RESUMEN
This study investigated the role of O-GlcNAc cycling in Alzheimer's disease-related changes in brain pathophysiology induced by chronic REM sleep deprivation (CSD) in mice. CSD increased amyloid beta (Aß) and p-Tau accumulation and impaired learning and memory (L/M) function. CSD decreased dendritic length and spine density. CSD also increased the intensity of postsynaptic density protein-95 (PSD-95) staining. All of these Alzheimer's disease (AD) pathogenic changes were effectively reversed through glucosamine (GlcN) treatment by enhancing O-GlcNAcylation. Interestingly, the lelvel of O-GlcNAcylated-Tau (O-Tau) exhibited an opposite trend compared to p-Tau, as it was elevated by CSD and suppressed by GlcN treatment. CSD increased neuroinflammation, as indicated by elevated levels of glial fibrillary acidic protein and IBA-1-positive glial cells in the brain, which were suppressed by GlcN treatment. CSD promoted the phosphorylation of GSK3ß and led to an upregulation in the expression of endoplasmic reticulum (ER) stress regulatory proteins and genes. These alterations were effectively suppressed by GlcN treatment. Minocycline not only suppressed neuroinflammation induced by CSD, but it also rescued the decrease in O-GlcNAc levels caused by CSD. Minocycline also reduced AD neuropathy without affecting CSD-induced ER stress. Notably, overexpressing O-GlcNAc transferase in the dentate gyrus region of the mouse brain rescued CSD-induced cognitive dysfunction, neuropathy, neuroinflammation, and ER stress responses. Collectively, our findings reveal that dysregulation of O-GlcNAc cycling underlies CSD-induced AD pathology and demonstrate that restoration of OGlcNAcylation protects against CSD-induced neurodegeneration.
Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Privación de Sueño , Animales , Ratones , Privación de Sueño/metabolismo , Privación de Sueño/complicaciones , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Encéfalo/metabolismo , Encéfalo/patología , Masculino , Ratones Endogámicos C57BL , Proteínas tau/metabolismo , Acetilglucosamina/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Sueño REM/fisiología , Péptidos beta-Amiloides/metabolismoRESUMEN
BACKGROUND: Cardiopulmonary resuscitation (CPR) is the cornerstone intervention for cardiac arrest, with extracorporeal CPR (ECPR) demonstrating enhanced survival and neurologic outcomes in in-hospital cardiac arrest. This study explores the time interval between CPR initiation and the onset of extracorporeal membrane oxygenation (ECMO) in ECPR recipients, investigating its impact on survival outcomes. METHODS: This retrospective analysis included 1950 adults who received CPR at a single medical center between March 2019 and April 2023. Data from 198 adult patients who had ECMO inserted during CPR were analyzed. The interval from CPR initiation to ECMO initiation was quantified and categorized as ≤20, 20-40, and >40 min. Cox regression analysis assessed associations between CPR-to-ECMO time and short- and long-term mortalities. RESULTS: Among the 198 patients who underwent ECPR, 116 (58.6%) experienced 30-day mortality. Initiation of ECMO within 20 min occurred in 46 (23.2%), whereas 74 (37.4%) had ECMO initiated after 40 min. Cox regression revealed a significant association between time from CPR to ECMO initiation and 30-day mortality (adjusted hazard ratio [HR]: 2.20 in >40 min, HR: 2.63 in 20-40 min, p = 0.006) and 6-month mortality (HR: 1.81, in >40 min, HR: 1.99 in 20-40 min, p = 0.021). CONCLUSIONS: This study revealed that, in ECPR recipients, a shorter duration between CPR initiation and ECMO flow commencement is associated with improved short- and long-term patient prognoses. These findings emphasize the critical role of timely ECMO application in optimizing outcomes for patients undergoing ECPR.
Asunto(s)
Reanimación Cardiopulmonar , Oxigenación por Membrana Extracorpórea , Paro Cardíaco , Humanos , Oxigenación por Membrana Extracorpórea/mortalidad , Oxigenación por Membrana Extracorpórea/métodos , Reanimación Cardiopulmonar/métodos , Masculino , Femenino , Estudios Retrospectivos , Persona de Mediana Edad , Pronóstico , Paro Cardíaco/terapia , Paro Cardíaco/mortalidad , Anciano , Tiempo de Tratamiento , Factores de Tiempo , AdultoRESUMEN
With the analysis of nationwide health claim data, treatment with the composite agent of SERMs and vitamin D reduces the risk of osteoporotic fracture and hip fracture better compared to SERMs treatment in women with osteoporosis aged ≥ 50 years. PURPOSE: This study compared the potential of the composite agent of selective estrogen receptor modulators (SERMs) and vitamin D (SERM + VitD) with that of SERMs-only for fracture prevention and mortality reduction in women aged ≥ 50 years. METHODS: The incidence of osteoporotic fracture (fractures of the vertebrae, hip, wrist, or humerus) and all-cause death after treatment with SERM + VitD and SERMs were characterized using the Korean National Health Insurance Service database 2017-2019. The participants were divided into two groups (SERM + VitD vs SERMs). After exclusion and propensity score matching, 2,885 patients from each group were included in the analysis. Fracture incidence was compared between groups. Kaplan-Meier curves were used to compare mortality. Cox proportional hazards regression analysis was used to compare the risks of fracture occurrence and mortality between the groups. RESULTS: The incidence rate (138.6/10,000 vs. 192.4/10,000 person-years), and risk of osteoporotic fractures (hazard ratio [HR], 0.77; 95% confidence interval [CI], 0.61-0.97; p = 0.024) were lower in the SERM + VitD group than in the SERMs group. Analysis for specific fractures showed a lower hazard of hip fracture in the SERM + VitD group (HR, 0.25; 95% CI, 0.09-0.71; p = 0.009). No difference was observed between the groups regarding mortality. CONCLUSION: The risk of osteoporotic fractures, especially hip fractures, was lower in the SERM + VitD group than in the SERMs group. Therefore, the composite agent of SERMs and vitamin D can be considered as a viable option for postmenopausal women with a relatively low fracture risk.
Asunto(s)
Fracturas de Cadera , Osteoporosis Posmenopáusica , Osteoporosis , Fracturas Osteoporóticas , Humanos , Femenino , Moduladores Selectivos de los Receptores de Estrógeno/uso terapéutico , Fracturas Osteoporóticas/epidemiología , Fracturas Osteoporóticas/prevención & control , Vitamina D/uso terapéutico , Osteoporosis Posmenopáusica/complicaciones , Osteoporosis Posmenopáusica/tratamiento farmacológico , Osteoporosis Posmenopáusica/epidemiología , Fracturas de Cadera/epidemiología , Fracturas de Cadera/prevención & control , VitaminasRESUMEN
Polyploid giant cancer cells (PGCCs) contribute to the genetic heterogeneity and evolutionary dynamics of tumors. Their size, however, complicates their isolation from mainstream tumor cell populations. Standard techniques like fluorescence-activated cell sorting (FACS) rely on fluorescent labeling, introducing potential challenges in subsequent PGCC analyses. In response, we developed the Isosceles Trapezoidal Spiral Microchannel (ITSµC), a microfluidic device optimizing the Dean drag force (FD) and exploiting uniform vortices for enhanced separation. Numerical simulations highlighted ITSµC's advantage in producing robust FD compared to rectangular and standard trapezoidal channels. Empirical results confirmed its ability to segregate larger polystyrene (PS) particles (avg. diameter: 50 µm) toward the inner wall, while directing smaller ones (avg. diameter: 23 µm) outward. Utilizing ITSµC, we efficiently isolated PGCCs from doxorubicin-resistant triple-negative breast cancer (DOXR-TNBC) and patient-derived cancer (PDC) cells, achieving outstanding purity, yield, and viability rates (all greater than 90%). This precision was accomplished without fluorescent markers, and the versatility of ITSµC suggests its potential in differentiating a wide range of heterogeneous cell populations.
Asunto(s)
Separación Celular , Humanos , Separación Celular/métodos , Separación Celular/instrumentación , Línea Celular Tumoral , Poliestirenos/química , Dispositivos Laboratorio en un Chip , Tamaño de la Partícula , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Células Gigantes/citología , Células Gigantes/patología , Neoplasias de la Mama Triple Negativas/patologíaRESUMEN
STUDY OBJECTIVE: Asystole is the most common initial rhythm in out-of-hospital cardiac arrest (OHCA) but indicates a low likelihood of neurologic recovery. This study aimed to develop a novel scoring system to be easily applied at the time of emergency department arrival for identifying favorable neurologic outcomes in OHCA survivors with an asystole rhythm. METHODS: This study is a secondary analysis based on a previously collected nationwide database, targeting nontraumatic adult OHCA patients aged ≥18 years with an asystole rhythm who achieved return of spontaneous circulation (ROSC) between January 2016 and December 2020. The primary outcome was a favorable neurologic outcome defined as Cerebral Performance Categories scores of 1 or 2 at hospital discharge. A prediction model was developed through multivariable logistic regression analysis in a derivation cohort in the form of a scoring system (WBC-ASystole). The performance and calibration of the model were tested using an internal validation cohort. RESULTS: Among 19,803 OHCA patients with survival to hospital admission, 6,322 had asystole, and 285 (4.5%) achieved good neurologic outcomes. Factors associated with favorable outcomes included age, witness arrest, bystander cardiopulmonary resuscitation, time from call to hospital arrival, and out-of-hospital ROSC achievement. The WBC-ASystole score, totaling 11 points, exhibited a predictive performance with an area under the receiver operating characteristic curve of 0.80 (95% confidence interval [CI] 0.76 to 0.83) and 0.79 (95% CI 0.74 to 0.83) in the derivation and validation cohorts, respectively. After categorizing patients into 3 groups based on probability for good neurologic outcomes, the sensitivity and specificity were as follows: 0.98 (95% CI 0.97 to 0.99) and 0.09 (95% CI 0.09 to 0.10) for the very low predicted probability group (WBC-ASystole ≤2), 0.85 (95% CI 0.82 to 0.89) and 0.54 (95% CI 0.53 to 0.55) for the low predicted probability group (WBC-ASystole 3 to 4), and 0.36 (95% CI 0.34 to 0.39) and 0.93 (95% CI 0.92 to 0.93) for fair predicted probability group (WBC-ASystole≥5), respectively. CONCLUSIONS: Although external validation studies must be performed, among OHCA patients with asystole, the WBC-ASystole scoring system may identify those patients who are likely to have a favorable neurologic outcome.
Asunto(s)
Paro Cardíaco Extrahospitalario , Humanos , Paro Cardíaco Extrahospitalario/terapia , Paro Cardíaco Extrahospitalario/mortalidad , Masculino , Femenino , Persona de Mediana Edad , Anciano , Reanimación Cardiopulmonar/métodos , Adulto , Retorno de la Circulación Espontánea , Estudios Retrospectivos , Anciano de 80 o más AñosRESUMEN
BACKGROUND The modified shock index (MSI) is calculated as the ratio of heart rate (HR) to mean arterial pressure (MAP) and has been used to predict the need for massive transfusion (MT) in trauma patients. This retrospective study from a single center aimed to compare the MSI with the traditional shock index (SI) to predict the need for MT in 612 women diagnosed with primary postpartum hemorrhage (PPH) at the Emergency Department (ED) between January 2004 and August 2023. MATERIAL AND METHODS The patients were divided into the MT group and the non-MT group. The predictive power of MSI and SI was compared using the areas under the receiver operating characteristic curve (AUC). The sensitivity, specificity, positive predictive value (PPV), and negative predictive value were calculated. RESULTS Out of 612 patients, 105 (17.2%) required MT. The MT group had higher median values than the non-MT group for MSI (1.58 vs 1.07, P<0.001) and SI (1.22 vs 0.80, P<0.001). The AUC for MSI, with a value of 0.811 (95% confidence interval [CI], 0.778-0.841), did not demonstrate a significant difference compared to the AUC for SI, which was 0.829 (95% CI, 0.797-0.858) (P=0.066). The optimal cutoff values for MSI and SI were 1.34 and 1.07, respectively. The specificity and PPV for MT were 77.1% and 40.2% for MSI, and 83.2% and 45.9% for SI. CONCLUSIONS Both MSI and SI were effective in predicting MT in patients with primary PPH. However, MSI did not demonstrate superior performance to SI.
Asunto(s)
Hemorragia Posparto , Embarazo , Humanos , Femenino , Estudios Retrospectivos , Hemorragia Posparto/terapia , Transfusión Sanguínea , Servicio de Urgencia en Hospital , Frecuencia CardíacaRESUMEN
BACKGROUND: The predictive value of the respiratory rateoxygenation (ROX) index for a high-flow nasal cannula (HFNC) in patients with COVID-19 with acute hypoxemic respiratory failure (AHRF) may differ from patients without COVID-19 with AHRF, but these patients have not yet been compared. We compared the diagnostic accuracy of the ROX index for HFNC failure in patients with AHRF with and without COVID-19 during acute emergency department (ED) visits. METHODS: We performed a retrospective analysis of patients with AHRF treated with an HFNC in an ED between October 2020 and April 2022. The ROX index was calculated at 1, 2, 4, 6, 12, and 24 h after HFNC placement. The primary outcome was the failure of the HFNC, which was defined as the need for subsequent intubation or death within 72 h. A receiver operating characteristic (ROC) curve was used to evaluate discriminative power of the ROX index for HFNC failure. RESULTS: Among 448 patients with AHRF treated with an HFNC in an ED, 78 (17.4%) patients were confirmed to have COVID-19. There was no significant difference in the HFNC failure rates between the non-COVID-19 and COVID-19 groups (29.5% vs. 33.3%, p = 0.498). The median ROX index was higher in the non-COVID-19 group than in the COVID-19 group at all time points. The prognostic power of the ROX index for HFNC failure as evaluated by the area under the ROC curve was generally higher in the COVID-19 group (0.73-0.83) than the non-COVID-19 group (0.62-0.75). The timing of the highest prognostic value of the ROX index for HFNC failure was at 4 h for the non-COVID-19 group, whereas in the COVID-19 group, its performance remained consistent from 1 h to 6 h. The optimal cutoff values were 6.48 and 5.79 for the non-COVID-19 and COVID-19 groups, respectively. CONCLUSIONS: The ROX index had an acceptable discriminative power for predicting HFNC failure in patients with AHRF with and without COVID-19 in the ED. However, the higher ROX index thresholds than those in previous publications involving intensive care unit (ICU) patients suggest the need for careful monitoring and establishment of a new threshold for patients admitted outside the ICU.
Asunto(s)
COVID-19 , Ventilación no Invasiva , Insuficiencia Respiratoria , Humanos , Cánula , COVID-19/terapia , Frecuencia Respiratoria , Estudios Retrospectivos , Insuficiencia Respiratoria/terapia , Terapia por Inhalación de OxígenoRESUMEN
Peanut (Arachis hypogaea L.) is one of the most profitable upland crops, yielding 10,711 tonnes in an area of 4,062 ha in the Republic of Korea (Ministry of Agriculture, Food and Rural Affairs 2023). In September 2023, dark gray spots surrounded by yellow halos were observed on the peanut leaves over an area of 880 m2 at the National Institute of Crop Science (35°50'31.4"N 127°02'41.0"E), with a disease incidence up to 80%. Early symptoms appeared as small, brown, circular or irregular spots that enlarged and were surrounded by chlorotic halos. Leaf cuttings (5 mm x 5 mm) from five symptomatic plants were surface-sterilized with 70% EtOH for 1 min, followed by 1% NaClO for 1 min, and rinsed 3 times with sterile water. The pieces were placed on Potato Dextrose Agar (PDA) and incubated at 25 °C in the dark for 3 days. Three isolates obtained by single-spore isolation were designated as F23025, F23026, and F23027. Two isolates, F23025 and F23026 were deposited in the Korean Agricultural Culture Collection (https://genebank.rda.go.kr) under the accession numbers 410722 and 410723. Fungal colonies were initially white and turned sooty gray after 5 days. Conidia were unicellular, brown to black, and spherical or sub-spherical with 6.8 µm to 14.3 µm (mean = 11.1 µm ± 1.8, n = 50). The morphology of the three isolates was identical and showed the same characteristics as Nigrospora oryzae (Ellis 1971; Hudson 1963). For molecular identification, the Internal Transcribed Spacer (ITS) region (GenBank accession PP388306 and PP574448), beta tubulin (PP397027 and PP580108), and translation elongation factor 1- É (PP397028 and PP580109) of isolates F23025 and F23026 were amplified and sequenced with primers of ITS5/ITS4, Bt2a/Bt2b, EF1-727F/EF2, respectively and showed high identity of 99.62% (530 bp/532 bp), 100% (384/384), and 99.79% (475/476) with N. oryzae strain LC2693 (GenBank accessions KX985994, KY019471, and KY019299, respectively). Multilocus sequence analysis showed isolates F23025 and F23026 were on the same clade with N. oryzae strain LC2693. To determine the pathogenicity to peanut, a conidial suspension (1 x 106 conidia/mL) was sprayed onto leaves of five 3-week-old plants 'Sewon' grown in pots, while sterile distilled water was sprayed onto two plants used as negative control. Sprayed plants were placed in a dew chamber at 25â for two days and grown in a growth chamber at 25â and 80% of relative humidity with a 16L:8D cycle. Two weeks later, dark spots with chlorotic halos appeared only on leaves sprayed with conidia, and no symptoms on leaves sprayed with sterile distilled water. The pathogenicity test was repeated three times, and each time the pathogen was re-isolated and identified by ITS sequence, thus fulfilling Koch's postulates. Nigrospora species are cosmopolitan, and some species have a wide host range as plant pathogens. Recently, two species of the genus Nigrospora, N. sphaerica and N. aurantiaca, were reported to cause peanut leaf blight in China (Liu et al. 2020; He et al. 2023). To the best of our knowledge, this is the first report of N. oryzae causing leaf spot to A. hypogaea L. in the Republic of Korea. As identifying new pathogens and registering fungicides to control them are important for the continued cultivation of peanut, this report will help in that endeavor.
RESUMEN
Peanut (Arachis hypogaea L.) has long been cultivated worldwide as an important crop for oil and protein production. Among the various diseases in peanut plants, wilt diseases caused by soil-borne pathogens such as Ralstonia solanacearum and Verticillium dahliae are especially destructive and substantially diminish both quantity and quality in peanut production (Kokalis-Burelle et al., 1997; Thiessen et al., 2012). In July 2022, wilt symptoms were observed in 1 to 3% of the area of peanut fields in Yeoju-si, Korea (37°23´04.0ËN; 127°33´43.0ËE). The xylem in the stems of the wilted plants was dark brown at the soil-surface, which is a representative symptom of vascular wilt pathogens (Yadeta et al. 2013). To isolate the causative pathogens, the stems exhibiting dark lesions were disinfected with 1% NaOCl for 1 min, rinsed with sterile distilled water, and placed on potato dextrose agar medium. The plates were incubated at 25â for 2 days, and white hyphae that grew out from the tissues were subcultured twice on V8 juice agar (V8A) medium. Among the 3 isolates, morphological characteristics of the representative strain YJ1-2 were observed under a microscope. The sporangia were terminal intercalary, filamentous, inflated lobulate, and ranging from 37.4 to 73.6 µm in diameter. The antheridia were diclinous, with clavate, elongate, and crook-necked shapes. The oogonia were mostly globose, with an average of 27.1 µm (range from 20.2 to 35.2 µm, n = 50) in diameter, and mated with one to several antheridia. Both plerotic or aplerotic oospores were observed. Overall, the morphological characteristics of the sporangia, antheridia, oogonia, and oospores indicated that YJ1-2 belongs to the genus Pythium. To genetically characterize YJ1-2, genomic DNA was extracted using cetyltrimethylammonium bromide buffer, and the internal transcribed spacer (ITS) region and cytochrome c oxidase subunit I (cox1) gene were amplified by PCR using primer sets ITS4/ITS5 and OomCoxI-Levlo/ OomCoxI-Levup, respectively (White et al., 1990; Robideau et al. 2011), sequenced, and identified using BLASTN (NCBI, National Center for Biotechnology Information). The ITS sequence (NCBI Acc. No. OR125595) of YJ1-2 has 99% similarity with that of P. myriotylum isolate PY39 (NCBI Acc. No. KX671096). A neighbor-joining phylogenetic tree was constructed from aligned cox1 sequence (NCBI Acc. No. OR224334) of the 10 Pythium species strains including YJ1-2 by CLUSTALW method was used as an outgroup. The YJ1-2 was most closely related to P. myriotylum isolate PM30 (NCBI Acc. No. MT823167). To substantiate the pathogenicity of YJ1-2, the crown roots of peanut plants grown in pots for 4 weeks were wounded using a sterile tweezer, and the mycelial plugs of YJ1-2 cultured for 5 days on V8A were inoculated on the wounds. The inoculated plants were cultivated in a growth chamber at 30â and 70% relative humidity with a 12-h photoperiod. The infected peanut plants exhibited wilt symptoms 11 days after inoculation, consistent with the initial observation, while uninoculated plants remained healthy. To satisfy Koch's postulates, white mycelia were re-isolated from the stems of inoculated plants and axenically cultured in V8A. The morphologies and ITS sequences of the re-isolates were consistent with those of YJ1-2. P. myriotylum has been reported as a causal pathogen of peanut pod rot in the United States and China. However, to the best of our knowledge, this is the first report of wilt disease in peanut plants caused by P. myriotylum in Korea. To prevent the incidence of wilt disease, we will continue our investigations to develop control strategies, including the selection of appropriate agrochemicals.
RESUMEN
Hormone receptor-positive and HER2-negative breast cancer (HR+/HER2-BC) is the most common type with a favorable prognosis under endocrine therapy. However, it still demonstrates unpredictable progression and recurrences influenced by high tumoral diversity and microenvironmental status. To address these heterogeneous molecular characteristics of HR+/HER2-BC, we aimed to simultaneously characterize its transcriptomic landscape and genetic architecture at the same resolution. Using advanced single-cell RNA and DNA sequencing techniques together, we defined four distinct tumor subtypes. Notably, the migratory tumor subtype was closely linked to genomic alterations of EGFR, related to the tumor-promoting behavior of IL6-positive inflammatory tumor-associated fibroblast, and contributing to poor prognosis. Our study comprehensively utilizes integrated analysis to uncover the complex dynamics of this breast cancer subtype, highlighting the pivotal role of the migratory tumor subtype in influencing surrounding cells. This sheds light on potential therapeutic targets by offering enhanced insights for HR+/HER2-BC treatment.
Asunto(s)
Neoplasias de la Mama , Fibroblastos Asociados al Cáncer , Movimiento Celular , Receptor ErbB-2 , Humanos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Femenino , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Receptor ErbB-2/metabolismo , Receptor ErbB-2/genética , Regulación Neoplásica de la Expresión Génica , Receptores de Estrógenos/metabolismo , Receptores de Estrógenos/genética , Microambiente Tumoral , Línea Celular Tumoral , Receptores de Progesterona/metabolismo , Receptores de Progesterona/genética , Pronóstico , Receptores ErbB/metabolismo , Receptores ErbB/genética , Análisis de la Célula IndividualRESUMEN
About 70% of breast cancers overexpress estrogen receptor α (ERα, encoded by ESR1). Tamoxifen, a competitive inhibitor of estrogen that binds to ER, has been widely used as a treatment for ER-positive breast cancer. However, 20-30% of breast cancer is resistant to tamoxifen treatment. The mechanisms underlying tamoxifen resistance remain elusive. We found that Yes-associated protein (YAP; also known as YAP1), connective tissue growth factor (CTGF; also known as CCN2) and cysteine-rich angiogenic inducer 61 (Cyr61; also known as CCN1) are overexpressed, while ERα is downregulated in tamoxifen-resistant breast cancer. Inhibition of YAP, CTGF and Cyr61 restored ERα expression and increased sensitivity to tamoxifen. Overexpression of YAP, CTGF, and Cyr61 led to downregulation of ERα and conferred resistance to tamoxifen in ER-positive breast cancer cells. Mechanistically, CTGF and Cyr61 downregulated ERα expression at the transcriptional level by directly binding to the regulatory regions of the ERα-encoding gene, leading to increased tamoxifen resistance. Also, CTGF induced Glut3 (also known as SLC2A3) expression, leading to increased glycolysis, which enhanced cell proliferation and migration in tamoxifen-resistant cells. Together, these results demonstrate a novel role of YAP, CTGF and Cyr61 in tamoxifen resistance and provide a molecular basis for their function in tamoxifen-resistant breast cancer.
Asunto(s)
Neoplasias de la Mama , Tamoxifeno , Proteínas Adaptadoras Transductoras de Señales , Mama/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Línea Celular Tumoral , Factor de Crecimiento del Tejido Conjuntivo/genética , Proteína 61 Rica en Cisteína , Resistencia a Antineoplásicos/genética , Receptor alfa de Estrógeno/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Tamoxifeno/farmacología , Factores de Transcripción , Proteínas Señalizadoras YAPRESUMEN
We report the synthesis and characterization of various compounds containing the 1,7,9-hydroxylated closo-dodecahydrododecaborate (B12H9(OH)32-) cluster motif. Specifically, we show how the parent compound can be synthesized on the multigram scale and further perhalogenated, leading to a new class of vertex-differentiated weakly coordinating anions. We show that a postmodification of the hydroxyl groups by alkylation affords further opportunities for tailoring these anions' stability, steric bulk, and solubility properties. The resulting dodecaborate-based salts were subjected to a full thermal and electrochemical stability evaluation, showing that many of these anions maintain thermal stability up to 500 °C and feature no redox activity below â¼1 V vs Fc/Fc+. Mixed hydroxylated/halogenated clusters show enhanced solubility compared to their purely halogenated analogs and retain weakly coordinating properties in the solid state, as demonstrated by ionic conductivity measurements of their Li+ salts.
RESUMEN
Pedestrian tracking is a challenging task in the area of visual object tracking research and it is a vital component of various vision-based applications such as surveillance systems, human-following robots, and autonomous vehicles. In this paper, we proposed a single pedestrian tracking (SPT) framework for identifying each instance of a person across all video frames through a tracking-by-detection paradigm that combines deep learning and metric learning-based approaches. The SPT framework comprises three main modules: detection, re-identification, and tracking. Our contribution is a significant improvement in the results by designing two compact metric learning-based models using Siamese architecture in the pedestrian re-identification module and combining one of the most robust re-identification models for data associated with the pedestrian detector in the tracking module. We carried out several analyses to evaluate the performance of our SPT framework for single pedestrian tracking in the videos. The results of the re-identification module validate that our two proposed re-identification models surpass existing state-of-the-art models with increased accuracies of 79.2% and 83.9% on the large dataset and 92% and 96% on the small dataset. Moreover, the proposed SPT tracker, along with six state-of-the-art (SOTA) tracking models, has been tested on various indoor and outdoor video sequences. A qualitative analysis considering six major environmental factors verifies the effectiveness of our SPT tracker under illumination changes, appearance variations due to pose changes, changes in target position, and partial occlusions. In addition, quantitative analysis based on experimental results also demonstrates that our proposed SPT tracker outperforms the GOTURN, CSRT, KCF, and SiamFC trackers with a success rate of 79.7% while beating the DiamSiamRPN, SiamFC, CSRT, GOTURN, and SiamMask trackers with an average of 18 tracking frames per second.
RESUMEN
Basal-like breast cancer (BLBC) has a clinically aggressive nature. It is prevalent in young women and is known to often relapse rapidly. To date, the molecular mechanisms regarding the aggressiveness of BLBC have not been fully understood. In the present study, mechanisms of aggressiveness of BLBC involving EGFR and/or HER2 expression and interactions between tumor and tumor-associated macrophages (TAMs) were explored. The prognosis of breast cancer patients who underwent surgery at Samsung Medical Center was analyzed. It was found that the co-expression of EGFR and HER2 was associated with a worse prognosis. Therefore, we generated EGFR-positive BLBC cells with stable HER2 overexpression and analyzed the profile of secretory cytokines. Chemokine (C-C motif) ligand 2 (CCL2) expression was increased in HER2-overexpressed BLBC cells. Recombinant human CCL2 treatment augmented the motility of TAMs. In addition, the conditioned culture media of HER2-overexpressed BLBC cells increased the motility of TAMs. Furthermore, activation of TAMs by CCL2 or the conditioned culture media of HER2-overexpressed cells resulted in the production of pro-inflammatory cytokines, such as IL-8 and IL-1ß. These observations reveal that CCL2 derived from EGFR and HER2 co-expressed BLBC cells can lead to increased TAM recruitment and the induction of IL-8 and IL-1ß from recruited TAMs, triggering the tumorigenesis of breast cancer with the expression of both EGFR and HER2. Our findings demonstrate that EGFR+ and HER2+ BLBC aggressiveness is partially mediated through the interaction between BLBC and TAMs recruited by CCL2.
Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Neoplasias de la Mama/metabolismo , Macrófagos Asociados a Tumores/metabolismo , Medios de Cultivo Condicionados , Interleucina-8 , Recurrencia Local de Neoplasia , Citocinas , Receptores ErbB/genética , Línea Celular TumoralRESUMEN
In present study, icariin (ICA)/tannic acid (TA)-nanodiamonds (NDs) were prepared as follows. ICA was anchored to ND surfaces with absorbed TA (ICA/TA-NDs) and we evaluated their in vitro anti-inflammatory effects on lipopolysaccharide (LPS)-activated macrophages and in vivo cartilage protective effects on a rat model of monosodium iodoacetate (MIA)-induced osteoarthritis (OA). The ICA/TA-NDs showed prolonged release of ICA from the NDs for up to 28 days in a sustained manner. ICA/TA-NDs inhibited the mRNA levels of pro-inflammatory elements, including matrix metalloproteinases-3 (MMP-3), cyclooxygenase-2 (COX-2), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), and increased the mRNA levels of anti-inflammatory factors (i.e., IL-4 and IL-10) in LPS-activated RAW 264.7 macrophages. Animal studies exhibited that intra-articular injection of ICA/TA-NDs notably suppressed levels of IL-6, MMP-3, and TNF-α and induced level of IL-10 in serum of MIA-induced OA rat models in a dose-dependent manner. Furthermore, these noticeable anti-inflammatory effects of ICA/TA-NDs remarkably contributed to the protection of the progression of MIA-induced OA and cartilage degradation, as exhibited by micro-computed tomography (micro-CT), gross findings, and histological investigations. Accordingly, in vitro and in vivo findings suggest that the prolonged ICA delivery of ICA/TA-NDs possesses an excellent latent to improve inflammation as well as defend against cartilage disorder in OA.
Asunto(s)
Cartílago Articular , Nanodiamantes , Osteoartritis , Ratas , Animales , Interleucina-10/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Metaloproteinasa 3 de la Matriz/genética , Metaloproteinasa 3 de la Matriz/metabolismo , Interleucina-6/metabolismo , Lipopolisacáridos/farmacología , Microtomografía por Rayos X , Cartílago Articular/metabolismo , Osteoartritis/metabolismo , Antiinflamatorios/farmacología , Ácido Yodoacético/efectos adversos , ARN Mensajero/metabolismo , Modelos Animales de EnfermedadRESUMEN
Inflammatory environments provide vital biochemical stimuli (i.e., oxidative stress, pH, and enzymes) for triggered drug delivery in a controlled manner. Inflammation alters the local pH within the affected tissues. As a result, pH-sensitive nanomaterials can be used to effectively target drugs to the site of inflammation. Herein, we designed pH-sensitive nanoparticles in which resveratrol (an anti-inflammatory and antioxidant compound (RES)) and urocanic acid (UA) were complexed with a pH-sensitive moiety using an emulsion method. These RES-UA NPs were characterized by transmission electron microscopy, dynamic light scattering, zeta potential, and FT-IR spectroscopy. The anti-inflammatory and antioxidant activities of the RES-UA NPs were assessed in RAW 264.7 macrophages. The NPs were circular in shape and ranged in size from 106 to 180 nm. The RES-UA NPs suppressed the mRNA expression of the pro-inflammatory molecules inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-1ß (IL-1ß), and tumor necrosis factor-α (TNF-α) in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages in a concentration-dependent manner. Incubation of LPS-stimulated macrophages with RES-UA NPs reduced the generation of reactive oxygen species (ROS) in a concentration-dependent manner. These results suggest that pH-responsive RES-UA NPs can be used to decrease ROS generation and inflammation.
Asunto(s)
Antiinflamatorios , Antioxidantes , Nanopartículas , Resveratrol , Ácido Urocánico , Humanos , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Ciclooxigenasa 2/metabolismo , Concentración de Iones de Hidrógeno , Inflamación/metabolismo , Lipopolisacáridos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Resveratrol/química , Resveratrol/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Factor de Necrosis Tumoral alfa/metabolismo , Ácido Urocánico/química , Ácido Urocánico/farmacologíaRESUMEN
The synthesis of a piano-stool ruthenium hydride, [(η5-C5Me5)Ru(PmIm)H] (PmIm = (N-(1,3,5-trimethylphenyl)-1-(pyrimidin-2-yl)ethan-1-imine), for the dual purpose of catalytic dihydrogen activation and subsequent hydrogen atom transfer for the formation of weak chemical bonds is described. The introduction of a neutral, potentially redox-active PmIm supporting ligand was designed to eliminate the possibility of deleterious C(sp2)-H reductive coupling and elimination that has been identified as a deactivation pathway with related rhodium and iridium catalysts. Treatment of [(η5-C5Me5)RuCl2]n with one equivalent PmIm ligand in the presence of zinc and sodium methoxide resulted in the isolation of the diruthenium complex, [(η5-C5Me5)Ru(PmIm)]2, arising from the C-C bond formation between two PmIm chelates. Addition of H2 to the ruthenium dimer under both thermal and blue light irradiation conditions furnished the targeted hydride, [(η5-C5Me5)Ru(PmIm)H], which has a relatively weak DFT-calculated Ru-H bond dissociation free energy (BDFE) of 47.9 kcal/mol. Addition of TEMPO to [(η5-C5Me5)Ru(PmIm)H] generated the 17-electron metalloradical, [(η5-C5Me5)Ru(PmIm)], which was characterized by EPR spectroscopy. The C-C bond forming process was reversible as the irradiation of [(η5-C5Me5)Ru(PmIm)]2 generated [(η5-C5Me5)Ru(PmIm)H] and a piano-stool ruthenium complex containing an enamide ligand derived from H-atom abstraction from the PmIm chelate. Equilibration studies were used to establish an experimental estimate of the effective Ru-H BDFE, and a value of 50.8 kcal/mol was obtained, in agreement with the observed loss of H2 and the DFT-computed value. The ruthenium hydride was an effective catalyst for the thermal catalytic hydrogenation of TEMPO, acridine, and a cobalt-imido complex and for the selective reduction of azobenzene to diphenylhydrazine, highlighting the role of this complex in catalytic weak bond formation using H2 as the stoichiometric reductant.
Asunto(s)
Compuestos Organometálicos , Rutenio , Rutenio/química , Ligandos , Iminas , Compuestos Organometálicos/química , Oxidación-Reducción , Hidrógeno/química , PirimidinasRESUMEN
When acquiring a terahertz signal from a time-domain spectroscopy system, the signal is degraded by measurement noise and the information embedded in the signal is distorted. For high-performing terahertz applications, this study proposes a method for enhancing such a noise-degraded terahertz signal using machine learning that is applied to the raw signal after acquisition. The proposed method learns a function that maps the degraded signal to the clean signal using a WaveNet-based neural network that performs multiple layers of dilated convolutions. It also includes learnable pre- and post-processing modules that automatically transform the time domain where the enhancement process operates. When training the neural network, a data augmentation scheme is adopted to tackle the issue of insufficient training data. The comparative evaluation confirms that the proposed method outperforms other baseline neural networks in terms of signal-to-noise ratio. The proposed method also performs significantly better than the averaging of multiple signals, thereby facilitating the procurement of an enhanced signal without increasing the measurement time.
RESUMEN
PURPOSE OF REVIEW: This review summarizes technology-based interventions for HIV in low- and middle-income countries (LMICs). We highlight potential benefits and challenges to using telehealth in LMICs and propose areas for future study. RECENT FINDINGS: We identified several models for using telehealth to expand HIV health care access in LMICs, including telemedicine visits for pre-exposure prophylaxis (PrEP) and antiretroviral therapy (ART) services, telementoring programs for providers, and virtual peer-support groups. Emerging data support the acceptability and feasibility of these strategies. However, further investigations are needed to determine whether these models are scalable and sustainable in the face of barriers related to cost, infrastructure, and regulatory approval. HIV telehealth interventions may be a valuable approach to addressing gaps along the HIV care cascade in LMICs. Future studies should focus on strategies for expanding existing programs to scale and for assessing long-term clinical outcomes.
Asunto(s)
Infecciones por VIH , Profilaxis Pre-Exposición , Telemedicina , Humanos , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/prevención & control , Países en Desarrollo , Antirretrovirales/uso terapéuticoRESUMEN
The functionalization of coordinated dinitrogen to form nitrogen-element bonds en route to nitrogen-containing molecules is a long-standing challenge in chemical synthesis. The strong triple bond and the nonpolarity of the N2 molecule pose thermodynamic and kinetic challenges for promoting reactivity. While heterogeneous, homogeneous, and biological catalysts are all known for catalytic nitrogen fixation to ammonia, the catalytic synthesis of more complicated nitrogen-containing organic molecules has far less precedent. The example of silyl radical additions to coordinated nitrogen to form silylamines stands as the lone example of a catalytic reaction involving N2 to form a product other than ammonia. This Review surveys the field of molecular transition metal complexes as well as recent boron examples for the formation of nitrogen-element bonds. Emphasis is placed on the coordination and activation modes of N2 in the various metal compounds from across the transition series and how these structures can rationally inform reactivity studies. Over the past few decades, the field has evolved from the addition of carbon electrophiles in a manner similar to that of protonation reactions to more organometallic-inspired reactivity, including insertions, 1,2-additions, and cycloadditions. Various N-C, N-Si, and N-B bond-forming reactions have been discovered, highlighting that the challenge for catalytic chemistry is not in the reactivity of coordinated dinitrogen but rather removal of the functionalized ligand from the coordination sphere of the metal.