Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biomed Eng Educ ; 3(1): 61-74, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37200536

RESUMEN

Bioadhesives are an important class of biomaterials for wound healing, hemostasis, and tissue repair. To develop the next generation of bioadhesives, there is a societal need to teach trainees about their design, engineering, and testing. This study designed, implemented, and evaluated a hands-on, inquiry-based learning (IBL) module to teach bioadhesives to undergraduate, master's, and PhD/postdoctoral trainees. Approximately 30 trainees across three international institutions participated in this IBL bioadhesives module, which was designed to last approximately 3 h. This IBL module was designed to teach trainees about how bioadhesives are used for tissue repair, how to engineer bioadhesives for different biomedical applications, and how to assess the efficacy of bioadhesives. The IBL bioadhesives module resulted in significant learning gains for all cohorts; whereby, trainees scored an average of 45.5% on the pre-test assessment and 69.0% on the post-test assessment. The undergraduate cohort experienced the greatest learning gains of 34.2 points, which was expected since they had the least theoretical and applied knowledge about bioadhesives. Validated pre/post-survey assessments showed that trainees also experienced significant improvements in scientific literacy from completing this module. Similar to the pre/post-test, improvements in scientific literacy were most significant for the undergraduate cohort since they had the least amount of experience with scientific inquiry. Instructors can use this module, as described, to introduce undergraduate, master's, and PhD/postdoctoral trainees to principles of bioadhesives.

2.
Vaccine ; 25(34): 6409-22, 2007 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-17658669

RESUMEN

Previously, we identified several attenuating mutations in the L polymerase protein of human parainfluenza virus type 2 (HPIV2) and genetically stabilized those mutations using reverse genetics [Nolan SM, Surman S, Amaro-Carambot E, Collins PL, Murphy BR, Skiadopoulos MH. Live-attenuated intranasal parainfluenza virus type 2 vaccine candidates developed by reverse genetics containing L polymerase protein mutations imported from heterologous paramyxoviruses. Vaccine 2005;39(23):4765-74]. Here we describe the discovery of an attenuating mutation at nucleotide 15 (15(T-->C)) in the 3' genomic promoter that was also present in the previously characterized mutants. We evaluated the properties of this promoter mutation alone and in various combinations with the L polymerase mutations. Amino acid substitutions at L protein positions 460 (460A or 460P) or 948 (948L), or deletion of amino acids 1724 and 1725 (Delta1724), each conferred a temperature sensitivity (ts) phenotype whereas the 15(T-->C) mutation did not. The 460A and 948L mutations each contributed to restricted replication in the lower respiratory tract of African green monkeys, but the Delta1724 mutation increased attenuation only in certain combinations with other mutations. We constructed two highly attenuated viruses, rV94(15C)/460A/948L and rV94(15C)/948L/Delta1724, that were immunogenic and protective against challenge with wild-type HPIV2 in African green monkeys and, therefore, appear to be suitable for evaluation in humans.


Asunto(s)
Mutación , Vacunas contra la Parainfluenza/inmunología , Virus de la Parainfluenza 2 Humana/inmunología , Regiones Promotoras Genéticas , Vacunas Sintéticas/inmunología , Proteínas Virales/genética , Animales , Línea Celular , Cricetinae , Humanos , Macaca mulatta , Mesocricetus , Virus de la Parainfluenza 2 Humana/genética , Virus de la Parainfluenza 2 Humana/fisiología , Sistema Respiratorio/virología , Temperatura , Vacunas Atenuadas/inmunología , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA