine vectors by combining the M51R mutation in the M gene of serotype VSV-Indiana (VSVInd) with a temperature-sensitive mutation (tsO23) of the VSVInd Orsay strain. In addition, we have generated two new serotype VSV-New Jersey (VSVNJ) vaccine vectors by combining M48R and M51R mutations with G22E and L110F mutations in the M gene, rVSVNJ(G22E M48R M51R) [rVSVNJ(GMM)] and VSVNJ(G22E M48R M51R L110F) [rVSVNJ(GMML)]. The combined mutations G21E, M51R, and L111F in the M protein of VSVInd significantly reduced the burst size of the virus by up to 10,000-fold at 37°C without affecting the level of protein expression. BHK21 cells and SH-SY5Y human neuroblastoma cells infected with rVSVInd(GML), rVSVNJ(GMM), and rVSVNJ(GMML) showed significantly reduced cytopathic effects in vitro at 37°C, and mice injected with 1 million infectious virus particles of these mutants into the brain showed no neurological dysfunctions or any other adverse effects. In order to increase the stability of the temperature-sensitive mutant, we have replaced the phenylalanine with alanine. This will change all three nucleotides from UUG (leucine) to GCA (alanine). The resulting L111A mutant showed the temperature-sensitive phenotype of rVSVInd(GML) and increased stability. Twenty consecutive passages of rVSVInd(GML) with an L111A mutation did not convert back to leucine (UUG) at position 111 in the M protein gene. IMPORTANCE: Recombinant vesicular stomatitis viruses as live vaccine vectors are very effective in expressing foreign genes and inducing adaptive T cell and B cell immune responses. As with any other live viruses in humans or animals, the use of live rVSVs as vaccine vectors demands the utmost safety. Our strategy to attenuate rVSVInd by utilizing a temperature-sensitive assembly-defective mutation of L111A and combining it with an M51R mutation in the M protein of rVSVInd significantly reduced the pathogenicity of the virus while maintaining highly effective virus production. We believe our new temperature-sensitive M gene mutant of rVSVInd(GML) and M gene mutants of rVSVNJ(GMM) and rVSVNJ(GMML) add excellent vaccine vectors to the pool of live viral vectors.


Asunto(s)
Portadores de Fármacos , Vectores Genéticos , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunología , Vesiculovirus/genética , Proteínas de la Matriz Viral/genética , Sustitución de Aminoácidos , Animales , Línea Celular , Cricetinae , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Humanos , Ratones , Proteínas Mutantes/genética , Mutación Missense , Vacunas Atenuadas/efectos adversos
6.
iScience ; 26(4): 106292, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-36915805

RESUMEN

Recombinant vesicular stomatitis virus (rVSV) vaccines expressing spike proteins of Wuhan, Beta, and/or Delta variants of SARS-CoV-2 were generated and tested for induction of antibody and T cell immune responses following intramuscular delivery to mice. rVSV-Wuhan and rVSV-Delta vaccines and an rVSV-Trivalent (mixed rVSV-Wuhan, -Beta, -Delta) vaccine elicited potent neutralizing antibodies (nAbs) against live SARS-CoV-2 Wuhan (USAWA1), Beta (B.1.351), Delta (B.1.617.2), and Omicron (B.1.1.529) viruses. Prime-boost vaccination with rVSV-Beta was less effective in this capacity. Heterologous boosting of rVSV-Wuhan with rVSV-Delta induced strong nAb responses against Delta and Omicron viruses, with the rVSV-Trivalent vaccine consistently effective in inducing nAbs against all the SARS-CoV-2 variants tested. All vaccines, including rVSV-Beta, elicited a spike-specific immunodominant CD8+ T cell response. Collectively, rVSV vaccines targeting SARS-CoV-2 variants of concern may be considered in the global fight against COVID-19.

7.
Virus Res ; 90(1-2): 347-64, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12457988

RESUMEN

The large (L) protein of vesicular stomatitis virus (VSV), catalytic subunit of RNA-dependent RNA polymerase is responsible for the transcription and replication of VSV. The L protein of the Indiana serotype of VSV (VSV(Ind)) has previously been cloned and expressed, and used in the reverse genetics of VSV(Ind). However, the cDNA clones expressing functional L proteins of the VSV(NJ) serotype were not available. It was necessary to obtain functional clones of the New Jersey serotype of VSV (VSV(NJ)) in order to study homologous viral interference. Here we report the cDNA cloning, expression, and functional analyses of L proteins from both the Hazelhurst subtype and Concan subtype of VSV(NJ). The analysis of the expressed L proteins for the transcription and replication of VSV demonstrate that both VSV(NJ) L clones express functional RNA-dependent RNA polymerase.


Asunto(s)
ARN Viral/biosíntesis , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas Recombinantes/metabolismo , Transcripción Genética , Virus de la Estomatitis Vesicular Indiana/metabolismo , Vesiculovirus , Proteínas Virales/metabolismo , Replicación Viral , Secuencia de Aminoácidos , Animales , Línea Celular , Clonación Molecular , Cricetinae , ADN Complementario , Datos de Secuencia Molecular , ARN Viral/genética , ARN Polimerasa Dependiente del ARN/genética , Análisis de Secuencia de ADN , Serotipificación , Virus de la Estomatitis Vesicular Indiana/clasificación , Virus de la Estomatitis Vesicular Indiana/genética , Proteínas Virales/genética
8.
Virus Res ; 171(1): 168-77, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23207069

RESUMEN

It is desirable to develop a RNA virus vector capable of accommodating large foreign genes for high level gene expression. Vesicular stomatitis virus (VSV) has been used as a gene expression vector, especially Indiana serotype (VSV(Ind)), but less with New Jersey serotype (VSV(NJ)). Here, we report constructions of genetically modified rVSV(NJ) vector carrying various lengths of human hepatitis C virus (HCV) non-structural (NS) protein genes, level of inserted gene expression and characterization of rVSV(NJ). We modified the M gene of VSV(NJ) by changing methionine to arginine at positions 48 and 51 (rVSV(NJ)-M) (Kim and Kang, 2007) for construction of rVSV(NJ) with various lengths of HCV non-structural genes. The NS polyprotein genes of HCV were inserted between the G and L genes of the rVSV(NJ)-M vector, and recombinant VSV(NJ)-M viruses with HCV gene inserts were recovered by the reverse genetics. The recombinant VSV(NJ)-M vector with the HCV NS genes express high levels of all different forms of the NS proteins. The electron microscopic examination showed that lengths of recombinant VSV(NJ)-M without gene of interests, VSV(NJ)-M with a gene of HCV NS3 and NS4A (VSV(NJ)-M-NS3/4A), VSV(NJ)-M with a gene of HCV NS4AB plus NS5AB (VSV(NJ)-M-NS4AB/5AB), and VSV(NJ)-M carrying a gene of HCV NS3, NS4AB, and NS5AB (VSV(NJ)-M-NS3/4AB/5AB) were 172±10.5 nm, 201±12.5 nm, 226±12.9 nm, and 247±18.2 nm, respectively. The lengths of recombinant VSVs increased approximately 10nm by insertion of 1kb of foreign genes. The diameter of these recombinant viruses also increased slightly by longer HCV gene inserts. Our results showed that the recombinant VSV(NJ)-M vector can accommodate as much as 6000 bases of the foreign gene. We compared the magnitude of the IFN induction in mouse fibroblast L(Y) cells infected with rVSV(NJ) wild type and rVSV(NJ) M mutant viruses and show that the rVSV(NJ) M mutant virus infection induced a higher level of the IFN-ß compare to the wild type virus. In addition, we showed that the NS protein expression level in IFN-incompetent cells (Mouse-L) infected with rVSV(NJ)-M viruses was higher than in IFN-competent L(Y) cells. In addition, we confirmed that HCV NS protein genes were expressed and properly processed. We also confirmed that NS3 protein expressed from the rVSV(NJ)-M cleaves NS polyprotein at junctions and that NS4A plays an important role as a co-factor for NS3 protease to cleave at the NS4B/5A site and at the NS5A/5B site.


Asunto(s)
Expresión Génica , Vectores Genéticos/genética , Virus de la Estomatitis Vesicular New Jersey/genética , Animales , Proteínas Portadoras/metabolismo , Línea Celular , Cricetinae , Orden Génico , Hepacivirus/genética , Humanos , Interferones/biosíntesis , Péptidos y Proteínas de Señalización Intracelular , Ratones , Mutación , Proteolisis , Virus de la Estomatitis Vesicular New Jersey/crecimiento & desarrollo , Virus de la Estomatitis Vesicular New Jersey/ultraestructura , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Virión/ultraestructura , Replicación Viral
9.
J Gen Virol ; 90(Pt 5): 1135-1140, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19264597

RESUMEN

The Indiana serotype of vesicular stomatitis virus (VSV(IND)), but not the New Jersey serotype (VSV(NJ)), has been widely used as a gene expression vector. In terms of prime-boost-based vaccine strategies, it would be desirable to use two different VSV serotypes to avoid immunity against the priming viral vector. Here, we report that we have applied the VSV(NJ) vector system for expression of the env gene of human immunodeficiency virus type 1 (HIV-1). The HIV-1 env gene was inserted into the VSV(NJ) vector system at two different sites: between the P and M genes (NP-gp160-MGL) and between the G and L genes (NPMG-gp160-L). The HIV-1 env gene product, gp160, was efficiently expressed and processed in cells infected with either of these two recombinant VSV-HIV-1(gp160) viruses. In this study, we have investigated the applicability of the VSV(NJ) vector system for foreign gene expression.


Asunto(s)
Regulación Viral de la Expresión Génica/fisiología , Proteínas gp160 de Envoltorio del VIH/metabolismo , VIH-1/fisiología , Virus de la Estomatitis Vesicular New Jersey/fisiología , Animales , Línea Celular , Cricetinae , Vectores Genéticos , Proteínas gp160 de Envoltorio del VIH/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
10.
Virology ; 357(1): 41-53, 2007 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-16962155

RESUMEN

The matrix (M) protein of vesicular stomatitis virus (VSV) plays significant roles in the replication of VSV through its involvement in the assembly of virus particles as well as by facilitating the evasion of innate host cell defense mechanisms. The presence of methionine at position 51 (M51) of the matrix (M) protein of the VSV Indiana serotype (VSV(Ind)) has been proven to be crucial for cell rounding and inhibition of host cell gene expression. The M protein of VSV(Ind) with the substitution of M51 with arginine (R:M51R) results in the loss of inhibitory effects on host cell gene expression. The VSV(Ind) expressing the M(M51R) protein became the attractive oncolytic virus which is safer and more tumor-specific because the normal cells can clear the mutant VSV(Ind) easily but tumor cells are susceptible to the virus because a variety of tumor cells lack innate antiviral activities. We have studied the role of the methionines at positions 48 and 51 of the M protein of the New Jersey serotype of VSV (VSV(NJ)) in the induction of cytopathic effects (CPE) and host cell gene expression. We have generated human embryonic kidney 293 cell lines inducibly expressing M proteins with M to R mutations at positions 48 and 51, either separately or together as a double mutant, and examined expression of heat shock protein 70 (HSP70) as an indicator of host cell gene expression. We have also generated recombinant VSV(NJ) encoding the mutant M proteins M(M48R) or M(M48R+M51R) for the first time and tested for the expression of HSP70 in infected cells. Our results demonstrated that the M51 of VSV(NJ) M proteins has a major role in cell rounding and in suppressing the host cell gene expression either when the M protein was expressed alone in inducible cell lines or when expressed together with other VSV proteins by the recombinant VSV(NJ). Amino acid residue M48 may also have some role in cell rounding and in the inhibitory effects of VSV(NJ) M, which was demonstrated by the fact that the cell line expressing the double substitution mutant M(M48R+M51R) exhibited the least cytopathic effects and the least inhibitory effect on host cell gene expression.


Asunto(s)
Regulación de la Expresión Génica , Infecciones por Rhabdoviridae/virología , Virus de la Estomatitis Vesicular Indiana/genética , Vesiculovirus , Proteínas de la Matriz Viral/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Arginina/genética , Línea Celular , Efecto Citopatogénico Viral , Proteínas HSP70 de Choque Térmico/genética , Humanos , Metionina/genética , Datos de Secuencia Molecular , Alineación de Secuencia
11.
J Virol ; 79(15): 9588-96, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16014921

RESUMEN

Defective interfering (DI) particles of Indiana serotype of vesicular stomatitis virus (VSV(Ind)) are capable of interfering with the replication of both homotypic VSV(Ind) and heterotypic New Jersey serotype (VSV(NJ)) standard virus. In contrast, DI particles from VSV(NJ) do not interfere with the replication of VSV(Ind) standard virus but do interfere with VSV(NJ) replication. The differences in the interfering activities of VSV(Ind) DI particles and VSV(NJ) DI particles against heterotypic standard virus were investigated. We examined the utilization of homotypic and heterotypic VSV proteins by DI particle genomic RNAs for replication and maturation into infectious DI particles. Here we show that the RNA-nucleocapsid protein (N) complex of one serotype does not utilize the polymerase complex (P and L) of the other serotype for RNA synthesis, while DI particle genomic RNAs of both serotypes can utilize the N, P, and L proteins of either serotype without serotypic restriction but with differing efficiencies as long as all three proteins are derived from the same serotype. The genomic RNAs of VSV(Ind) DI particles assembled and matured into DI particles by using either homotypic or heterotypic viral proteins. In contrast, VSV(NJ) DI particles could assemble only with homotypic VSV(NJ) viral proteins, although the genomic RNAs of VSV(NJ) DI particles could be replicated by using heterotypic VSV(Ind) N, P, and L proteins. Thus, we concluded that both efficient RNA replication and assembly of DI particles are required for the heterotypic interference by VSV DI particles.


Asunto(s)
Virus Defectuosos/fisiología , ARN Viral/biosíntesis , Virus de la Estomatitis Vesicular Indiana/fisiología , Vesiculovirus , Proteínas Virales/fisiología , Proteínas de la Nucleocápside/fisiología , Fosfoproteínas/fisiología , Virus de la Estomatitis Vesicular Indiana/genética , Interferencia Viral , Proteínas Estructurales Virales/fisiología , Ensamble de Virus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA