Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Sci Adv ; 2(6): e1501459, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27386557

RESUMEN

Metal-free carbon-based electrocatalysts for dye-sensitized solar cells (DSSCs) are sufficiently active in Co(II)/Co(III) electrolytes but are not satisfactory in the most commonly used iodide/triiodide (I(-)/I3 (-)) electrolytes. Thus, developing active and stable metal-free electrocatalysts in both electrolytes is one of the most important issues in DSSC research. We report the synthesis of edge-selenated graphene nanoplatelets (SeGnPs) prepared by a simple mechanochemical reaction between graphite and selenium (Se) powders, and their application to the counter electrode (CE) for DSSCs in both I(-)/I3 (-) and Co(II)/Co(III) electrolytes. The edge-selective doping and the preservation of the pristine graphene basal plane in the SeGnPs were confirmed by various analytical techniques, including atomic-resolution transmission electron microscopy. Tested as the DSSC CE in both Co(bpy)3 (2+/3+) (bpy = 2,2'-bipyridine) and I(-)/I3 (-) electrolytes, the SeGnP-CEs exhibited outstanding electrocatalytic performance with ultimately high stability. The SeGnP-CE-based DSSCs displayed a higher photovoltaic performance than did the Pt-CE-based DSSCs in both SM315 sensitizer with Co(bpy)3 (2+/3+) and N719 sensitizer with I(-)/I3 (-) electrolytes. Furthermore, the I3 (-) reduction mechanism, which has not been fully understood in carbon-based CE materials to date, was clarified by an electrochemical kinetics study combined with density functional theory and nonequilibrium Green's function calculations.


Asunto(s)
Colorantes , Grafito/química , Yodo/química , Nanoestructuras/química , Selenio/química , Energía Solar , Algoritmos , Catálisis , Cobalto/química , Electrodos , Electrólitos , Modelos Moleculares , Modelos Teóricos , Oxidación-Reducción
2.
Chem Commun (Camb) ; 50(91): 14161-3, 2014 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-25278427

RESUMEN

Three novel carbazole-based molecules have been synthesized and successfully applied as hole-transporting materials (HTMs) of CH3NH3PbI3-based perovskite solar cells. In particular, the perovskite cell with SGT-405, having a three-arm-type structure, exhibited a remarkable photovoltaic conversion efficiency (PCE) of 14.79%.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA