Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.137
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Hepatology ; 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38385945

RESUMEN

BACKGROUND AND AIMS: Metabolic dysfunction-associated steatotic liver disease (MASLD) encompasses a broad and continuous spectrum of liver diseases ranging from fatty liver to steatohepatitis. The intricate interactions of genetic, epigenetic, and environmental factors in the development and progression of MASLD remain elusive. Here, we aimed to achieve an integrative understanding of the genomic and transcriptomic alterations throughout the progression of MASLD. APPROACH AND RESULTS: RNA-Seq profiling (n = 146) and whole-exome sequencing (n = 132) of MASLD liver tissue samples identified 3 transcriptomic subtypes (G1-G3) of MASLD, which were characterized by stepwise pathological and molecular progression of the disease. Macrophage-driven inflammatory activities were identified as a key feature for differentiating these subtypes. This subtype-discriminating macrophage interplay was significantly associated with both the expression and genetic variation of the dsDNA sensor IFI16 (rs6940, A>T, T779S), establishing it as a fundamental molecular factor in MASLD progression. The in vitro dsDNA-IFI16 binding experiments and structural modeling revealed that the IFI16 variant exhibited increased stability and stronger dsDNA binding affinity compared to the wild-type. Further downstream investigation suggested that the IFI16 variant exacerbated DNA sensing-mediated inflammatory signals through mitochondrial dysfunction-related signaling of the IFI16-PYCARD-CASP1 pathway. CONCLUSIONS: This study unveils a comprehensive understanding of MASLD progression through transcriptomic classification, highlighting the crucial roles of IFI16 variants. Targeting the IFI16-PYCARD-CASP1 pathway may pave the way for the development of novel diagnostics and therapeutics for MASLD.

2.
Plant Cell ; 34(4): 1171-1188, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35080620

RESUMEN

Stomata play important roles in gas and water exchange in leaves. The morphological features of stomata and pavement cells are highly plastic and are regulated during development. However, it is very laborious and time-consuming to collect accurate quantitative data from the leaf surface by manual phenotyping. Here, we introduce LeafNet, a tool that automatically localizes stomata, segments pavement cells (to prepare them for quantification), and reports multiple morphological parameters for a variety of leaf epidermal images, especially bright-field microscopy images. LeafNet employs a hierarchical strategy to identify stomata using a deep convolutional network and then segments pavement cells on stomata-masked images using a region merging method. LeafNet achieved promising performance on test images for quantifying different phenotypes of individual stomata and pavement cells compared with six currently available tools, including StomataCounter, Cellpose, PlantSeg, and PaCeQuant. LeafNet shows great flexibility, and we improved its ability to analyze bright-field images from a broad range of species as well as confocal images using transfer learning. Large-scale images of leaves can be efficiently processed in batch mode and interactively inspected with a graphic user interface or a web server (https://leafnet.whu.edu.cn/). The functionalities of LeafNet could easily be extended and will enhance the efficiency and productivity of leaf phenotyping for many plant biologists.


Asunto(s)
Microscopía , Hojas de la Planta , Fenotipo , Estomas de Plantas , Plantas
3.
Circ Res ; 133(6): 463-480, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37555328

RESUMEN

BACKGROUND: Cardiac valve disease is observed in 2.5% of the general population and 10% of the elderly people. Effective pharmacological treatments are currently not available, and patients with severe cardiac valve disease require surgery. PROX1 (prospero-related homeobox transcription factor 1) and FOXC2 (Forkhead box C2 transcription factor) are transcription factors that are required for the development of lymphatic and venous valves. We found that PROX1 and FOXC2 are expressed in a subset of valvular endothelial cells (VECs) that are located on the downstream (fibrosa) side of cardiac valves. Whether PROX1 and FOXC2 regulate cardiac valve development and disease is not known. METHODS: We used histology, electron microscopy, and echocardiography to investigate the structure and functioning of heart valves from Prox1ΔVEC mice in which Prox1 was conditionally deleted from VECs. Isolated valve endothelial cells and valve interstitial cells were used to identify the molecular mechanisms in vitro, which were tested in vivo by RNAScope, additional mouse models, and pharmacological approaches. The significance of our findings was tested by evaluation of human samples of mitral valve prolapse and aortic valve insufficiency. RESULTS: Histological analysis revealed that the aortic and mitral valves of Prox1ΔVEC mice become progressively thick and myxomatous. Echocardiography revealed that the aortic valves of Prox1ΔVEC mice are stenotic. FOXC2 was downregulated and PDGF-B (platelet-derived growth factor-B) was upregulated in the VECs of Prox1ΔVEC mice. Conditional knockdown of FOXC2 and conditional overexpression of PDGF-B in VECs recapitulated the phenotype of Prox1ΔVEC mice. PDGF-B was also increased in mice lacking FOXC2 and in human mitral valve prolapse and insufficient aortic valve samples. Pharmacological inhibition of PDGF-B signaling with imatinib partially ameliorated the valve defects of Prox1ΔVEC mice. CONCLUSIONS: PROX1 antagonizes PDGF-B signaling partially via FOXC2 to maintain the extracellular matrix composition and prevent myxomatous degeneration of cardiac valves.


Asunto(s)
Enfermedades de las Válvulas Cardíacas , Prolapso de la Válvula Mitral , Animales , Humanos , Ratones , Células Endoteliales/metabolismo , Enfermedades de las Válvulas Cardíacas/genética , Enfermedades de las Válvulas Cardíacas/prevención & control , Enfermedades de las Válvulas Cardíacas/metabolismo , Válvula Mitral/metabolismo , Prolapso de la Válvula Mitral/metabolismo , Factores de Transcripción/metabolismo , Proteínas Proto-Oncogénicas c-sis/metabolismo
4.
Genes Dev ; 31(16): 1666-1678, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28924035

RESUMEN

Platelet-derived growth factor (PDGF) acts through two conserved receptor tyrosine kinases: PDGFRα and PDGFRß. Gain-of-function mutations in human PDGFRB have been linked recently to genetic diseases characterized by connective tissue wasting (Penttinen syndrome) or overgrowth (Kosaki overgrowth syndrome), but it is unclear whether PDGFRB mutations alone are responsible. Mice with constitutive PDGFRß signaling caused by a kinase domain mutation (D849V) develop lethal autoinflammation. Here we used a genetic approach to investigate the mechanism of autoinflammation in Pdgfrb+/D849V mice and test the hypothesis that signal transducer and activator of transcription 1 (STAT1) mediates this phenotype. We show that Pdgfrb+/D849V mice with Stat1 knockout (Stat1-/-Pdgfrb+/D849V ) are rescued from autoinflammation and have improved life span compared with Stat1+/-Pdgfrb+/D849V mice. Furthermore, PDGFRß-STAT1 signaling suppresses PDGFRß itself. Thus, Stat1-/-Pdgfrb+/D849V fibroblasts exhibit increased PDGFRß signaling, and mice develop progressive overgrowth, a distinct phenotype from the wasting seen in Stat1+/-Pdgfrb+/D849V mice. Deletion of interferon receptors (Ifnar1 or Ifngr1) does not rescue wasting in Pdgfrb+/D849V mice, indicating that interferons are not required for autoinflammation. These results provide functional evidence that elevated PDGFRß signaling causes tissue wasting or overgrowth reminiscent of human genetic syndromes and that the STAT1 pathway is a crucial modulator of this phenotypic spectrum.


Asunto(s)
Trastornos del Crecimiento/genética , Mutación , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Factor de Transcripción STAT1/genética , Tejido Adiposo/patología , Animales , Aorta/patología , Atrofia , Huesos/anomalías , Femenino , Fibroblastos/metabolismo , Fibrosis , Trastornos del Crecimiento/metabolismo , Trastornos del Crecimiento/patología , Hiperplasia , Inflamación/metabolismo , Interferones/fisiología , Masculino , Ratones , Ratones Noqueados , Músculo Liso Vascular/patología , Células 3T3 NIH , Fenotipo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Factor de Transcripción STAT1/metabolismo , Transducción de Señal , Piel/patología
5.
Development ; 148(23)2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34738614

RESUMEN

Autosomal dominant PDGFRß gain-of-function mutations in mice and humans cause a spectrum of wasting and overgrowth disorders afflicting the skeleton and other connective tissues, but the cellular origin of these disorders remains unknown. We demonstrate that skeletal stem cells (SSCs) isolated from mice with a gain-of-function D849V point mutation in PDGFRß exhibit colony formation defects that parallel the wasting or overgrowth phenotypes of the mice. Single-cell RNA transcriptomics with SSC-derived polyclonal colonies demonstrates alterations in osteogenic and chondrogenic precursors caused by PDGFRßD849V. Mutant cells undergo poor osteogenesis in vitro with increased expression of Sox9 and other chondrogenic markers. Mice with PDGFRßD849V exhibit osteopenia. Increased STAT5 phosphorylation and overexpression of Igf1 and Socs2 in PDGFRßD849V cells suggests that overgrowth in mice involves PDGFRßD849V activating the STAT5-IGF1 axis locally in the skeleton. Our study establishes that PDGFRßD849V causes osteopenic skeletal phenotypes that are associated with intrinsic changes in SSCs, promoting chondrogenesis over osteogenesis.


Asunto(s)
Mutación con Ganancia de Función , Mioblastos Esqueléticos/metabolismo , Mutación Puntual , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Sustitución de Aminoácidos , Animales , Condrogénesis/genética , Regulación de la Expresión Génica , Ratones , Ratones Transgénicos , Mioblastos Esqueléticos/patología , Osteogénesis/genética , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Transducción de Señal/genética
6.
Blood ; 140(8): 889-899, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-35679477

RESUMEN

Lung-resident neutrophils need to be tightly regulated to avoid degranulation- and cytokine-associated damage to fragile alveolar structures that can lead to fatal outcomes. Here we show that lung neutrophils (LNs) express distinct surface proteins and genes that distinguish LNs from bone marrow and blood neutrophils. Functionally, LNs show impaired migratory activity toward chemoattractants and produce high levels of interleukin-6 (IL-6) at steady state and low levels of tumor necrosis factor-α in response to lipopolysaccharide (LPS) challenge. Treating bone marrow neutrophils with bronchoalveolar lavage fluid or prostaglandin E2 induces LN-associated characteristics, including the expression of transglutaminase 2 (Tgm2) and reduced production of inflammatory cytokines upon LPS challenge. Neutrophils from Tgm2-/- mice release high levels of inflammatory cytokines in response to LPS. Lung damage is significantly exacerbated in Tgm2-/- mice in an LPS-induced acute respiratory distress syndrome model. Collectively, we demonstrate that prostaglandin E2 is a key factor for the generation of LNs with unique immune suppressive characteristics, acting through protein kinase A and Tgm2, and LNs play essential roles in protection of the lungs against pathogenic inflammation.


Asunto(s)
Dinoprostona , Neutrófilos , Animales , Líquido del Lavado Bronquioalveolar/química , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Citocinas/metabolismo , Dinoprostona/metabolismo , Lipopolisacáridos , Pulmón/patología , Ratones , Neutrófilos/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
7.
Mar Drugs ; 22(8)2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39195460

RESUMEN

The subcritical water extraction of Undaria pinnatifida (blade, sporophyll, and root) was evaluated to determine its chemical properties and biological activities. The extraction was conducted at 180 °C and 3 MPa. Root extracts exhibited the highest phenolic content (43.32 ± 0.19 mg phloroglucinol/g) and flavonoid content (31.54 ± 1.63 mg quercetin/g). Sporophyll extracts had the highest total sugar, reducing sugar, and protein content, with 97.35 ± 4.23 mg glucose/g, 56.44 ± 3.10 mg glucose/g, and 84.93 ± 2.82 mg bovine serum albumin (BSA)/g, respectively. The sporophyll contained the highest fucose (41.99%) and mannose (10.37%), whereas the blade had the highest galactose (48.57%) and glucose (17.27%) content. Sporophyll had the highest sulfate content (7.76%). Key compounds included sorbitol, glycerol, L-fucose, and palmitic acid. Root extracts contained the highest antioxidant activity, with IC50 values of 1.51 mg/mL (DPPH), 3.31 mg/mL (ABTS+), and 2.23 mg/mL (FRAP). The root extract exhibited significant α-glucosidase inhibitory activity with an IC50 of 5.07 mg/mL, indicating strong antidiabetic potential. The blade extract showed notable antihypertensive activity with an IC50 of 0.62 mg/mL. Hence, subcritical water extraction to obtain bioactive compounds from U. pinnatifida, supporting their use in functional foods, cosmetics, and pharmaceuticals is highlighted. This study uniquely demonstrates the variation in bioactive compound composition and bioactivities across different parts of U. pinnatifida, providing deeper insights. Significant correlations between chemical properties and biological activities emphasize the use of U. pinnatifida extracts for chronic conditions.


Asunto(s)
Antioxidantes , Extractos Vegetales , Undaria , Antioxidantes/farmacología , Antioxidantes/aislamiento & purificación , Antioxidantes/química , Undaria/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Agua/química , Raíces de Plantas/química , Flavonoides/aislamiento & purificación , Flavonoides/farmacología , Flavonoides/química , Antihipertensivos/farmacología , Antihipertensivos/aislamiento & purificación , Antihipertensivos/química , Fenoles/aislamiento & purificación , Fenoles/farmacología , Fenoles/química , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/aislamiento & purificación , Inhibidores de Glicósido Hidrolasas/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Hipoglucemiantes/aislamiento & purificación , Algas Comestibles
8.
Neurocrit Care ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38997449

RESUMEN

BACKGROUND: Hyperosmolar therapy has long been a cornerstone in managing increased intracranial pressure and improving outcomes in severe traumatic brain injury (TBI). This therapy hinges on elevating serum osmolality, creating an osmotic gradient that draws excess water from the brain's cellular and interstitial compartments and effectively reducing cerebral edema. Given this information, we hypothesized that the serum hyperosmolality prior to any treatment could significantly impact the clinical outcomes of patients with severe TBI, potentially mitigating secondary cerebral edema after trauma. METHODS: Data were extracted from the Korean Multi-center Traumatic Brain Injury data bank, encompassing 4628 patients with TBI admitted between January 2016 and December 2018. Of these, 507 patients diagnosed with severe TBI (Glasgow Coma Scale score < 9) were selected for comprehensive analysis across four data domains: clinical, laboratory, initial computed tomography scan, and treatment. Serum osmolality was assessed prior to treatment, and the hyperosmolar group was defined by a pretreatment serum osmolality exceeding 320 mOsm/L, whereas favorable outcomes were characterized by a modified Rankin Scale score of ≤ 3 at 6 months after trauma. Multivariate regression with receiver operating characteristic curve analysis and propensity score matching were used to dissect the data set. RESULTS: Multivariate analysis showed serum osmolality is significantly associated with clinical outcome in patients with severe TBI (p < 0.001). The optimal cutoff value for predicting favorable outcome was 331 mOsm/L, with a sensitivity of 38.9% and a specificity of 87.7%. Notably, the propensity score matching analysis comparing patients with pretreatment serum hyperosmolality with those without indicated a markedly improved functional outcome in the former group (32.5% vs 18.8%, p = 0.025). CONCLUSIONS: The present study has uncovered a significant correlation between the pretreatment serum osmolality and the clinical outcomes of patients with severe TBI. These findings offer a novel perspective, indicating that a serum hyperosmolality prior to any treatment might potentially have a neuroprotective effect in patients with severe TBI.

9.
Int J Mol Sci ; 25(13)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-39000469

RESUMEN

Coronavirus can cause various diseases, from mild symptoms to the recent severe COVID-19. The coronavirus RNA genome is frequently mutated due to its RNA nature, resulting in many pathogenic and drug-resistant variants. Therefore, many medicines should be prepared to respond to the various coronavirus variants. In this report, we demonstrated that Forsythia viridissima fruit ethanol extract (FVFE) effectively reduces coronavirus replication. We attempted to identify the active compounds and found that actigenin from FVFE effectively reduces human coronavirus replication. Arctigenin treatment can reduce coronavirus protein expression and coronavirus-induced cytotoxicity. These results collectively suggest that arctigenin is a potent natural compound that prevents coronavirus replication.


Asunto(s)
Forsythia , Frutas , Furanos , Lignanos , Extractos Vegetales , Replicación Viral , Forsythia/química , Lignanos/farmacología , Replicación Viral/efectos de los fármacos , Furanos/farmacología , Humanos , Frutas/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Antivirales/farmacología , Antivirales/química , Animales , Chlorocebus aethiops , Células Vero
10.
Int J Mol Sci ; 25(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38673942

RESUMEN

Soluble epoxide hydrolase (sEH) is an enzyme targeted for the treatment of inflammation and cardiovascular diseases. Activated inflammatory cells produce nitric oxide (NO), which induces oxidative stress and exacerbates inflammation. We identify an inhibitor able to suppress sEH and thus NO production. Five flavonoids 1-5 isolated from Inula britannica flowers were evaluated for their abilities to inhibit sEH with IC50 values of 12.1 ± 0.1 to 62.8 ± 1.8 µM and for their effects on enzyme kinetics. A simulation study using computational chemistry was conducted as well. Furthermore, five inhibitors (1-5) were confirmed to suppress NO levels at 10 µM. The results showed that flavonoids 1-5 exhibited inhibitory activity in all tests, with compound 3 exhibiting the most significant efficacy. Thus, in the development of anti-inflammatory inhibitors, compound 3 is a promising natural candidate.


Asunto(s)
Epóxido Hidrolasas , Flavonoides , Inula , Óxido Nítrico , Epóxido Hidrolasas/antagonistas & inhibidores , Epóxido Hidrolasas/metabolismo , Animales , Óxido Nítrico/metabolismo , Ratones , Células RAW 264.7 , Flavonoides/farmacología , Flavonoides/química , Flavonoides/aislamiento & purificación , Inula/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Simulación del Acoplamiento Molecular , Cinética , Antiinflamatorios/farmacología , Antiinflamatorios/química , Flores/química
11.
Small ; 19(40): e2303005, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37269202

RESUMEN

A Zn anode can offset the low energy density of a flow battery for a balanced approach toward electricity storage. Yet, when targeting inexpensive, long-duration storage, the battery demands a thick Zn deposit in a porous framework, whose heterogeneity triggers frequent dendrite formation and jeopardizes the stability of the battery. Here, Cu foam is transferred into a hierarchical nanoporous electrode to homogenize the deposition. It begins with alloying the foam with Zn to form Cu5 Zn8 , whose depth is controlled to retain the large pores for a hydraulic permeability ≈10-11  m2 . Dealloying follows to create nanoscale pores and abundant fine pits below 10 nm, where Zn can nucleate preferentially due to the Gibbs-Thomson effect, as supported by a density functional theory simulation. Morphological evolution monitored by in situ microscopy confirms uniform Zn deposition. The electrode delivers 200 h of stable cycles in a Zn-I2 flow battery at 60 mAh cm-2 and 60 mA cm-2 , performance that meets practical demands.

12.
Neurourol Urodyn ; 42(2): 530-538, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36633527

RESUMEN

AIMS: Micromotion is an autonomous intramural movement of the bladder, and is believed to be an initial step in the generation of urinary urgency. Therefore, controlling micromotion may be a novel target in overactive bladder (OAB) treatment. However, developing micromotion treatment has been limited by the absence of a standardized animal model. We attempted to create a micromotion animal model and investigated the effectiveness of a ß3 -adrenoceptor agonist (CL316,243) on micromotion. METHODS: Bilateral major pelvic ganglia (MPGs) were excised in 18 male Sprague-Dawley rats, resulting in an almost completely denervated bladder. On postoperative Day 7, cystometry was performed. Rats were divided into three treatment groups: CL316,243; ß3- adrenoceptor antagonist (SR59230A) pretreated CL316,243; and a nonselective antimuscarinic agent (oxybutynin). Changes in micromotion were evaluated after the intra-arterial administration of each agent. RESULTS: Low-amplitude oscillations in intravesical pressure (micromotion) were observed 1 week after MPGs excision. Micromotion frequency significantly (p = 0.003) decreased (2.17 ± 3.54 times/5 min) with CL316,243 compared with vehicle (6.33 ± 1.97 times/5 min). Micromotion amplitude also decreased with CL316,243 (1.15 ± 1.93 cmH2 O) compared with vehicle (5.96 ± 5.12 cmH2 O), approaching conventional significance (p = 0.090). No significant decreases in frequency or amplitude were observed with oxybutynin treatment. CONCLUSIONS: Systemic administration of the ß3 -adrenoceptor agonist CL316,243 effectively controlled micromotion in bilateral MPGs-excised, almost completely denervated rat bladders. This result indicates that ß3 -adrenoceptor agonist may affect the bladder directly, suggesting that it might be effective for overall OAB, regardless of the presence or level of neurological deficits. Bilateral MPGs-excised rats are considered a plausible micromotion animal model suitable for future research.


Asunto(s)
Vejiga Urinaria Hiperactiva , Vejiga Urinaria , Animales , Masculino , Ratas , Agonistas de Receptores Adrenérgicos beta 3/farmacología , Ratas Sprague-Dawley , Receptores Adrenérgicos , Receptores Adrenérgicos beta 3
13.
Ann Vasc Surg ; 91: 249-256, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36503018

RESUMEN

BACKGROUND: Transcutaneous oxygen pressure (TcPO2) is a noninvasive, nonradiological test to measure local oxygen released from capillaries through the skin. Since it reflects the metabolic state of the lower limb, it can predict wound healing in patients with critical limb threatening ischemia (CLTI). The purpose of this study was to determine the effectiveness of TcPO2 test in evaluating wound healing potential of patients with CLTI. METHODS: This was a retrospective, single-center, nonrandomized, and observational study. A prospectively registered database of patients who visited Vascular Surgery Department of St. Mary's Hospital for CLTI and underwent TcPO2 tests from October 1, 2015 to July 1, 2021 was reviewed. Patients were divided into 2 groups: (1) those who had amputation only; and (2) those who underwent revascularization procedures. Patients whose wound healing status could not be determined were excluded. The clinical characteristics of patients, patient characteristics related to lower TcPO2 value, treatment success rate, and time for the wound to be healed were analyzed. RESULTS: A total of 84 patients were included in this study. There was no difference in background patient characteristics between the 2 groups despite better survival within 12 months and shorter healing time in the revascularization group. A total of 76 patients survived 12 months after surgery, and 63 patients were healed. Higher HbA1c, higher serum creatinine, history of stroke, and history of coronary artery disease were related to lower TcPO2 value on multiple linear regression. The cutoff value of TcPO2 was determined to be 40 mm Hg for predicting wound healing. This value was similar to those of previous studies. In addition, there was a negative correlation between TcPO2 and wound healing time. Correlations among the anklebrachial index (ABI), toe-brachial index (TBI), and TcPO2 were not determined because ABI and TBI for some patients could not be obtained due to wound condition. CONCLUSIONS: The TcPO2 value can predict the wound healing process of ischemic lower extremity injury.


Asunto(s)
Oxígeno , Cicatrización de Heridas , Humanos , Resultado del Tratamiento , Estudios Retrospectivos , Valor Predictivo de las Pruebas , Isquemia Crónica que Amenaza las Extremidades , Isquemia/diagnóstico por imagen , Isquemia/cirugía , Monitoreo de Gas Sanguíneo Transcutáneo
14.
J Enzyme Inhib Med Chem ; 38(1): 2242704, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37537881

RESUMEN

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). 3CLpro is a key enzyme in coronavirus proliferation and a treatment target for COVID-19. In vitro and in silico, compounds 1-3 from Glycyrrhiza uralensis had inhibitory activity and binding affinity for 3CLpro. These compounds decreased HCoV-OC43 cytotoxicity in RD cells. Moreover, they inhibited viral growth by reducing the amounts of the necessary proteins (M, N, and RDRP). Therefore, compounds 1-3 are inhibitors of 3CLpro and HCoV-OC43 proliferation.


Asunto(s)
Proteasas 3C de Coronavirus , Coronavirus Humano OC43 , Glycyrrhiza uralensis , Proliferación Celular , Coronavirus Humano OC43/efectos de los fármacos , Glycyrrhiza uralensis/química , SARS-CoV-2 , Proteasas 3C de Coronavirus/antagonistas & inhibidores
15.
Eur Spine J ; 32(7): 2431-2440, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37165116

RESUMEN

PURPOSE: To investigate the interaction of telomerase activity and telomere length on neuro-protection or neuro-degeneration effects after spinal cord injury (SCI). METHODS: A contusive SCI model was developed using 56 Sprague-Dawley rats. Seven rats were allocated into acute injury phase groups (1, 3, 8, 24, and 48 h), and sub-acute and chronic injury phase groups (1, 2, and 4 weeks). Telomerase activity was assessed by telomerase reverse transcriptase (TERT) and telomeric repeat binding factor-2 (TERF-2). Differentiation of activated neural stem cells was investigated by co-expression of neuronal/glial cell markers. Apoptosis expression was also investigated by caspase-3, 8, and 9 using terminal deoxynucleotidyl transferase dUTP nick end labelling staining. Immunofluorescence staining and western blotting were performed for quantitative analyses. RESULTS: Expression of TERT increased gradually until 24 h post-injury, and was decreased following SCI (P < 0.05). TERF-2 also was increased following SCI until 24 h post-injury and then decreased with time (P < 0.05). Co-localization of TERT and TERF-2 was higher at 24 h post-injury. High expression of TERT was seen in neurons (Neu N Ab), however, expression of TERT was relatively lower in astrocytes and oligodendrocytes. Apoptosis analysis showed persistent high expression of caspases-3, -9, and -8 during the observation period. CONCLUSIONS: Increased TERT and TERF-2 activity were noted 24 h post-injury in the acute phase of SCI with TERF-2 maintaining telomeric-repeat length. Our results suggest that increased activity of telomere maintenance may be related to neuro-protective mechanisms against subsequent apoptosis resulting from DNA damage after acute SCI.


Asunto(s)
Traumatismos de la Médula Espinal , Telomerasa , Ratas , Animales , Ratas Sprague-Dawley , Telomerasa/genética , Telomerasa/metabolismo , Telomerasa/farmacología , Apoptosis , Neuronas/metabolismo , Médula Espinal/metabolismo
16.
Vascular ; 31(4): 637-643, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35320024

RESUMEN

OBJECTIVES: Current guidelines recommend initial postoperative follow-up with computed tomography angiography (CTA) after endovascular aneurysm repair (EVAR). However, CTA has risks associated with ionizing radiations and nephrotoxic contrast agents. We investigated possibilities to replace the initial postoperative CTA with contrast enhanced duplex ultrasound (CE-DUS) in selected patients. METHODS: Out of the 273 consecutive patients who underwent EVAR, 173 were excluded and the 100 patients who underwent CTA and CE-DUS imaging concurrently (≤1 month interval between CTA and CE-DUS imaging) within 60 days after EVAR were analyzed. Patients who underwent EVAR outside the manufacturer's instructions for use or who had endoleaks discovered on intraoperative angiography were classified as the high-risk group, otherwise, they were classified as the low-risk group. Measurements of diagnostic values of CE-DUS ​​related to the detection of complications were calculated using CTA as the gold standard. McNemar's test was performed to compare these values and Pearson correlation coefficient was derived to compare CE-DUS measurements of sac diameters with CTA. RESULTS: In the low-risk group, no difference was observed between CE-DUS and CTA in the detection of EVAR-related complications (sensitivity = 0.95, specificity = 0.93). In the high-risk group, CE-DUS was not as accurate as CTA for the detection of overall EVAR-related complications (sensitivity = 0.57, specificity = 0.86, p = 0.04) and for the detection of complications other than endoleaks (p = 0.02). Regarding sac diameter measurement, there was good agreement between CE-DUS and CTA (r = 0.92, p < 0.001). CONCLUSIONS: First postoperative CE-DUS was reliable for the evaluation of EVAR-related complications compared to CTA in selected patients. Individualized EVAR follow-up strategy using CE-DUS based on the initial risk of EVAR-related complications should be considered.


Asunto(s)
Aneurisma de la Aorta Abdominal , Implantación de Prótesis Vascular , Procedimientos Endovasculares , Humanos , Endofuga/etiología , Aneurisma de la Aorta Abdominal/cirugía , Reparación Endovascular de Aneurismas , Implantación de Prótesis Vascular/efectos adversos , Aortografía/métodos , Estudios de Seguimiento , Valor Predictivo de las Pruebas , Procedimientos Endovasculares/efectos adversos , Medios de Contraste , Resultado del Tratamiento
17.
Int J Urol ; 30(2): 128-138, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36375037

RESUMEN

This Asia-Pacific (AP) AMS 800™ artificial urinary sphincter (AUS) consensus statement aims to provide a set of practical recommendations to assist surgeons with the AMS 800 device surgery. The AP consensus committee consisted of key opinion leaders with extensive experience with AMS 800 surgery across several AP countries. The panel reviewed and discussed relevant findings with emphasis on locoregional and specific clinical challenges relevant to the AP region. Recommendations were made in key areas namely (1) patient selection and informed consent process; (2) preoperative assessment; (3) dealing with co-existing urological disorders; (4) surgical principles and intraoperative troubleshooting; (5) postoperative care; (6) special populations; and (7) cost analysis and comparative review. The AMS 800 device should be offered to males with moderate to severe stress urinary incontinence (SUI). Full informed consent should be undertaken, and emphasis is placed on surgical contraindications and high-risk candidates. The presence of a surgical mentor or referral to experts is recommended in complex AUS candidates. Preoperative cystoscopy with or without multichannel urodynamic study is necessary and patients with pre-existing urological disorders should be treated adequately and clinically stable before surgery. Adherence to strict patient selection and safe surgical principles are critical to ensure excellent clinical outcomes and minimize complications. Given that InhibiZone-coated device is not available in many AP countries, the use of prophylactic antibiotics pre-and post-operatively are recommended. The AMS 800 device should be prepared according to the manufacturer's guidelines and remains a cost-effective treatment for male SUI. The AMS 800 device remains the surgical benchmark for male SUI but is associated with certain mechanical limitations and a unique set of complications.


Asunto(s)
Incontinencia Urinaria de Esfuerzo , Esfínter Urinario Artificial , Humanos , Masculino , Incontinencia Urinaria de Esfuerzo/cirugía , Resultado del Tratamiento , Cuidados Posoperatorios , Asia
18.
Chem Biodivers ; 20(10): e202301242, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37690996

RESUMEN

Soluble epoxide hydrolase (sEH) inhibitory activity guided fractionation and isolation of two new isocucurbic acid derivatives (1 and 2) and nine known compounds (3-11) from the flowers of Chrysanthemum indicum L. Their structures were elucidated on the basis of spectroscopic data interpretation and comparison with those reported in previous studies. Luteolin (3), acacetin-7-O-ß-D-glucopyranoside (6), and methyl 3,4-di-O-caffeoylquinate (10) displayed sEH inhibitory activities with IC50 values ranging from 13.7±3.6 to 20.8±0.4 µM. Enzyme kinetic analysis revealed that 3, 6, and 10 were non-competitive inhibitors with Ki values of 14.8±0.5, 31.2±0.8, and 3.9±0.2 µM, respectively. Additionally, molecular docking studies indicated compound 10 had the ability to form six hydrogen bonds at sEH active site, resulting binding energy as low as -9.58 Kcal/mol.

19.
Sensors (Basel) ; 24(1)2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38202994

RESUMEN

Amputees typically experience changes in residual limb volume in their daily lives. It causes an uncomfortable fit of the socket by applying high pressure on the sensitive area of the residual limb or by loosening the socket. In this study, we developed a transfemoral prosthetic socket for above-the-knee amputees that ensures a good socket fit by maintaining uniform and constant contact pressure despite volume changes in the residual limb. The socket has two air bladders in the posterior femoral region, and the pneumatic controller is located on the tibia of the prosthesis. The pneumatic system aims to minimize unstable fitting of the socket and improve walking performance by inflating or deflating the air bladder. The developed socket autonomously maintains the air pressure inside the prosthetic socket at a steady-state error of 3 mmHg or less by adjusting the amount of air in the air bladder via closed-loop control. In the clinical trial, amputee participants walked on flat and inclined surfaces. The displacement between the residual limb and socket during the gait cycle was reduced by up to 33.4% after air injection into the socket. The inflatable bladder increased the knee flexion angle on the affected side, resulting in increased stride length and gait velocity. The pneumatic socket provides a stable and comfortable walking experience not only when walking on flat ground but also on slopes.


Asunto(s)
Amputados , Miembros Artificiales , Humanos , Marcha , Caminata , Extremidades
20.
Nano Lett ; 22(24): 10167-10175, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36475688

RESUMEN

Vanadium diselenide (VSe2) exhibits versatile electronic and magnetic properties in the trigonal prismatic (H-) and octahedral (T-) phases. Compared to the metallic T-phase, the H-phase with a tunable semiconductor property is predicted to be a ferrovalley material with spontaneous valley polarization. Herein we report an epitaxial growth of the monolayer 2D VSe2 on a mica substrate via the chemical vapor deposition (CVD) method by introducing salt in the precursor. Our first-principles calculations suggest that the monolayer H-phase VSe2 with a large lateral size is thermodynamically favorable. The honeycomb-like structure and the broken symmetry are directly observed by spherical aberration-corrected scanning transmission electron microscopy (STEM) and confirmed by giant second harmonic generation (SHG) intensity. The p-type transport behavior is further evidenced by the temperature-dependent resistance and field-effect device study. The present work introduces a new phase-stable 2D transition metal dichalcogenide, opening the prospect of novel electronic and spintronics device design.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA