Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Chembiochem ; : e202400482, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39226234

RESUMEN

Miniaturized three-dimensional tissue models, such as spheroids, have become a highly useful and efficient platform to investigate tumor physiology and explore the effect of chemotherapeutic efficacy over traditional two-dimensional monolayer culture, since they can provide more in-depth analysis, especially in regards to intercellular interactions and diffusion. The development of most tumor spheroids relies on the high proliferative capacity and self-aggregation behavior of tumor cells. However, it disregards the effect of microenvironmental factors mediated by extracellular matrix, which are indispensable components of tissue structure. In this study, hepatocellular carcinoma (HCC) cells are encapsulated in bioactive microgels consisting of gelatin and hyaluronic acid designed to emulate tumor microenvironment in order to induce hepatic tumor spheroid formation. Two different subtypes of HCC's, HepG2 and Hep3B cell lines, are explored. The physicomechanical and biochemical properties of the microgels, controlled by changing the crosslinking density and polymer composition, are clearly shown to have substantial influence over the formation and spheroid formation. Moreover, the spheroids made from different cells and microgel properties display highly variable chemoresistance effects, further highlighting the importance of microenvironmental factors guiding tumor spheroid physiology.

2.
Plant J ; 110(6): 1619-1635, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35388561

RESUMEN

Increasing the vegetative growth period of crops can increase biomass and grain yield. In rice (Oryza sativa), the concentration of trans -zeatin, an active cytokinin, was high in the leaves during vegetative growth and decreased rapidly upon induction of florigen expression, suggesting that this hormone is involved in the regulation of the vegetative phase. To elucidate whether exogenous cytokinin application influences the length of the vegetative phase, we applied 6-benzylaminopurine (BAP) to rice plants at various developmental stages. Our treatment delayed flowering time by 8-9 days when compared with mock-treated rice plants, but only at the transition stage when the flowering signals were produced. Our observations also showed that flowering in the paddy field is delayed by thidiazuron, a stable chemical that mimics the effects of cytokinin. The transcript levels of florigen genes Heading date 3a (Hd3a) and Rice Flowering locus T1 (RFT1) were significantly reduced by the treatment, but the expression of Early heading date 1 (Ehd1), a gene found directly upstream of the florigen genes, was not altered. In maize (Zea mays), similarly, BAP treatment increased the vegetative phage by inhibiting the expression of ZCN8, an ortholog of Hd3a. We showed that cytokinin treatment induced the expression of two type-A response regulators (OsRR1 and OsRR2) which interacted with Ehd1, a type-B response regulator. We also observed that cytokinin did not affect flowering time in ehd1 knockout mutants. Our study indicates that cytokinin application increases the duration of the vegetative phase by delaying the expression of florigen genes in rice and maize by inhibiting Ehd1.


Asunto(s)
Oryza , Citocininas/metabolismo , Florigena/metabolismo , Flores , Regulación de la Expresión Génica de las Plantas , Oryza/metabolismo , Fotoperiodo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Zea mays/genética , Zea mays/metabolismo
3.
J Autoimmun ; 139: 103091, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37595410

RESUMEN

Obesity-induced chronic inflammation has been linked to several autoimmune diseases, including rheumatoid arthritis, type 1 diabetes, and multiple sclerosis. The underlying mechanisms are not yet fully understood, but it is believed that chronic inflammation in adipose tissue can lead to the production of pro-inflammatory cytokines and chemokines, which can trigger immune responses and contribute to the development of autoimmune diseases. However, the underlying mechanisms that lead to the infiltration of immune cells into adipose tissue are not fully understood. In this study, we observed a time-dependent response to a high-fat diet in the liver and epididymal white adipose tissue using gene set enrichment analysis. Our findings revealed a correlation between early abnormal innate immune responses in the liver and late inflammatory response in the adipose tissue, that eventually leads to systemic inflammation. Specifically, our data suggest that the dysregulated NADH homeostasis in the mitochondrial matrix, interacting with the mitochondrial translation process, could serve as a sign marking the transition from liver inflammation to adipose tissue inflammation. Taken together, our study provides valuable insights into the molecular mechanisms underlying the development of chronic inflammation and associated autoimmune diseases in obesity.


Asunto(s)
Enfermedades Autoinmunes , Dieta Alta en Grasa , Animales , Ratones , Dieta Alta en Grasa/efectos adversos , Hígado , Inflamación , Tejido Adiposo , Obesidad
4.
Plant Cell Environ ; 46(4): 1327-1339, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36120845

RESUMEN

Floral transition starts in the leaves when florigens respond to various environmental and developmental factors. Among several regulatory genes that are preferentially expressed in the inflorescence meristem during the floral transition, this study examines the homeobox genes OsZHD1 and OsZHD2 for their roles in regulating this transition. Although single mutations in these genes did not result in visible phenotype changes, double mutations in these genes delayed flowering. Florigen expression was not altered in the double mutants, indicating that the delay was due to a defect in florigen signaling. Morphological analysis of shoot apical meristem at the early developmental stage indicated that inflorescence meristem development was significantly delayed in the double mutants. Overexpression of ZHD2 causes early flowering because of downstream signals after the generation of florigens. Expression levels of the auxin biosynthesis genes were reduced in the mutants and the addition of indole-3-acetic acid recovered the defect in the mutants, suggesting that these homeobox genes play a role in auxin biosynthesis. A rice florigen, RICE FLOWERING LOCUS T 1, binds to the promoter regions of homeobox genes. These results indicate that florigens stimulate the expression of homeobox genes, enhancing inflorescence development in the shoot apex.


Asunto(s)
Inflorescencia , Meristema , Meristema/genética , Factores de Transcripción/metabolismo , Florigena/metabolismo , Genes Homeobox , Ácidos Indolacéticos/metabolismo , Regulación de la Expresión Génica de las Plantas , Flores/genética
5.
Molecules ; 27(3)2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-35164374

RESUMEN

The present research investigates the tuber proteome of the 'medicinal' plant Jerusalem artichoke (abbreviated as JA) (Helianthus tuberosus L.) using a high-throughput proteomics technique. Although JA has been historically known to the Native Americans, it was introduced to Europe in the late 19th century and later spread to Japan (referred to as 'kiku-imo') as a folk remedy for diabetes. Genboku Takahashi research group has been working on the cultivation and utilization of kiku-imo tuber as a traditional/alternative medicine in daily life and researched on the lowering of blood sugar level, HbA1c, etc., in human subjects (unpublished data). Understanding the protein components of the tuber may shed light on its healing properties, especially related to diabetes. Using three commercially processed JA tuber products (dried powder and dried chips) we performed total protein extraction on the powdered samples using a label-free quantitate proteomic approach (mass spectrometry) and catalogued for the first time a comprehensive protein list for the JA tuber. A total of 2967 protein groups were identified, statistically analyzed, and further categorized into different protein classes using bioinformatics techniques. We discussed the association of these proteins to health and disease regulatory metabolism. Data are available via ProteomeXchange with identifier PXD030744.


Asunto(s)
Helianthus/metabolismo , Tubérculos de la Planta/metabolismo , Proteoma/análisis , Proteoma/metabolismo , Proteómica/métodos
6.
RNA ; 25(12): 1731-1750, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31511320

RESUMEN

The primary oncogenic event in ∼85% of Ewing sarcomas is a chromosomal translocation that generates a fusion oncogene encoding an aberrant transcription factor. The exact genomic breakpoints within the translocated genes, EWSR1 and FLI1, vary; however, in EWSR1, breakpoints typically occur within introns 7 or 8. We previously found that in Ewing sarcoma cells harboring EWSR1 intron 8 breakpoints, the RNA-binding protein HNRNPH1 facilitates a splicing event that excludes EWSR1 exon 8 from the EWS-FLI1 pre-mRNA to generate an in-frame mRNA. Here, we show that the processing of distinct EWS-FLI1 pre-mRNAs by HNRNPH1, but not other homologous family members, resembles alternative splicing of transcript variants of EWSR1 We demonstrate that HNRNPH1 recruitment is driven by guanine-rich sequences within EWSR1 exon 8 that have the potential to fold into RNA G-quadruplex structures. Critically, we demonstrate that an RNA mimetic of one of these G-quadruplexes modulates HNRNPH1 binding and induces a decrease in the growth of an EWSR1 exon 8 fusion-positive Ewing sarcoma cell line. Finally, we show that EWSR1 exon 8 fusion-positive cell lines are more sensitive to treatment with the pan-quadruplex binding molecule, pyridostatin (PDS), than EWSR1 exon 8 fusion-negative lines. Also, the treatment of EWSR1 exon 8 fusion-positive cells with PDS decreases EWS-FLI1 transcriptional activity, reversing the transcriptional deregulation driven by EWS-FLI1. Our findings illustrate that modulation of the alternative splicing of EWS-FLI1 pre-mRNA is a novel strategy for future therapeutics against the EWSR1 exon 8 containing fusion oncogenes present in a third of Ewing sarcoma.


Asunto(s)
G-Cuádruplex , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Empalme del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Unión Proteica , ARN Mensajero/química , Proteínas de Unión al ARN
7.
Int J Mol Sci ; 22(1)2020 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-33379198

RESUMEN

Obesity, a characteristic of metabolic syndrome, is also associated with chronic inflammation and the development of autoimmune diseases. However, the relationship between obesity and autoimmune diseases remains to be investigated in depth. Here, we compared hepatic gene expression profiles among high-fat diet (HFD) mice using the primary biliary cholangitis (PBC) mouse model based on the chronic expression of interferon gamma (IFNγ) (ARE-Del-/- mice). The top differentially expressed genes affected by upstream transcriptional regulators IFNγ, LPS, and TNFα displayed an overlap in HFD and ARE-Del-/- mice, indicating that obesity-induced liver inflammation may be dependent on signaling via IFNγ. The top pathways altered in HFD mice were mostly involved in the innate immune responses, which overlapped with ARE-Del-/- mice. In contrast, T cell-mediated signaling pathways were exclusively altered in ARE-Del-/- mice. We further evaluated the therapeutic effect of luteolin, known as anti-inflammatory flavonoid, in HFD and ARE-Del-/- mice. Luteolin strongly suppressed the MHC I and II antigen presentation pathways, which were highly activated in both HFD and ARE-Del-/- mice. Conversely, luteolin increased metabolic processes of fatty acid oxidation and oxidative phosphorylation in the liver, which were suppressed in ARE-Del-/- mice. Luteolin also strongly induced PPAR signaling, which was downregulated in HFD and ARE-Del-/- mice. Using human GWAS data, we characterized the genetic interaction between significant obesity-related genes and IFNγ signaling and demonstrated that IFNγ is crucial for obesity-mediated inflammatory responses. Collectively, this study improves our mechanistic understanding of the relationship between obesity and autoimmune diseases. Furthermore, it provides new methodological insights into how immune network-based analyses effectively integrate RNA-seq and microarray data.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Interferón gamma/metabolismo , Leptina/metabolismo , Cirrosis Hepática Biliar/etiología , Obesidad/inmunología , Animales , Presentación de Antígeno/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Hígado/metabolismo , Cirrosis Hepática Biliar/prevención & control , Luteolina/farmacología , Luteolina/uso terapéutico , Ratones , Obesidad/complicaciones , Obesidad/genética , Obesidad/metabolismo , Transducción de Señal/efectos de los fármacos , Células TH1
8.
Mol Carcinog ; 57(10): 1342-1357, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29873416

RESUMEN

Ewing sarcoma (EWS) is a soft tissue and bone tumor that occurs primarily in adolescents and young adults. In most cases of EWS, the chimeric transcription factor, EWS-FLI1 is the primary oncogenic driver. The epigenome of EWS cells reflects EWS-FLI1 binding and activation or repression of transcription. Here, we demonstrate that EWS-FLI1 positively regulates the expression of proteins required for serine-glycine biosynthesis and uptake of the alternative nutrient source glutamine. Specifically, we show that EWS-FLI1 activates expression of PHGDH, PSAT1, PSPH, and SHMT2. Using cell-based studies, we also establish that EWS cells are dependent on glutamine for cell survival and that EWS-FLI1 positively regulates expression of the glutamine transporter, SLC1A5 and two enzymes involved in the one-carbon cycle, MTHFD2 and MTHFD1L. Inhibition of serine-glycine biosynthesis in EWS cells impacts their redox state leading to an accumulation of reactive oxygen species, DNA damage, and apoptosis. Importantly, analysis of EWS primary tumor transcriptome data confirmed that the aforementioned genes we identified as regulated by EWS-FLI1 exhibit increased expression compared with normal tissues. Furthermore, retrospective analysis of an independent data set generated a significant stratification of the overall survival of EWS patients into low- and high-risk groups based on the expression of PHGDH, PSAT1, PSPH, SHMT2, SLC1A5, MTHFD2, and MTHFD1L. In summary, our study demonstrates that EWS-FLI1 reprograms the metabolism of EWS cells and that serine-glycine metabolism or glutamine uptake are potential targetable vulnerabilities in this tumor type.


Asunto(s)
Glutamina/metabolismo , Glicina/biosíntesis , Proteínas de Fusión Oncogénica/metabolismo , Proteína Proto-Oncogénica c-fli-1/metabolismo , Proteína EWS de Unión a ARN/metabolismo , Serina/biosíntesis , Sistema de Transporte de Aminoácidos ASC/genética , Sistema de Transporte de Aminoácidos ASC/metabolismo , Aminohidrolasas/genética , Aminohidrolasas/metabolismo , Apoptosis/genética , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Línea Celular Tumoral , Supervivencia Celular/genética , Formiato-Tetrahidrofolato Ligasa/genética , Formiato-Tetrahidrofolato Ligasa/metabolismo , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Células HEK293 , Humanos , Metilenotetrahidrofolato Deshidrogenasa (NADP)/genética , Metilenotetrahidrofolato Deshidrogenasa (NADP)/metabolismo , Antígenos de Histocompatibilidad Menor/genética , Antígenos de Histocompatibilidad Menor/metabolismo , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Enzimas Multifuncionales/genética , Enzimas Multifuncionales/metabolismo , Proteínas de Fusión Oncogénica/genética , Fosfoglicerato-Deshidrogenasa/genética , Fosfoglicerato-Deshidrogenasa/metabolismo , Proteína Proto-Oncogénica c-fli-1/genética , Proteína EWS de Unión a ARN/genética , Sarcoma de Ewing/genética , Sarcoma de Ewing/metabolismo , Sarcoma de Ewing/patología
9.
Funct Integr Genomics ; 16(3): 269-79, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26882917

RESUMEN

Although it is well known that low-molecular-weight glutenin subunits (LMW-GS) from wheat affect bread and noodle processing quality, the function of specific LMW-GS proteins remains unclear. It is important to find the genes that correspond to individual LMW-GS proteins in order to understand the functions of specific proteins. The objective of this study was to link LMW-GS genes and haplotypes characterized using well known Glu-A3, Glu-B3, and Glu-D3 gene-specific primers to their protein products in a single wheat variety. A total of 36 LMW-GS genes and pseudogenes were amplified from the Korean cultivar Keumkang. These include 11 Glu-3 gene haplotypes, two from the Glu-A3 locus, two from the Glu-B3 locus, and seven from the Glu-D3 locus. To establish relationships between gene haplotypes and their protein products, a glutenin protein fraction was separated by two-dimensional gel electrophoresis (2-DGE) and 17 protein spots were analyzed by N-terminal amino acid sequencing and tandem mass spectrometry (MS/MS). LMW-GS proteins were identified that corresponded to all Glu-3 gene haplotypes except the pseudogenes. This is the first report of the comprehensive characterization of LMW-GS genes and their corresponding proteins in a single wheat cultivar. Our approach will be useful to understand the contributions of individual LMW-GS to the end-use quality of flour.


Asunto(s)
Secuencia de Aminoácidos/genética , Pan , Glútenes/genética , Triticum/genética , Alelos , Electroforesis en Gel Bidimensional , Haplotipos/genética , Peso Molecular , Seudogenes/genética , Espectrometría de Masas en Tándem
10.
Sensors (Basel) ; 16(1)2016 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-26751443

RESUMEN

Today, security is a prominent issue when any type of communication is being undertaken. Like traditional networks, supervisory control and data acquisition (SCADA) systems suffer from a number of vulnerabilities. Numerous end-to-end security mechanisms have been proposed for the resolution of SCADA-system security issues, but due to insecure real-time protocol use and the reliance upon open protocols during Internet-based communication, these SCADA systems can still be compromised by security challenges. This study reviews the security challenges and issues that are commonly raised during SCADA/protocol transmissions and proposes a secure distributed-network protocol version 3 (DNP3) design, and the implementation of the security solution using a cryptography mechanism. Due to the insecurities found within SCADA protocols, the new development consists of a DNP3 protocol that has been designed as a part of the SCADA system, and the cryptographically derived security is deployed within the application layer as a part of the DNP3 stack.


Asunto(s)
Redes de Comunicación de Computadores/normas , Seguridad Computacional , Internet , Investigación
11.
Colloids Surf B Biointerfaces ; 242: 114099, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39024719

RESUMEN

Generating stable and customizable topography on hydrogel surfaces with contact guidance potential is critical as it can direct/influence cell growth. This necessitates the development of new techniques for surface patterning of the hydrogels. We report on the design of a square grid template for surface patterning hydrogels. The template was 3-D printed and has the diameter of a well in a 24-well plate. Hyaluronic acid methacrylate (HA) hydrogel precursor solutions were cast on the 3D printed template's surface, which generated 3D square shape topographies on the HA hydrogel surface upon demolding. The 3D Laser Microscopy has shown the formation of a periodic array of 3D topographies on hydrogel surfaces. 3D Laser and Electron Microscopy Imaging have revealed that this new method has increased the surface area and exposed the underlying pore structure of the HA hydrogels. To demonstrate the method's versatility, we have successfully applied this technique to generate 3D topography on two more acrylate hydrogel formulations, gelatin Methacrylate and polyethylene glycol dimethacrylate. Human neonatal dermal fibroblast cells were used as a model cell line to evaluate the cell guidance potential of patterned HA hydrogel. Confocal fluorescence microscopy imaging has revealed that the 3D surface topographies on HA hydrogels can guide and align the actin filaments of the fibroblasts presumably due to the contact guidance mechanism. The newly developed methodology of 3D topography generation in acrylate hydrogels may influence the cell responses on hydrogel surfaces which can impact biomedical applications such as tissue engineering, wound healing, and disease modeling.


Asunto(s)
Fibroblastos , Ácido Hialurónico , Hidrogeles , Impresión Tridimensional , Propiedades de Superficie , Hidrogeles/química , Hidrogeles/farmacología , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Humanos , Ácido Hialurónico/química , Metacrilatos/química , Acrilatos/química , Células Cultivadas , Polietilenglicoles/química
12.
Adv Mater ; 36(18): e2311154, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38174953

RESUMEN

Bioelectronic implants delivering electrical stimulation offer an attractive alternative to traditional pharmaceuticals in electrotherapy. However, achieving simple, rapid, and cost-effective personalization of these implants for customized treatment in unique clinical and physical scenarios presents a substantial challenge. This challenge is further compounded by the need to ensure safety and minimal invasiveness, requiring essential attributes such as flexibility, biocompatibility, lightness, biodegradability, and wireless stimulation capability. Here, a flexible, biodegradable bioelectronic paper with homogeneously distributed wireless stimulation functionality for simple personalization of bioelectronic implants is introduced. The bioelectronic paper synergistically combines i) lead-free magnetoelectric nanoparticles (MENs) that facilitate electrical stimulation in response to external magnetic field and ii) flexible and biodegradable nanofibers (NFs) that enable localization of MENs for high-selectivity stimulation, oxygen/nutrient permeation, cell orientation modulation, and biodegradation rate control. The effectiveness of wireless electrical stimulation in vitro through enhanced neuronal differentiation of neuron-like PC12 cells and the controllability of their microstructural orientation are shown. Also, scalability, design flexibility, and rapid customizability of the bioelectronic paper are shown by creating various 3D macrostructures using simple paper crafting techniques such as cutting and folding. This platform holds promise for simple and rapid personalization of temporary bioelectronic implants for minimally invasive wireless stimulation therapies.


Asunto(s)
Implantes Absorbibles , Magnetismo , Medicina de Precisión , Tecnología Inalámbrica , Papel , Medicina de Precisión/instrumentación , Humanos , Masculino , Animales , Ratas , Encéfalo , Electrónica Médica/instrumentación
13.
Toxicol Appl Pharmacol ; 267(2): 184-91, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23238561

RESUMEN

Although the structure and function of the AhR are conserved, emerging evidence suggests that downstream effects are species-specific. In this study, rat hepatic gene expression data from the DrugMatrix database (National Toxicology Program) were compared to mouse hepatic whole-genome gene expression data following treatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). For the DrugMatrix study, male Sprague-Dawley rats were gavaged daily with 20µg/kg TCDD for 1, 3 and 5days, while female C57BL/6 ovariectomized mice were examined 1, 3 and 7days after a single oral gavage of 30µg/kg TCDD. A total of 649 rat and 1386 mouse genes (|fold change|≥1.5, P1(t)≥0.99) were differentially expressed following treatment. HomoloGene identified 11,708 orthologs represented across the rat Affymetrix 230 2.0 GeneChip (12,310 total orthologs), and the mouse 4×44K v.1 Agilent oligonucleotide array (17,578 total orthologs). Comparative analysis found 563 and 922 orthologs differentially expressed in response to TCDD in the rat and mouse, respectively, with 70 responses associated with immune function and lipid metabolism in common to both. Moreover, QRTPCR analysis of Ceacam1, showed divergent expression (induced in rat; repressed in mouse) functionally consistent with TCDD-elicited hepatic steatosis in the mouse but not the rat. Functional analysis identified orthologs involved in nucleotide binding and acetyltransferase activity in rat, while mouse-specific responses were associated with steroid, phospholipid, fatty acid, and carbohydrate metabolism. These results provide further evidence that TCDD elicits species-specific regulation of distinct gene networks, and outlines considerations for future comparisons of publicly available microarray datasets.


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Dibenzodioxinas Policloradas/farmacología , Animales , Femenino , Perfilación de la Expresión Génica , Redes Reguladoras de Genes/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Análisis de Secuencia por Matrices de Oligonucleótidos , Dibenzodioxinas Policloradas/toxicidad , Ratas , Ratas Sprague-Dawley , Especificidad de la Especie , Factores de Transcripción/genética
14.
Adv Healthc Mater ; 12(29): e2301774, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37485740

RESUMEN

As point-of-care testing (POCT) is becoming the new paradigm of medical diagnostics, there is a growing need to develop reliable POCT devices that can be conveniently operated in a minimally invasive manner. However, the clinical potential of POCT diagnostics is yet to be realized, mainly due to the limited and inconsistent amount of collected samples on these devices, undermining their accuracy. This study proposes a new biosensing platform modified with a functional polysuccinimide (PSI)-silica nanoparticle (SNP) composite system that can substantially increase the protein conjugation efficiency by modulating physicochemical interaction with proteins by several hundred percent from an unmodified device. The efficacy of this PSI-SNP system is further validated by applying it on the surface of a microneedle array (MN), which has emerged as a promising POCT device capable of accessing interstitial fluid through minimal penetration of the skin. This PSI-SNP MN is demonstrated to detect a wide array of proteins with high sensitivity on par with conventional whole serum analysis, validated by in vivo animal testing, effectively displaying broad applicability in biomedical engineering.


Asunto(s)
Técnicas Biosensibles , Nanocompuestos , Animales , Dióxido de Silicio/química , Piel , Agujas
15.
Arch Pharm Res ; 46(11-12): 907-923, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38048029

RESUMEN

Although tamoxifen (TAM) is widely used in patients with estrogen receptor-positive breast cancer, the development of tamoxifen resistance is common. The previous finding suggests that the development of tamoxifen resistance is driven by epiregulin or hypoxia-inducible factor-1α-dependent glycolysis activation. Nonetheless, the mechanisms responsible for cancer cell survival and growth in a lactic acid-rich environment remain elusive. We found that the growth and survival of tamoxifen-resistant MCF-7 cells (TAMR-MCF-7) depend on glycolysis rather than oxidative phosphorylation. The levels of the glycolytic enzymes were higher in TAMR-MCF-7 cells than in parental MCF-7 cells, whereas the mitochondrial number and complex I level were decreased. Importantly, TAMR-MCF-7 cells were more resistant to low glucose and high lactate growth conditions. Isotope tracing analysis using 13C-lactate confirmed that lactate conversion to pyruvate was enhanced in TAMR-MCF-7 cells. We identified monocarboxylate transporter1 (MCT1) and lactate dehydrogenase B (LDHB) as important mediators of lactate influx and its conversion to pyruvate, respectively. Consistently, AR-C155858 (MCT1 inhibitor) inhibited the proliferation, migration, spheroid formation, and in vivo tumor growth of TAMR-MCF-7 cells. Our findings suggest that TAMR-MCF-7 cells depend on glycolysis and glutaminolysis for energy and support that targeting MCT1- and LDHB-dependent lactate recycling may be a promising strategy to treat patients with TAM-resistant breast cancer.


Asunto(s)
Neoplasias de la Mama , Tamoxifeno , Femenino , Humanos , Antineoplásicos Hormonales/farmacología , Antineoplásicos Hormonales/uso terapéutico , Neoplasias de la Mama/patología , Línea Celular Tumoral , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , Lactatos/uso terapéutico , Células MCF-7 , Piruvatos/uso terapéutico , Tamoxifeno/farmacología , Tamoxifeno/uso terapéutico
16.
Nutrients ; 15(19)2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37836502

RESUMEN

D-allulose, a rare sugar, has been proposed to have potential benefits in addressing metabolic disorders such as obesity and type 2 diabetes (T2D). However, the precise mechanisms underlying these effects remain poorly understood. We aimed to elucidate the mechanisms by which D-allulose influences obesity-induced insulin resistance. We conducted gene set enrichment analysis on the liver and white adipose tissue of mice exposed to a high-fat diet (HFD) along with the white adipose tissue of individuals with obesity. Our study revealed that D-allulose effectively suppressed IFN-γ, restored chemokine signaling, and enhanced macrophage function in the livers of HFD-fed mice. This implies that D-allulose curtails liver inflammation, alleviating insulin resistance and subsequently impacting adipose tissue. Furthermore, D-allulose supplementation improved mitochondrial NADH homeostasis and translation in both the liver and white adipose tissue of HFD-fed mice. Notably, we observed decreased NADH homeostasis and mitochondrial translation in the omental tissue of insulin-resistant obese subjects compared to their insulin-sensitive counterparts. Taken together, these results suggest that supplementation with allulose improves obesity-induced insulin resistance by mitigating the disruptions in macrophage and mitochondrial function. Furthermore, our data reinforce the crucial role that mitochondrial energy expenditure plays in the development of insulin resistance triggered by obesity.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Insulinas , Humanos , Animales , Ratones , NAD/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Obesidad/metabolismo , Tejido Adiposo/metabolismo , Macrófagos/metabolismo , Homeostasis , Mitocondrias/metabolismo , Insulinas/metabolismo , Dieta Alta en Grasa/efectos adversos , Ratones Endogámicos C57BL , Inflamación/metabolismo
17.
Toxicol Appl Pharmacol ; 262(2): 124-38, 2012 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-22561333

RESUMEN

Continuous exposure to high concentrations of hexavalent chromium [Cr(VI)] in drinking water results in intestinal tumors in mice but not rats. Concentration-dependent gene expression effects were evaluated in female F344 rat duodenal and jejunal epithelia following 7 and 90 days of exposure to 0.3-520 mg/L (as sodium dichromate dihydrate, SDD) in drinking water. Whole-genome microarrays identified 3269 and 1815 duodenal, and 4557 and 1534 jejunal differentially expressed genes at 8 and 91 days, respectively, with significant overlaps between the intestinal segments. Functional annotation identified gene expression changes associated with oxidative stress, cell cycle, cell death, and immune response that were consistent with reported changes in redox status and histopathology. Comparative analysis with B6C3F1 mouse data from a similarly designed study identified 2790 differentially expressed rat orthologs in the duodenum compared to 5013 mouse orthologs at day 8, and only 1504 rat and 3484 mouse orthologs at day 91. Automated dose-response modeling resulted in similar median EC50s in the rodent duodenal and jejunal mucosae. Comparative examination of differentially expressed genes also identified divergently regulated orthologs. Comparable numbers of differentially expressed genes were observed at equivalent Cr concentrations (µg Cr/g duodenum). However, mice accumulated higher Cr levels than rats at ≥ 170 mg/L SDD, resulting in a ~2-fold increase in the number of differentially expressed genes. These qualitative and quantitative differences in differential gene expression, which correlate with differences in tissue dose, likely contribute to the disparate intestinal tumor outcomes.


Asunto(s)
Carcinógenos Ambientales/toxicidad , Cromo/toxicidad , Neoplasias Intestinales/inducido químicamente , Neoplasias Intestinales/genética , Intestino Delgado/efectos de los fármacos , Animales , Relación Dosis-Respuesta a Droga , Femenino , Intestino Delgado/metabolismo , Intestino Delgado/patología , Ratones , Ratones Endogámicos C57BL , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN/química , ARN/genética , Ratas , Ratas Endogámicas F344 , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Especificidad de la Especie
18.
Toxicol Appl Pharmacol ; 259(1): 13-26, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22155349

RESUMEN

Chronic administration of high doses of hexavalent chromium [Cr(VI)] as sodium dichromate dihydrate (SDD) elicits alimentary cancers in mice. To further elucidate key events underlying tumor formation, a 90-day drinking water study was conducted in B6C3F1 mice. Differential gene expression was examined in duodenal and jejunal epithelial samples following 7 or 90days of exposure to 0, 0.3, 4, 14, 60, 170 or 520mg/L SDD in drinking water. Genome-wide microarray analyses identified 6562 duodenal and 4448 jejunal unique differentially expressed genes at day 8, and 4630 and 4845 unique changes, respectively, in the duodenum and jejunum at day 91. Comparative analysis identified significant overlap in duodenal and jejunal differential gene expression. Automated dose-response modeling identified >80% of the differentially expressed genes exhibited sigmoidal dose-response curves with EC(50) values ranging from 10 to 100mg/L SDD. Only 16 genes satisfying the dose-dependent differential expression criteria had EC(50) values <10mg/L SDD, 3 of which were regulated by Nrf2, suggesting oxidative stress in response to SDD at low concentrations. Analyses of differentially expressed genes identified over-represented functions associated with oxidative stress, cell cycle, lipid metabolism, and immune responses consistent with the reported effects on redox status and histopathology at corresponding SDD drinking water concentrations. Collectively, these data are consistent with a mode of action involving oxidative stress and cytotoxicity as early key events. This suggests that the tumorigenic effects of chronic Cr(VI) oral exposure likely require chronic tissue damage and compensatory epithelial cell proliferation.


Asunto(s)
Cromo/toxicidad , Expresión Génica/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Animales , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Agua Potable/química , Duodeno/efectos de los fármacos , Duodeno/metabolismo , Duodeno/patología , Femenino , Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Yeyuno/efectos de los fármacos , Yeyuno/metabolismo , Yeyuno/patología , Ratones , Ratones Endogámicos , Análisis de Secuencia por Matrices de Oligonucleótidos , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Tiempo
19.
Psychol Sci ; 23(5): 502-9, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22477105

RESUMEN

Creativity is a highly sought-after skill. Prescriptive advice for inspiring creativity abounds in the form of metaphors: People are encouraged to "think outside the box", to consider a problem "on one hand, then on the other hand", and to "put two and two together" to achieve creative breakthroughs. These metaphors suggest a connection between concrete bodily experiences and creative cognition. Inspired by recent advances in the understanding of body-mind linkages in the research on embodied cognition, we explored whether enacting metaphors for creativity enhances creative problem solving. Our findings from five studies revealed that both physical and psychological embodiment of metaphors for creativity promoted convergent thinking and divergent thinking (i.e., fluency, flexibility, or originality) in problem solving. Going beyond prior research, which focused primarily on the kind of embodiment that primes preexisting knowledge, we provide the first evidence that embodiment can also activate cognitive processes that facilitate the generation of new ideas and connections.


Asunto(s)
Cognición , Creatividad , Metáfora , Pensamiento , Adulto , Femenino , Humanos , Masculino
20.
Biomol Ther (Seoul) ; 30(5): 435-446, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35794797

RESUMEN

The present study evaluated the anti-cancer activity of histone deacetylase (HDAC)-inhibiting CKD-581 in multiple myeloma (MM) and its pharmacological mechanisms. CKD-581 potently inhibited a broad spectrum of HDAC isozymes. It concentration-dependently inhibited proliferation of hematologic cancer cells including MM (MM.1S and RPMI8226) and T cell lymphoma (HH and MJ). It increased the expression of the dishevelled binding antagonist of ß-catenin 3 (DACT3) in T cell lymphoma and MM cells, and decreased the expression of c-Myc and ß-catenin in MM cells. Additionally, it enhanced phosphorylated p53, p21, cleaved caspase-3 and the subG1 population, and reversely, downregulated cyclin D1, CDK4 and the anti-apoptotic BCL-2 family. Finally, administration of CKD-581 exerted a significant anti-cancer activity in MM.1S-implanted xenografts. Overall, CKD-581 shows anticancer activity via inhibition of the Wnt/ß-catenin signaling pathway in hematologic malignancies. This finding is evidence of the therapeutic potential and rationale of CKD-581 for treatment of MM.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA