Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 607(7919): 452-453, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35859191

Asunto(s)
Física
2.
Nat Mater ; 19(9): 980-985, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32601483

RESUMEN

Antiferromagnetic spin waves have been predicted to offer substantial functionalities for magnonic applications due to the existence of two distinct polarizations, the right-handed and left-handed modes, as well as their ultrafast dynamics. However, experimental investigations have been hampered by the field-immunity of antiferromagnets. Ferrimagnets have been shown to be an alternative platform to study antiferromagnetic spin dynamics. Here we investigate thermally excited spin waves in ferrimagnets across the magnetization compensation and angular momentum compensation temperatures using Brillouin light scattering. Our results show that right-handed and left-handed modes intersect at the angular momentum compensation temperature where pure antiferromagnetic spin waves are expected. A field-induced shift of the mode-crossing point from the angular momentum compensation temperature and the gyromagnetic reversal reveal hitherto unrecognized properties of ferrimagnetic dynamics. We also provide a theoretical understanding of our experimental results. Our work demonstrates important aspects of the physics of ferrimagnetic spin waves and opens up the attractive possibility of ferrimagnet-based magnonic devices.

3.
Nat Mater ; 19(10): 1124, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32879442

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

4.
Nat Mater ; 17(6): 509-513, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29555998

RESUMEN

Magnetic torques generated through spin-orbit coupling1-8 promise energy-efficient spintronic devices. For applications, it is important that these torques switch films with perpendicular magnetizations without an external magnetic field9-14. One suggested approach 15 to enable such switching uses magnetic trilayers in which the torque on the top magnetic layer can be manipulated by changing the magnetization of the bottom layer. Spin currents generated in the bottom magnetic layer or its interfaces transit the spacer layer and exert a torque on the top magnetization. Here we demonstrate field-free switching in such structures and show that its dependence on the bottom-layer magnetization is not consistent with the anticipated bulk effects 15 . We describe a mechanism for spin-current generation16,17 at the interface between the bottom layer and the spacer layer, which gives torques that are consistent with the measured magnetization dependence. This other-layer-generated spin-orbit torque is relevant to energy-efficient control of spintronic devices.

5.
Phys Rev Lett ; 122(12): 127203, 2019 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-30978080

RESUMEN

We investigate the Gilbert damping parameter α for rare earth (RE)-transition metal (TM) ferrimagnets over a wide temperature range. Extracted from the field-driven magnetic domain-wall mobility, α was as low as the order of 10^{-3} and was almost constant across the angular momentum compensation temperature T_{A}, starkly contrasting previous predictions that α should diverge at T_{A} due to a vanishing total angular momentum. Thus, magnetic damping of RE-TM ferrimagnets is not related to the total angular momentum but is dominated by electron scattering at the Fermi level where the TM has a dominant damping role. This low value of the Gilbert damping parameter suggests that ferrimagnets can serve as versatile platforms for low-dissipation high-speed magnetic devices.

6.
Nat Mater ; 16(12): 1187-1192, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28967917

RESUMEN

Antiferromagnetic spintronics is an emerging research field which aims to utilize antiferromagnets as core elements in spintronic devices. A central motivation towards this direction is that antiferromagnetic spin dynamics is expected to be much faster than its ferromagnetic counterpart. Recent theories indeed predicted faster dynamics of antiferromagnetic domain walls (DWs) than ferromagnetic DWs. However, experimental investigations of antiferromagnetic spin dynamics have remained unexplored, mainly because of the magnetic field immunity of antiferromagnets. Here we show that fast field-driven antiferromagnetic spin dynamics is realized in ferrimagnets at the angular momentum compensation point TA. Using rare earth-3d-transition metal ferrimagnetic compounds where net magnetic moment is nonzero at TA, the field-driven DW mobility is remarkably enhanced up to 20 km s-1 T-1. The collective coordinate approach generalized for ferrimagnets and atomistic spin model simulations show that this remarkable enhancement is a consequence of antiferromagnetic spin dynamics at TA. Our finding allows us to investigate the physics of antiferromagnetic spin dynamics and highlights the importance of tuning of the angular momentum compensation point of ferrimagnets, which could be a key towards ferrimagnetic spintronics.

7.
Phys Rev Lett ; 119(26): 267204, 2017 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-29328700

RESUMEN

Spin interaction in antiferromagnetic materials is of central interest in the recently emerging antiferromagnetic spintronics. In this Letter, we explore the spin current interaction in antiferromagnetic FeMn by the spin pumping effect. Exchange biased FeNi/FeMn films, in which the Néel vector can be presumably controlled via the exchange spring effect, are employed to investigate the damping enhancement depending on the relative orientation between the Néel vector and the polarization of the pumped spin current. The correlation between the enhanced damping and the strength of the exchange bias suggests that the twisting of the Néel vector induces an additional spin dissipation, which verifies that the Slonczewski-type spin torque is effective even in antiferromagnetic materials.

8.
Nature ; 458(7239): 740-2, 2009 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-19360082

RESUMEN

Despite the complexity and diversity of nature, there exists universality in the form of critical scaling laws among various dissimilar systems and processes such as stock markets, earthquakes, crackling noise, lung inflation and vortices in superconductors. This universality is mainly independent of the microscopic details, depending only on the symmetry and dimension of the system. Exploring how universality is affected by the system dimensions is an important unresolved problem. Here we demonstrate experimentally that universality persists even at a dimensionality crossover in ferromagnetic nanowires. As the wire width decreases, the magnetic domain wall dynamics changes from elastic creep in two dimensions to a particle-like stochastic behaviour in one dimension. Applying finite-size scaling, we find that all our experimental data in one and two dimensions (including the crossover regime) collapse onto a single curve, signalling universality at the criticality transition. The crossover to the one-dimensional regime occurs at a few hundred nanometres, corresponding to the integration scale for modern nanodevices.

9.
Adv Mater ; 36(21): e2312013, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38270245

RESUMEN

The recent discovery of room-temperature ferromagnetism in 2D van der Waals (vdW) materials, such as Fe3GaTe2 (FGaT), has garnered significant interest in offering a robust platform for 2D spintronic applications. Various fundamental operations essential for the realization of 2D spintronics devices are experimentally confirmed using these materials at room temperature, such as current-induced magnetization switching or tunneling magnetoresistance. Nevertheless, the potential applications of magnetic skyrmions in FGaT systems at room temperature remain unexplored. In this work, the current-induced generation of magnetic skyrmions in FGaT flakes employing high-resolution magnetic transmission soft X-ray microscopy is introduced, supported by a feasible mechanism based on thermal effects. Furthermore, direct observation of the current-induced magnetic skyrmion motion at room temperature in FGaT flakes is presented with ultra-low threshold current density. This work highlights the potential of FGaT as a foundation for room-temperature-operating 2D skyrmion device applications.

10.
ACS Nano ; 18(20): 12853-12860, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38718347

RESUMEN

Magnetic random-access memory (MRAM), which stores information through control of the magnetization direction, offers promising features as a viable nonvolatile memory alternative, including high endurance and successful large-scale commercialization. Recently, MRAM applications have extended beyond traditional memories, finding utility in emerging computing architectures such as in-memory computing and probabilistic bits. In this work, we report highly reliable MRAM-based security devices, known as physical unclonable functions (PUFs), achieved by exploiting nanoscale perpendicular magnetic tunnel junctions (MTJs). By intentionally randomizing the magnetization direction of the antiferromagnetically coupled reference layer of the MTJs, we successfully create an MRAM-PUF. The proposed PUF shows ideal uniformity and uniqueness and, in particular, maintains performance over a wide temperature range from -40 to +150 °C. Moreover, rigorous testing with more than 1584 challenge-response pairs of 64 bits each confirms resilience against machine learning attacks. These results, combined with the merits of commercialized MRAM technology, would facilitate the implementation of MRAM-PUFs.

11.
ACS Nano ; 18(23): 15154-15166, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38808726

RESUMEN

Platinum ditelluride (1T-PtTe2) is a two-dimensional (2D) topological semimetal with a distinctive band structure and flexibility of van der Waals integration as a promising candidate for future electronics and spintronics. Although the synthesis of large-scale, uniform, and highly crystalline films of 2D semimetals system is a prerequisite for device application, the synthetic methods meeting these criteria are still lacking. Here, we introduce an approach to synthesize highly oriented 2D topological semimetal PtTe2 using a thermally assisted conversion called tellurization, which is a cost-efficient method compared to the other epitaxial deposition methods. We demonstrate that achieving highly crystalline 1T-PtTe2 using tellurization is not dependent on epitaxy but rather relies on two critical factors: (i) the crystallinity of the predeposited platinum (Pt) film and (ii) the surface coverage ratio of the Pt film considering lateral lattice expansion during transformation. By optimizing the surface coverage ratio of the epitaxial Pt film, we successfully obtained 2 in. wafer-scale uniformity without in-plane misalignment between antiparallelly oriented domains. The electronic band structure of 2D topological PtTe2 is clearly resolved in momentum space, and we observed an interesting 6-fold gapped Dirac cone at the Fermi surface. Furthermore, ultrahigh electrical conductivity down to ∼3.8 nm, which is consistent with that of single crystal PtTe2, was observed, proving its ultralow defect density.

12.
Sci Rep ; 13(1): 6791, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37100838

RESUMEN

Precise control of magnetic domain wall (DW) motion is crucial for DW-based spintronic devices. To date, artificially designed DW pinning sites, such as notch structures, have been used to precisely control the DW position. However, the existing DW pinning methods are not reconfigurable because they cannot change the position of pinning site after being fabricated. Herein, a novel method for attaining reconfigurable DW pinning is proposed, which relies on the dipolar interactions between two DWs located in different magnetic layers. Repulsion between DWs in both layers was observed, indicating that one of the DWs acts as a pinning barrier for the other. Because the DW is mobile in the wire, the position of pinning can be modulated, thereby resulting in reconfigurable pinning that was experimentally demonstrated for current-driven DW motion. These findings provide additional controllability of DW motion, which may expand the functionality of DW-based devices to broader spintronic applications.

13.
Nat Commun ; 14(1): 3365, 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37291127

RESUMEN

Spin Seebeck effect (SSE) refers to the generation of an electric voltage transverse to a temperature gradient via a magnon current. SSE offers the potential for efficient thermoelectric devices because the transverse geometry of SSE enables to utilize waste heat from a large-area source by greatly simplifying the device structure. However, SSE suffers from a low thermoelectric conversion efficiency that must be improved for widespread application. Here we show that the SSE substantially enhances by oxidizing a ferromagnet in normal metal/ferromagnet/oxide structures. In W/CoFeB/AlOx structures, voltage-induced interfacial oxidation of CoFeB modifies the SSE, resulting in the enhancement of thermoelectric signal by an order of magnitude. We describe a mechanism for the enhancement that results from a reduced exchange interaction of the oxidized region of ferromagnet, which in turn increases a temperature difference between magnons in the ferromagnet and electrons in the normal metal and/or a gradient of magnon chemical potential in the ferromagnet. Our result will invigorate research for thermoelectric conversion by suggesting a promising way of improving the SSE efficiency.


Asunto(s)
Electricidad , Electrones , Animales , Estro , Calor , Óxidos , Oxígeno
14.
Nat Commun ; 13(1): 3783, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35773256

RESUMEN

Spin Hall nano-oscillators (SHNOs) exploiting current-driven magnetization auto-oscillation have recently received much attention because of their potential for neuromorphic computing. Widespread applications of neuromorphic devices with SHNOs require an energy-efficient method of tuning oscillation frequency over broad ranges and storing trained frequencies in SHNOs without the need for additional memory circuitry. While the voltage-driven frequency tuning of SHNOs has been demonstrated, it was volatile and limited to megahertz ranges. Here, we show that the frequency of SHNOs is controlled up to 2.1 GHz by an electric field of 1.25 MV/cm. The large frequency tuning is attributed to the voltage-controlled magnetic anisotropy (VCMA) in a perpendicularly magnetized Ta/Pt/[Co/Ni]n/Co/AlOx structure. Moreover, the non-volatile VCMA effect enables cumulative control of the frequency using repetitive voltage pulses which mimic the potentiation and depression functions of biological synapses. Our results suggest that the voltage-driven frequency tuning of SHNOs facilitates the development of energy-efficient neuromorphic devices.

15.
Adv Mater ; 34(40): e2203275, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35985670

RESUMEN

A scaling law elucidates the universality in nature, presiding over many physical phenomena which seem unrelated. Thus, exploring the universality class of scaling law in a particular system enlightens its physical nature in relevance to other systems and sometimes unearths an unprecedented new dynamic phase. Here, the dynamics of weakly driven magnetic skyrmions are investigated, and its scaling law is compared with the motion of a magnetic domain wall (DW) creep. This study finds that the skyrmion does not follow the scaling law of the DW creep in 2D space but instead shows a hopping behavior similar to that of the particle-like DW in 1D confinement. In addition, the hopping law satisfies even when a topological charge of the skyrmion is removed. Therefore, the distinct scaling behavior between the magnetic skyrmion and the DW stems from a general principle beyond the topological charge. This study demonstrates that the hopping behavior of skyrmions originates from the bottleneck process induced by DW segments with diverging collective lengths, which is inevitable in any closed-shape spin structure in 2D. This work reveals that the structural topology of magnetic texture determines the universality class of its weakly driven motion, which is distinguished from the universality class of magnetic DW creep.

16.
Nat Commun ; 13(1): 5530, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36130955

RESUMEN

Rare earth (RE)-transition metal (TM) ferrimagnetic alloys are gaining increasing attention because of their potential use in the field of antiferromagnetic spintronics. The moment from RE sub-lattice primarily originates from the 4f-electrons located far below the Fermi level (EF), and the moment from TM sub-lattice arises from the 3d-electrons across the EF. Therefore, the individual magnetic moment configurations at different energy levels must be explored to clarify the microscopic mechanism of antiferromagnetic spin dynamics. Considering these issues, here we investigate the energy-level-selective magnetic moment configuration in ferrimagnetic TbCo alloy. We reveal that magnetic moments at deeper energy levels are more easily altered by the external magnetic field than those near the EF. More importantly, we find that the magnetic moments at deeper energy levels exhibit a spin-glass-like characteristics such as slow dynamics and magnetic moment freezing whereas those at EF do not. These unique energy-level-dependent characteristics of RE-TM ferrimagnet may provide a better understanding of ferrimagnet, which could be useful in spintronic applications as well as in spin-glass studies.

17.
Adv Mater ; 34(45): e2203558, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36122902

RESUMEN

Physical unclonable function (PUFs) utilize inherent random physical variations of solid-state devices and are a core ingredient of hardware security primitives. PUFs promise more robust information security than that provided by the conventional software-based approaches. While silicon- and memristor-based PUFs are advancing, their reliability and scalability require further improvements. These are currently limited by output fluctuations and associated additional peripherals. Here, highly reliable spintronic PUFs that exploit field-free spin-orbit-torque switching in IrMn/CoFeB/Ta/CoFeB structures are demonstrated. It is shown that the stochastic switching polarity of the perpendicular magnetization of the top CoFeB can be achieved by manipulating the exchange bias directions of the bottom IrMn/CoFeB. This serves as an entropy source for the spintronic PUF, which is characterized by high entropy, uniqueness, reconfigurability, and digital output. Furthermore, the device ensures a zero bit-error-rate under repetitive operations and robustness against external magnetic fields, and offers scalable and energy-efficient device implementations.

18.
Phys Rev Lett ; 107(21): 217205, 2011 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-22181920

RESUMEN

The energy barrier of a magnetic domain wall trapped at a defect is measured experimentally. When the domain wall is pushed by an electric current and/or a magnetic field, the depinning time from the barrier exhibits perfect exponential distribution, indicating that a single energy barrier governs the depinning. The electric current is found to generate linear and quadratic contributions to the energy barrier, which are attributed to the nonadiabatic and adiabatic spin-transfer torques, respectively. The adiabatic spin-transfer torque reduces the energy barrier and, consequently, causes depinning at lower current densities, promising a way toward low-power current-controlled magnetic applications.

19.
Phys Rev Lett ; 107(6): 067201, 2011 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-21902363

RESUMEN

We examine magnetic domain wall motion in metallic nanowires Pt-Co-Pt. Regardless of whether the motion is driven by either magnetic fields or current, all experimental data fall onto a single universal curve in the creep regime, implying that both the motions belong to the same universality class. This result is in contrast to the report on magnetic semiconductor (Ga,Mn)As exhibiting two different universality classes. Our finding signals the possible existence of yet other universality classes which go beyond the present understanding of the statistical mechanics of driven interfaces.

20.
Nanotechnology ; 22(2): 025702, 2011 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-21135480

RESUMEN

We propose a method to control the polarization of the magnetic domain walls (DWs) in ferromagnetic nanowires. Two neighboring DWs with antiparallel polarization alignment rather than parallel alignment are found to exhibit better stability with a helical magnetic structure that can be hardly be detangled. To achieve such an antiparallel alignment, two co-planar current lines with an angle to the nanowire are designed, from which the Oersted field creates a domain in between the current lines while keeping the polarization of the DWs beneath the current lines, as confirmed by a micromagnetic calculation for ferromagnetic nanowires with perpendicular magnetic anisotropy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA