Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Nano Lett ; 24(6): 2025-2032, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38295356

RESUMEN

Negative differential resistance (NDR), a phenomenon in which the current decreases when the applied voltage is increased, is attracting attention as a unique electrical property. Here, we propose a broad spectral photo/gate cotunable channel switching NDR (CS-NDR) device. The proposed CS-NDR device has superior linear gate-tunable NDR behavior and highly reproducible properties compared to the previously reported NDR devices, as the fundamental mechanism of the CS-NDR device is directly related to a charge transport channel switching by the linear increase of the applied drain voltage. We also experimentally demonstrate that the photoinduced NDR behavior of the CS-NDR device was derived from the grain boundaries of dinaphtho[2;3-b:2',3'-f]-thieno[3,2-b]thiophene. Furthermore, this work produces a 9 × 9 CS-NDR device array composed of 81 devices, providing the reproducibility and uniformity of the CS-NDR device. Finally, we successfully demonstrate the detection of text images with 81 CS-NDR devices using the proposed photo/gate cotunable NDR behavior.

2.
Small ; : e2309744, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38507730

RESUMEN

The development of hydrogen (H2) gas sensors is essential for the safe and efficient adoption of H2 gas as a clean, renewable energy source in the challenges against climate change, given its flammability and associated safety risks. Among various H2 sensors, gasochromic sensors have attracted great interest due to their highly intuitive and low power operation, but slow kinetics, especially slow recovery rate limited its further practical application. This study introduces Pd-decorated amorphous WO3 nanorods (Pd-WO3 NRs) as an innovative gasochromic H2 sensor, demonstrating rapid and highly reversible color changes for H2 detection. In specific, the amorphous nanostructure exhibits notable porosity, enabling rapid detection and recovery by facilitating effective H2 gas interaction and efficient diffusion of hydrogen ions (H+) dissociated from the Pd nanoparticles (Pd NPs). The optimized Pd-WO3 NRs sensor achieves an impressive response time of 14 s and a recovery time of 1 s to 5% H2. The impressively fast recovery time of 1 s is observed under a wide range of H2 concentrations (0.2-5%), making this study a fundamental solution to the challenged slow recovery of gasochromic H2 sensors.

3.
Sensors (Basel) ; 22(21)2022 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-36365800

RESUMEN

Feasible local motion planning for autonomous mobile robots in dynamic environments requires predicting how the scene evolves. Conventional navigation stakes rely on a local map to represent how a dynamic scene changes over time. However, these navigation stakes depend highly on the accuracy of the environmental map and the number of obstacles. This study uses semantic segmentation-based drivable area estimation as an alternative representation to assist with local motion planning. Notably, a realistic 3D simulator based on an Unreal Engine was created to generate a synthetic dataset under different weather conditions. A transfer learning technique was used to train the encoder-decoder model to segment free space from the occupied sidewalk environment. The local planner uses a nonlinear model predictive control (NMPC) scheme that inputs the estimated drivable space, the state of the robot, and a global plan to produce safe velocity commands that minimize the tracking cost and actuator effort while avoiding collisions with dynamic and static obstacles. The proposed approach achieves zero-shot transfer from a simulation to real-world environments that have never been experienced during training. Several intensive experiments were conducted and compared with the dynamic window approach (DWA) to demonstrate the effectiveness of our system in dynamic sidewalk environments.


Asunto(s)
Aprendizaje Profundo , Robótica , Dinámicas no Lineales , Robótica/métodos , Algoritmos , Movimiento (Física)
4.
Angew Chem Int Ed Engl ; 61(49): e202214269, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36202753

RESUMEN

Zeolitic imidazolate frameworks (ZIFs) are promising for gas separation membrane, but their molecular cut-off differs from that expected from its intrinsic aperture structure because of their flexibility. Herein, we introduced graphene nanoribbons (GNRs) to rigidify the ZIF framework. Because the sp2 edge of the GNRs induces strong anchoring effects, the modified layer can be rigidified. Particularly, when the GNRs were embedded and distributed in the ZIF-8 layer, an intrinsic aperture size of 3.4 Šwas observed, resulting in high H2 /CO2 separation (H2 permeance: 5.2×10-6  mol/m2 Pa s, ideal selectivity: 142). The performance surpasses the upper bound of polycrystalline MOF membrane performance. In addition, the membrane can be applied to blue H2 production, as demonstrated with a simulated steam reformed gas containing H2 /CO2 /CH4 . The separation performance was retained in the presence of water. The fundamentals of the molecular transport through the rigid ZIF-8 framework were revealed using molecular dynamics simulations.

5.
J Magn Reson Imaging ; 45(6): 1637-1647, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27865032

RESUMEN

PURPOSE: To evaluate the influence of fitting methods on the accuracy and reliability of intravoxel incoherent motion (IVIM) parameters, with a particular emphasis on the constraint function. MATERIALS AND METHODS: Diffusion-weighted (DW) imaging data were analyzed using IVIM-based full-fitting (simultaneous fit of all parameters) and segmented-fitting (step-by-step fit of each parameter), each with and without the constraint function, to estimate the molecular diffusion coefficient (Dslow ), perfusion fraction (f), and flow-related diffusion coefficient (Dfast ). Computational simulations were performed at variable signal-to-noise ratios to evaluate the relative error (RE) and coefficient of variation (CV) of the estimated IVIM parameters. DW imaging of the abdomen was performed twice at 1.5 Tesla using nine b-values (0-900 s/mm2 ) in 12 health volunteers (6 men and 6 women; mean age: 30 years). The measurement repeatability of IVIM parameters in the liver and the pancreas was evaluated using the within-subject coefficient of variation (w CV). RESULTS: In simulations, full-fitting without the constraint function yielded the largest RE (P < 0.001 for Dslow and f; P ≤ 0.044 for Dfast ) and CV (P ≤ 0.033 for Dslow and f; P ≤ 0.473 for Dfast ) for IVIM parameters among all four algorithms. In volunteer imaging, full-fitting without the constraint function also resulted in the poorest repeatability for Dslow (w CV, 17.12%-65.45%) and f (w CV, 19.35%-42.84%) in the liver and pancreas, while the other algorithms had similar repeatability values (w CV, 4.05%-11.99% for Dslow and 9.65%-18.66% for f). Measurement repeatability of Dfast (w CV, 29.52%-85.01%) was the poorest among the IVIM parameters. CONCLUSION: For accurate and reliable measurement of IVIM parameters, segmented fitting or full-fitting with the constraint function should be used for IVIM-based analysis of DW imaging. LEVEL OF EVIDENCE: 3 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;45:1637-1647.


Asunto(s)
Abdomen/diagnóstico por imagen , Algoritmos , Imagen de Difusión por Resonancia Magnética/métodos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Adulto , Femenino , Humanos , Masculino , Movimiento (Física) , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Técnica de Sustracción
6.
Radiology ; 274(2): 405-15, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25232802

RESUMEN

PURPOSE: To compare the influence of triggering methods for diffusion-weighted imaging (DWI) on apparent diffusion coefficient (ADC) and intravoxel incoherent motion (IVIM) parameters in the liver, as well as regional variability and measurement repeatability. MATERIALS AND METHODS: In this institutional review board-approved prospective study, 12 healthy volunteers (six women, six men; mean age, 30 years) underwent 1.5-T DWI of the liver by using nine b values twice with free breathing (FB) without triggering (mean acquisition time ± standard deviation, 3.7 minutes ± 0), respiratory triggering (RT) (mean acquisition time, 6.8 minutes ± 1.4), and echocardiography triggering (ET) (mean acquisition time, 8.3 minutes ± 2.0) after providing written informed consent. ADC and IVIM parameters, including pure diffusion coefficient (D), perfusion fraction (f), and perfusion-related diffusion coefficient (D*), were measured by using 15 regions of interest (ROIs). Regional variability of ADC and IVIM parameters and measurement repeatability were evaluated by using the coefficient of variation (CV) across ROIs and within-subject CV, respectively. RESULTS: ET DWI (range of CV across ROIs, 6.69%-20.0%) resulted in significantly decreased regional variability of ADC, D, and f, compared with FB DWI (13.86%-35.8%) and RT DWI (15.15%-35.91%, P ≤. 049). ET DWI showed better repeatability of ADC measurement (within-subject CV range, 3.17%-4.12% for ET DWI; 4.15%-4.74% for FB DWI; and 2.33%-6.96% for RT DWI), D (4.05%-5.34% for ET DWI, 4.11%-12.51% for FB DWI, and 3.19%-16.17% for RT DWI), and f (7.6%-9.86% for ET DWI, 13.83%-16.81% for FB DWI, and 10.05%-12.10% for RT DWI), compared with FB DWI and RT DWI, with significant differences in within-subject CV for D in the left hepatic lobe compared with RT DWI (P = .023) and for f compared with FB DWI (P ≤ .032). For all three imaging techniques, D* showed the worst repeatability (within-subject CV, 57.05%-156.61%) among ADC and IVIM parameters. CONCLUSION: ET DWI is more effective for decreasing regional variability of ADC and IVIM parameters than FB DWI or RT DWI; it may improve measurement repeatability by reducing cardiac motion-induced measurement error.


Asunto(s)
Imagen de Difusión por Resonancia Magnética/métodos , Hígado/anatomía & histología , Adulto , Femenino , Humanos , Masculino , Movimiento (Física) , Estudios Prospectivos
7.
Micromachines (Basel) ; 15(1)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38276863

RESUMEN

With the increase in electronic devices across various applications, there is rising demand for selective carrier control. The split-gate consists of a gate electrode divided into multiple parts, allowing for the independent biasing of electric fields within the device. This configuration enables the potential formation of both p- and n-channels by injecting holes and electrons owing to the presence of the two gate electrodes. Applying voltage to the split-gate allows for the control of the Fermi level and, consequently, the barrier height in the device. This facilitates band bending in unipolar transistors and allows ambipolar transistors to operate as if unipolar. Moreover, the split-gate serves as a revolutionary tool to modulate the contact resistance by controlling the barrier height. This approach enables the precise control of the device by biasing the partial electric field without limitations on materials, making it adaptable for various applications, as reported in various types of research. However, the gap length between gates can affect the injection of the electric field for the precise control of carriers. Hence, the design of the gap length is a critical element for the split-gate structure. The primary investigation in this review is the introduction of split-gate technology applied in various applications by using diverse materials, the methods for forming the split-gate in each device, and the operational mechanisms under applied voltage conditions.

8.
Artículo en Inglés | MEDLINE | ID: mdl-38593271

RESUMEN

Conventional transistors have long emphasized signal modulation and amplification, often sidelining polarity considerations. However, the recent emergence of negative differential transconductance, characterized by a drain current decline during gate voltage sweeping, has illuminated an unconventional path in transistor technology. This phenomenon promises to simplify the implementation of ternary logic circuits and enhance energy efficiency, especially in multivalued logic applications. Our research has culminated in the development of a sophisticated mixed transconductance transistor (M-T device) founded on a precise Te and IGZO heterojunction. The M-T device exhibits a sequence of intriguing phenomena, zero differential transconductance (ZDT), positive differential transconductance (PDT), and negative differential transconductance (NDT) contingent on applied gate voltage. We clarify its operation using a three-segment equivalent circuit model and validate its viability with IGZO TFT, Te TFT, and Te/IGZO TFT components. In a concluding demonstration, the M-T device interconnected with Te TFT achieves a ternary inverter with an intermediate logic state. Remarkably, this configuration seamlessly transitions into a binary inverter when it is exposed to light.

9.
Adv Mater ; : e2312831, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38870479

RESUMEN

Paper is a readily available material in nature. Its recyclability, eco-friendliness, portability, flexibility, and affordability make it a favored substrate for researchers seeking cost-effective solutions. Electronic devices based on solution process were fabricated on paper and banknotes using PVK and SnO2 nanoparticles. The devices manufactured on paper substrates exhibited photosynaptic behavior under ultraviolet pulse illumination, stemming from numerous interactions on the surface of the SnO2 nanoparticles. A light-modulated artificial synapse device was realized on a paper at a low voltage bias of -0.01 V, with an average recognition rate of 91.7% based on the Yale Face Database. As a security device on a banknote, 400 devices in a 20 × 20 array configuration exhibited random electrical characteristics owing to the local morphology of the SnO2 nanoparticles and differences in the depletion layer width at the SnO2/PVK interface. The security PUF key based on the current distribution extracted at -1 V showed unpredictable reproducibility with 50% uniformity, 48.7% inter-Hamming distance, and 50.1% bit-aliasing rates. Moreover, the device maintained its properties for more than 210 d under a curvature radius of 8.75 mm and bias and UV irradiation stress conditions. This article is protected by copyright. All rights reserved.

10.
Adv Sci (Weinh) ; 10(27): e2302701, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37485641

RESUMEN

A huge concern on global climate/energy crises has triggered intense development of radiative coolers (RCs), which are promising green-cooling technologies. The continuous efforts on RCs have fast-tracked notable energy-savings by minimizing solar absorption and maximizing thermal emission. Recently, in addition to spectral optimization, ceramic-based thermally insulative RCs are reported to improve thermoregulation by suppressing heat gain from the surroundings. However, a high temperature co-firing process of ceramic-based thick film inevitably results in a large mismatch of structural parameters between designed and fabricated components, thereby breaking spectral optimization. Here, this article proposes a scalable, non-shrinkable, patternable, and thermally insulative ceramic RC (SNPT-RC) using a roll-to-roll process, which can fill a vital niche in the field of radiative cooling. A stand-alone SNPT-RC exhibits excellent thermal insulation (≈0.251 W m-1  K-1 ) with flame-resistivity and high solar reflectance/long-wave emissivity (≈96% and 92%, respectively). Alternate stacks of intermediate porous alumina/borosilicate (Al2 O3 -BS) layers not only result in outstanding thermal and spectral characteristics, causing excellent sub-ambient cooling (i.e., 7.05 °C cooling), but also non-shrinkable feature. Moreover, a perforated SNPT-RC demonstrates its versatility as a breathable radiative cooling shade and as a semi-transparent window, making it a highly promising technology for practical deployment in energy-saving architecture.

11.
Micromachines (Basel) ; 13(12)2022 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-36557389

RESUMEN

Zero-biased photodetectors have desirable characteristics for potentially next-generation devices, including high efficiency, rapid response, and low power operation. In particular, the detector efficiency can be improved simply by changing the electrode contact geometry or morphological structure of materials, which give unique properties such as energy band bending, photo absorbance and electric field distribution. In addition, several combinations of materials enable or disable the operation of selective wavelengths of light detection. Herein, such recent progresses in photodetector operating at zero-bias voltage are reviewed. Considering the advantages and promises of these low-power photodetectors, this review introduces various zero-bias implementations and reviews the key points.

12.
Membranes (Basel) ; 12(10)2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36295774

RESUMEN

The separation of C3 olefin and paraffin, which is essential for the production of propylene, can be facilitated by the ZIF-8 membrane. However, the commercial application of the membrane has not yet been achieved because the fabrication process does not meet industrial regulatory criteria. In this work, we provide a straightforward and cost-effective membrane fabrication technique that permits the rapid synthesis of ZIF-8 hollow fiber membranes. The scalability of the technology was confirmed by the incorporation of three ZIF-8 hollow fiber membranes into a single module using an introduced fiber mounting methodology. The molecular sieving characteristics of the ZIF-8 membrane module on a binary combination of C3 olefin and paraffin (C3H6/C3H8 selectivity of 110 and a C3H6 permeance of 13 GPU) were examined at atmospheric conditions. In addition, the high-pressure performance of these membranes was demonstrated at a 5 bar of equimolar binary feed pressure with a C3H6/C3H8 selectivity of 55 and a C3H6 permeance of 9 GPU due to propylene adsorption site saturation. To further accurately portray the separation performance of the membrane on an actual industrial feed, the effect of impurities (ethylene, ethane, butylene, i-butane, and n-butane), which can be found in C3 splitters, was investigated and a considerable decrement (~15%) in the propylene permeance upon an interaction with C4 hydrocarbons was confirmed. Finally, the long-term stability of the ZIF-8 membrane was confirmed by continuous operation for almost a month without any loss of its initial performance (C3H6/C3H8 separation factor of 110 and a C3H6 permeance of 13 GPU). From an industrial point of view, this straightforward technique could offer a number of merits such as a short synthesis time, minimal chemical requirements, and excellent reproductivity.

13.
ACS Appl Mater Interfaces ; 14(39): 44419-44428, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36136998

RESUMEN

Optical losses in photovoltaic (PV) systems cause nonradiative recombination or incomplete absorption of incident light, hindering the attainment of high energy conversion efficiency. The surface of the PV cells is encapsulated to not only protect the cell but also control the transmission properties of the incident light to promote maximum conversion. Despite many advances in elaborately designed photonic structures for light harvesting, the complicated process and sophisticated patterning highly diminish the cost-effectiveness and further limit the mass production on a large scale. Here, we propose a robust/comprehensive strategy based on the hybrid disordered photonic structure, implementing multifaceted light harvesting with an affordable/scalable fabrication method. The spatially segmented structures include (i) nanostructures in the active area for antireflection and (ii) microstructures in the inactive edge area for redirecting the incident light into the active area. A lithography-free hybrid disordered structure fabricated by the thermal dewetting method is a facile approach to create a large-area photonic structure with hyperuniformity over the entire area. Based on the experimentally realized nano-/microstructures, we designed a computational model and performed an analytical calculation to confirm the light behavior and performance enhancement. Particularly, the suggested structure is manufactured by the elastomeric stamps method, which is affordable and profitable for mass production. The produced hybrid structure integrated with the multijunction solar cell presented an improved efficiency from 28.0 to 29.6% by 1.06 times.

14.
Nat Commun ; 13(1): 1946, 2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35410337

RESUMEN

Perovskite microcells have a great potential to be applied to diverse types of optoelectronic devices including light-emitting diodes, photodetectors, and solar cells. Although several perovskite fabrication methods have been researched, perovskite microcells without a significant efficiency drop during the patterning and fabrication process could not be developed yet. We herein report the fabrication of high-efficiency perovskite microcells using swelling-induced crack propagation and the application of the microcells to colored solar windows. The key procedure is a swelling-induced lift-off process that leads to patterned perovskite films with high-quality interfaces. Thus, a power conversion efficiency (PCE) of 20.1 % could be achieved with the perovskite microcell, which is nearly same as the PCE of our unpatterned perovskite photovoltaic device (PV). The semi-transparent PV based on microcells exhibited a light utilization efficiency of 4.67 and a color rendering index of 97.5 %. The metal-insulator-metal structure deposited on the semi-transparent PV enabled to fabricate solar windows with vivid colors and high color purity.

15.
Micromachines (Basel) ; 11(12)2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-33266141

RESUMEN

Imaging applications based on microlens arrays (MLAs) have a great potential for the depth sensor, wide field-of-view camera and the reconstructed hologram. However, the narrow depth-of-field remains the challenge for accurate, reliable depth estimation. Multifocal microlens array (Mf-MLAs) is perceived as a major breakthrough, but existing fabrication methods are still hindered by the expensive, low-throughput, and dissimilar numerical aperture (NA) of individual lenses due to the multiple steps in the photolithography process. This paper reports the fabrication method of high NA, Mf-MLAs for the extended depth-of-field using single-step photolithography assisted by chemical wet etching. The various lens parameters of Mf-MLAs are manipulated by the multi-sized hole photomask and the wet etch time. Theoretical and experimental results show that the Mf-MLAs have three types of lens with different focal lengths, while maintaining the uniform and high NA irrespective of the lens type. Additionally, we demonstrate the multi-focal plane image acquisition via Mf-MLAs integrated into a microscope.

16.
Sci Adv ; 6(36)2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32917610

RESUMEN

Passive radiative cooling functions by reflecting the solar spectrum and emitting infrared waves in broadband or selectively. However, cooling enclosed spaces that trap heat by greenhouse effect remains a challenge. We present a Janus emitter (JET) consisting of an Ag-polydimethylsiloxane layer on micropatterned quartz substrate. The induced spoof surface plasmon polariton helps overcome inherent emissivity loss of the polymer and creates near-ideal selective and broadband emission on the separate sides. This design results in not only remarkable surface cooling when the JET is attached with either side facing outwards but also space cooling when used as an enclosure wall. Thus, the JET can passively mitigate the greenhouse effect in enclosures while offering surface cooling performance comparable to conventional radiative coolers.

17.
Adv Sci (Weinh) ; 7(18): 2000978, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32999838

RESUMEN

Acclimatable colors in response to environmental stimuli, which are naturally endowed with some living things, can provide an opportunity for humans to recognize hazardous substances without taking empirical risks. Despite efforts to create artificial responsive colors, realistic applications in everyday life require an immediate/distinct colorimetric realization with wide chromatic selectivity. A dynamically responsive virus (M-13 phage)-based changeable coloring strategy is presented with a highly lossy resonant promoter (HLRP). An ultrathin M-13 phage layer for rapid response to external stimuli displays colorimetric behavior, even in its subtle swelling with strong resonances on HLRP, which is modeled using the complex effective refractive index. Optimal designs of HLRP for several material combinations allow selective chromatic responsivity from the corresponding wide color palette without modification of the dynamic responsive layer. As a practical demonstration, the spatially designed colorimetric indicator, which is insensitive/sensitive to external stimuli, provides an intuitive perception of environmental changes with hidden/revealed patterns. Furthermore, the proposed colorimetric sensor is tested by exposure to various volatile organic chemicals and endocrine disrupting chemicals for versatile detectability, and is fabricated in a wafer-scale sample for large-area scalability.

18.
RSC Adv ; 9(52): 30112-30124, 2019 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-35530222

RESUMEN

As a renewable and sustainable energy source and an alternative to fossil fuels, solar-driven water splitting with photoelectrochemical (PEC) cell is a promising approach to obtain hydrogen fuel with its near-zero carbon emission pathway by transforming incident sunlight, the most abundant energy source. Because of its importance and future prospects, a number of architectures with their own features have been formed by various synthesis and growth methods. Because the materials themselves are one of the most dominant components, they determine the solar-to-hydrogen efficiency of the PEC cells. Thus, several representative PEC cells were reviewed by categorizing them as per synthesis and/or growth methods such as physical vapor deposition, chemical vapor deposition, electrochemical deposition, etc. This review provides researchers with an overview and acts as a guide for research on solar-driven water splitting PEC cells.

19.
Mol Brain ; 12(1): 99, 2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31775900

RESUMEN

FKBP5 encodes the FK506 binding protein 5, a glucocorticoid receptor (GR) binding protein known to play an important role in the physiological stress response. However, results from previous studies examining the association between common variants of FKBP5 and stress have been inconsistent. To investigate whether the loss of FKBP5 affects the stress response, we examined the behavior of mice following the induction of chronic restraint stress between homozygous wild-type and Fkbp5 knock-out mice. After 21 days of exposure to restraint stress, WT mice showed anhedonia, a core symptom of depression, which could be measured by a sucrose preference test. However, Fkbp5-deficient mice did not exhibit significant depressive-like behavior compared to the WT after exposure to chronic restraint stress. To investigate the molecular mechanism underlying stress resilience, we performed RNA sequencing analysis. The differentially expressed gene (DEG) analysis showed that chronic stress induced changes in various biological processes involved in cell-cell adhesion and inflammatory response. Weighted gene co-expression network analysis identified 60 characteristic modules that correlated with stress or the FKBP5 genotype. Among them, M55 showed a gene expression pattern consistent with behavioral changes after stress exposure, and the gene ontology analysis revealed that this was involved in nervous system development, gland morphogenesis, and inflammatory response. These results suggest that FKBP5 may be a crucial factor for the stress response, and that transcriptomic data can provide insight into stress-related pathophysiology.


Asunto(s)
Regulación de la Expresión Génica , Redes Reguladoras de Genes , Resiliencia Psicológica , Estrés Psicológico/genética , Proteínas de Unión a Tacrolimus/deficiencia , Animales , Encéfalo/metabolismo , Ratones Noqueados , Corteza Prefrontal/metabolismo , Proteínas de Unión a Tacrolimus/metabolismo , Transcriptoma/genética
20.
Nanoscale Res Lett ; 14(1): 110, 2019 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-30923947

RESUMEN

The phosphorus-doped ZnO nanorods were prepared using hydrothermal process, whose structural modifications as a function of doping concentration were investigated using X-ray diffraction. The dopant concentration-dependent enhancement in length and diameter of the nanorods had established the phosphorus doping in ZnO nanorods. The gradual transformation in the type of conductivity as observed from the variation of carrier concentration and Hall coefficient had further confirmed the phosphorus doping. The modification of carrier concentration in the ZnO nanorods due to phosphorus doping was understood on the basis of the amphoteric nature of the phosphorus. The ZnO nanorods in the absence of phosphorus showed the photoluminescence (PL) in the range of the ultraviolet (UV) and visible regimes. The UV emission, i.e. near-band-edge emission of ZnO, was found to be red-shifted after the doping of phosphorus, which was attributed to donor-acceptor pair formation. The observed emissions in the visible regime were due to the deep level emissions that were aroused from various defects in ZnO. The Al-doped ZnO seed layer was found to be responsible for the observed near-infrared (NIR) emission. The PL emission in UV and visible regimes can cover a wide range of applications from biological to optoelectronic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA