RESUMEN
Cupriavidus necator has the unique metabolic capability to grow under heterotrophic, autotrophic, and mixotrophic conditions. In the current work, we examined the effect of growth conditions on the metabolic responses of C. necator. In our lab-scale experiments, autotrophic growth was rapid, with a short lag phase as the exponential growth stage was initiated in 6 to 12 h. The lag phase extended significantly (>22 h) at elevated O2 and CO2 partial pressures, while the duration of the lag phase was independent of the H2 or N2 partial pressure. Under heterotrophic conditions with acetate as the organic substrate, the lag phase length was short (<12 h), but it increased with increasing acetate concentrations. When glucose and glycerol were provided as the organic substrate, the lag phase was consistently long (>12 h) regardless of the examined substrate concentrations (up to 10.0 g/L). In the transition experiments, C. necator cells showed rapid transitions from autotrophic to heterotrophic growth in less than 12 h and vice versa. Our experimental results indicate that C. necator can rapidly grow with both autotrophic and heterotrophic substrates, while the lag time substantially increases with nonacetate organic substrates (e.g., glucose or glycerol), high acetate concentrations, and high O2 and CO2 partial pressures. IMPORTANCE The current work investigated the inhibition of organic and gaseous substrates on the microbial adaption of Cupriavidus necator under several metabolic conditions commonly employed for commercial polyhydroxyalkanoate production. We also proposed a two-stage cultivation system to minimize the lag time required to change over between the heterotrophic, autotrophic, and mixotrophic pathways.
Asunto(s)
Cupriavidus necator , Procesos Heterotróficos , Cupriavidus necator/metabolismo , Dióxido de Carbono/metabolismo , Glicerol/metabolismo , Procesos Autotróficos/fisiología , Acetatos/metabolismoRESUMEN
Anaerobic ammonia oxidation (Anammox) is an innovative technology for cost-efficient nitrogen removal without intensive aeration. However, effective control of the competition between nitrite oxidizing bacteria (XNOB) and Anammox bacteria (XANA) for nitrite is a key challenge for broad applications of single-stage Anammox processes in real wastewater treatment. Therefore, a real-time aeration scheme was proposed to determine dissolved oxygen (DO) based on nitrite concentration for effective control of XNOB growth while maintaining the XANA activity in a single-stage Anammox process. In this study, a non-steady state mathematical model was developed and calibrated using previously reported lab-scale Anammox results to investigate the efficiency of the proposed real-time aeration scheme in enhancing the Anammox process. Based on the calibrated model simulation results, DO of about 0.10 mg-O2/L was found to be ideal for maintaining effective nitrite creation by ammonia oxidizing bacteria (XAOB) while slowing down the growth of XNOB. If DO is too low (e.g., 0.01 mg-O2/L or lower), the overall rate of the ammonia removal is limited due to slow growth of XAOB. On the other hand, high DO (e.g., 1.0 mg-O2/L or higher) inhibits the growth of XANA, resulting in dominancy of XAOB and XNOB. According to the simulation results, nitrite concentration was found to be a rate-limiting parameter on effective nitrogen removal in single-stage Anammox processes. We also found that nitrite concentration can be used as a real-time switch for aeration in a single-stage Anammox process. A schematic aeration method based on real-time nitrite concentration was proposed and examined to control the competition between XANA and XNOB. In the model simulation, the XANA activity was successfully maintained because the schematic aeration prevented an outgrowth of XNOB, allowing energy-efficient nitrogen removal using single-stage Anammox processes.
Asunto(s)
Nitritos , Purificación del Agua , Amoníaco , Reactores Biológicos/microbiología , Nitrógeno , Oxidación-Reducción , Oxígeno , Aguas del Alcantarillado , Aguas Residuales/análisis , Purificación del Agua/métodosRESUMEN
There is a tremendous source of entropic energy available from the salinity difference between river water and seawater, but this energy has yet to be efficiently captured and stored. Here we demonstrate that H(2) can be produced in a single process by capturing the salinity driven energy along with organic matter degradation using exoelectrogenic bacteria. Only five pairs of seawater and river water cells were sandwiched between an anode, containing exoelectrogenic bacteria, and a cathode, forming a microbial reverse-electrodialysis electrolysis cell. Exoelectrogens added an electrical potential from acetate oxidation and reduced the anode overpotential, while the reverse electrodialysis stack contributed 0.5-0.6 V at a salinity ratio (seawater:river water) of 50. The H(2) production rate increased from 0.8 to 1.6 m(3)-H(2)/m(3)-anolyte/day for seawater and river water flow rates ranging from 0.1 to 0.8 mL/ min. H(2) recovery, the ratio of electrons used for H(2) evolution to electrons released by substrate oxidation, ranged from 72% to 86%. Energy efficiencies, calculated from changes in salinities and the loss of organic matter, were 58% to 64%. By using a relatively small reverse electrodialysis stack (11 membranes), only ~1% of the produced energy was needed for pumping water. Although Pt was used on the cathode in these tests, additional tests with a nonprecious metal catalyst (MoS(2)) demonstrated H(2) production at a rate of 0.8 m(3)/m(3)/d and an energy efficiency of 51%. These results show that pure H(2) gas can efficiently be produced from virtually limitless supplies of seawater and river water, and biodegradable organic matter.
RESUMEN
Hydrogen gas can be electrochemically produced in microbial reverse-electrodialysis electrolysis cells (MRECs) using current derived from organic matter and salinity-gradient energy such as river water and seawater solutions. Here, it is shown that ammonium bicarbonate salts, which can be regenerated using low-temperature waste heat, can also produce sufficient voltage for hydrogen gas generation in an MREC. The maximum hydrogen production rate was 1.6 m(3) H(2)/m(3)·d, with a hydrogen yield of 3.4 mol H(2)/mol acetate at a salinity ratio of infinite. Energy recovery was 10% based on total energy applied with an energy efficiency of 22% based on the consumed energy in the reactor. The cathode overpotential was dependent on the catholyte (sodium bicarbonate) concentration, but not the salinity ratio, indicating high catholyte conductivity was essential for maximizing hydrogen production rates. The direction of the HC and LC flows (co- or counter-current) did not affect performance in terms of hydrogen gas volume, production rates, or stack voltages. These results show that the MREC can be successfully operated using ammonium bicarbonate salts that can be regenerated using conventional distillation technologies and waste heat making the MREC a useful method for hydrogen gas production from wastes.
Asunto(s)
Bicarbonatos/química , Fuentes de Energía Bioeléctrica , Hidrógeno/química , Salinidad , Bicarbonato de Sodio/químicaRESUMEN
Microplastic beads are an emerging contaminant that can cause serious environmental and public health problems. Potential bypass of microplastic beads from wastewater to sludge treatment systems is a key challenge in the conventional wastewater treatment process. Moreover, there are no systematic studies on microplastic bead degradation by hydrolytic enzymes that are rich in concentration within wastewater and sludge treatment processes (e.g., anaerobic digestion (AD)). In this study, lab-scale experiments were conducted to investigate the degradation of high-density polyethylene beads by hydrolytic enzymes (e.g., lipase) under various experimental conditions (e.g., temperature). In a 3-day batch experiment, protease was most effective in polyethylene bead degradation as 4.0% of the initial bead mass was removed at an enzyme concentration of 88â¯mg/L under thermophilic temperature (55⯰C). It was also found that the increasing enzyme concentration and high temperature enhanced the polyethylene bead degradation. In a separate 7-day experiment with repeated doses of protease, 23.3% of the initial mass of beads was removed at thermophilic temperature, indicating that AD with a long retention time (e.g., 20 days) and heated temperature has a significant potential for polyethylene bead degradation. A mathematical model was developed and calibrated using the experimental results to estimate the kinetic constant of the high-density polyethylene bead reduction by an enzyme (k1,i) and enzyme self-decay constant (k2,ii). The calibrated k1,i ranged from 5.0 to 8.1× 10-4â¯L/mg/hr while k2,ii was 0.44-1.10â¯L/mg/hr. Using the calibrated model, degradation of polyethylene beads using a mixture of cellulase and protease was simulated, considering an interactive-decay reaction between the two enzymes. The calibrated model was used to simulate the polyethylene bead degradation in AD where 70-95% of the initial bead mass was removed at typical retention time under mesophilic digestion (37.5⯰C). Based on the experimental and simulation results, it can be concluded that hydrolytic enzymes can be an efficient technology for large-scale high-density polyethylene bead removal applications.
Asunto(s)
Plásticos , Polietileno , Anaerobiosis , Reactores Biológicos , Cinética , Aguas del Alcantarillado , TemperaturaRESUMEN
Polyhydroxyalkanoates (PHAs) are biodegradable polymers that can decrease the severe environmental pollution of petroleum plastics. PHA production by mixed microbial communities has been extensively studied to lower the high PHA prices. However, the competition between distinct microbial communities during the enrichment of PHA accumulators in mixed cultures has not been widely investigated. Thus, in this work, we developed a mathematical model for the competition between PHA accumulators and non-PHA accumulators in the feast-famine enrichment strategy. The developed model successfully simulated published lab-scale experimental data for Plasticicumulans acidivorans, a well-studied PHA accumulator that can store PHA up to 90% of the cell weight. The growth kinetics for both PHA and non-PHA accumulators were estimated and compared to the values in the literature. The uncertainties in the model kinetics were studied by expanding the model to include additional sub-biomass components for each heterotrophic group. As a result, the microbial diversity of microbial communities was observed to influence the enrichment of PHA accumulators in mixed cultures. Additionally, the calibrated model was applied to investigate the cultivation conditions, such as cycle lengths, carbon-to-nitrogen ratio, and solids retention time for successful P. acidivorans enrichment in mixed cultures. The developed model can be applied to control the cultivation and enrichment of PHA accumulators in large-scale PHA production systems. PRACTITIONER POINTS: A new model for the enrichment of PHA accumulators was developed. The model can simulate PHA accumulation by enriched cultures. The model was calibrated and validated for Plasticicumulans acidivorans. The impact of microbial diversity on enriching PHA accumulators was investigated. Short cycles (<12 h) and SRT (<10 d) are suggested for successful enrichment.
Asunto(s)
Gammaproteobacteria , Polihidroxialcanoatos , Reactores Biológicos , Polihidroxialcanoatos/metabolismo , Gammaproteobacteria/metabolismo , BiomasaRESUMEN
Pb(II) contamination imposes serious threats to human health and the environment. Biological reduction of Pb(II) to metallic Pb is an attractive method for the remediation of Pb(II)-contaminated water and sediments. In this study, Pb(II)-reducing microorganisms were isolated by the dilution-to-extinction (DTE) and streak-plate methods. As a result, Delftia acidovorans, Azonexus caeni, and Comamonas testosteroni were successfully isolated. At a high lead concentration (10 mg-Pb(II)/L), each of the isolated D. acidovorans strain Pb11 and A. caeni strain Pb2 cultures showed successful utilization of Pb(II), resulting in a 5.15- and 8.14-fold growth in 3 days, respectively. Pb(II) reduction to metallic Pb by D. acidovorans strain Pb11 and A. caeni strain Pb2 was confirmed using scanning electron microscopy and energy dispersive X-ray spectroscopy (SEM-EDS) was coupled with X-ray photoelectron spectroscopy (XPS). This strategic analysis was necessary to confirm the formation of metallic Pb separately from lead phosphate precipitates which are inevitable in the biological Pb(II) removal experiments. Among the 3 isolated microbes, C. testosteroni strain Pb3 did not leave immobile and detectable Pb solids in SEM-EDS analyses. D. acidovorans and A. caeni are recommended for engineered remediation of Pb(II)-contaminated wastewater and sediments.
Asunto(s)
Comamonas testosteroni , Plomo , Adsorción , Bacterias , Humanos , Plomo/análisis , Espectrometría por Rayos X , Aguas ResidualesRESUMEN
This study investigated the abilities of electrochemically active bacteria (EAB) as bio-catalysts for Pb(II) bioreduction in an attached growth reactor. Electrically conductive carbon nanofibers (CNF) were used as bacterial scaffolds to facilitate electron transfer between EAB and Pb(II). Our results demonstrated that the CNF attached growth reactor can remove > 80% and > 90% of Pb(II) from solution at 0.5 mg/L and 5.0 mg/L concentrations, respectively, and maintained Pb(II) levels < 0.10 mg/L over repeated Pb(II) dosages dosed at all concentrations. Experimental measurements by SEM-EDX and ICP-OES provided evidence that Pb(II) was reduced to Pb0, suggesting that Pb(II) was adsorbed onto CNFs, and subsequently bioreduced. Numerical modelling was used to estimate Pb(II) concentrations along the CNFs via capturing Pb(II)'s diffusive transport, and the removal mechanisms governed by EAB and CNF adsorption. The model simulation results demonstrated that Pb(II) bioreduction was dominant in the reactor and the significance of Monod kinetics, biofilm thickness and Pb(II) dosage concentration on its removal. This study is the first to prove EAB's ability to treat Pb(II) from contaminated waters in an attached growth configuration. The findings here demonstrate that CNFs can boost biological treatment efficacies in wastewater and/or water treatment to meet stringent water guidelines.
Asunto(s)
Nanofibras , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Bacterias , Carbono , Concentración de Iones de Hidrógeno , Cinética , Plomo , Aguas Residuales , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodosRESUMEN
This study examined the significance of propionate to acetate (HPr/HAc) ratios on microbial syntrophy and competition in microbial electrolysis cell-assisted anaerobic digestion (MEC-AD). In addition to molecular biology and phylogenetic analysis, a numerical MEC-AD model was developed by modifying Anaerobic Digestion Model No.1 to predict the effects of different HPr/HAc ratios (0.5, 1.5, 2.5, and 5). The HPr/HAc ratios of 0.5 and 1.5 maintained efficient syntrophy among electroactive bacteria, hydrogenotrophic methanogens, and homoacetogens, leading to higher methane yields. In contrast, higher HPr/HAc ratios of 2.5 and 5 were detrimental to methanogenesis. Both microbial community analysis and numerical modeling results suggested that higher propionate levels could promote the enrichment of H2-utilizing acetogens, thereby triggering their competition with hydrogenotrophic methanogens. Moreover, protein fraction in extracellular polymeric substances and the relative expression of genes associated with extracellular electron transfer in both anode and cathode biofilms were markedly decreased with increasing HPr/HAc ratios, indicating partial inhibition of microbial electroactivity. Overall, these results illuminate deep insight into anaerobic syntrophy, contributing to the process kinetics and methane yields in MEC-AD systems. Furthermore, from a practical viewpoint, the results can also be helpful in effective control of MEC-AD operation without propionate accumulation.
Asunto(s)
Euryarchaeota , Propionatos , Acetatos , Anaerobiosis , Reactores Biológicos , Euryarchaeota/metabolismo , Metano/metabolismo , Biología Molecular , FilogeniaRESUMEN
A new type of bioelectrochemical system for producing electrical power, called a microbial reverse-electrodialysis cell (MRC), was developed to increase voltages and power densities compared to those generated individually by microbial fuel cells (MFCs) or reverse electrodialysis (RED) systems. In RED systems, electrode overpotentials create significant energy losses due to thermodynamically unfavorable electrode reactions, and therefore a large number of stacked cells must be used to have significant energy recovery. This results in high capital costs for the large number of membranes, and increases energy losses from pumping water through a large number of cells. In an MRC, high overpotentials are avoided through oxidation of organic matter by exoelectrogenic bacteria on the anode and oxygen reduction on the cathode. An MRC containing only five pairs of RED cells, fed solutions typical of seawater (600 mM NaCl) and river water (12 mM NaCl) at 0.85 mL/min, produced up to 3.6 W/m(2) (cathode surface area) and 1.2-1.3 V with acetate as a substrate. Pumping accounted for <2% of the produced power. A higher flow rate (1.55 mL/min) increased power densities up to 4.3 W/m(2). COD removal was 98% with a Coulombic efficiency of 64%. Power production by the individual components was substantially lower with 0.7 W/m(2) without salinity driven energy, and <0.015 W/m(2) with reduced exoelectrogenic activity due to substrate depletion. These results show that the combination of an MFC and a RED stack synergistically increases performance relative to the individual systems, producing a new type of system that can be used to more efficiently capture salinity driven energy from seawater and river water.
Asunto(s)
Fuentes de Energía Bioeléctrica/microbiología , Diálisis/instrumentación , Diálisis/métodos , Acetatos , Análisis de la Demanda Biológica de Oxígeno , Electrodos , Agua Dulce/química , Modelos Biológicos , Oxidación-Reducción , Salinidad , Agua de Mar/química , TermodinámicaRESUMEN
A microbial desalination cell (MDC) is a new approach for desalinating water based on using the electrical current generated by exoelectrogenic bacteria. Previously developed MDCs have used only one or two desalination chambers with substantial internal resistance, and used low salinity catholytes containing a buffered or acid solution. Here we show that substantially improved MDC performance can be obtained even with a nonbuffered, saline catholyte, by using an electrodialysis stack consisting of 5 pairs of desalting and concentrating cells. When 4 stacked MDCs were used in series (20 total pairs of desalination chambers), the salinity of 0.06 L of synthetic seawater (35 g/L NaCl) was reduced by 44% using 0.12 L of anode solution (2:1). The resistive loss in the electrodialysis stack was negligible due to minimization of the intermembrane distances, and therefore the power densities produced by the MDC were similar to those produced by single chamber microbial fuel cells (MFCs) lacking desalination chambers. The observed current efficiency was 86%, indicating separation of 4.3 pairs of sodium and chloride ions for every electron transferred through the circuit. With two additional stages (total of 3.8 L of anolyte), desalination was increased to 98% salt removal, producing 0.3 L of fresh water (12.6:1). These results demonstrate that stacked MDCs can be used for efficient desalination of seawater while at the same time achieving power densities comparable to those obtained in MFCs.
Asunto(s)
Fuentes de Energía Bioeléctrica/microbiología , Diálisis/métodos , Salinidad , Agua de Mar/química , Agua de Mar/microbiología , Purificación del Agua/métodos , Electroquímica , Purificación del Agua/instrumentaciónRESUMEN
Autohydrolysis or enzyme hydrolysis pretreatment under thermophilic conditions significantly accelerates organic solubilization of waste activated sludge (WAS), allowing enhanced methanogenesis in subsequent mesophilic anaerobic digestion. Solubilization mechanisms can hardly be explained and clarified using only conventional analytical measurements, such as soluble chemical oxygen demand (COD) and volatile suspended solids (VSS). Here, we proposed a new but readily available analytical method where volatile solids (VS) are fractionized into high volatile solids (VS205 ), moderate volatile solids (VS350 ), and low volatile solids (VS505 ). In a laboratory-scale experiment, anaerobic digesters were operated at 55, 65, and 75°C with thickened WAS. The high volatile solids (VS205 ) sensitively reflected the temperature effect while the low volatility solids (VS505 ) showed relatively insensitive results to the examined temperature conditions. This finding indicates that hydrolysis of high volatile solids (VS205 ) was accelerated more effectively with the increased temperature. Also, based on the experimental results with the fractionized volatile solids, we recommend that autohydrolysis pretreatment should be operated at 75°C for 5 hr to achieve both rapid hydrolysis and reduced energy consumption. PRACTITIONER POINTS: The volatile solids (VS) were divided into high volatile, moderate volatile, and low volatile fractions. The fractionated VS showed how organic solids were hydrolyzed in thermophilic pretreatment of thickened waste activated sludge. At the higher temperature (75°C), the high volatile fraction increased substantially compared to 55 or 65°C. The fractionated VS responded more sensitively to the thermophilic temperatures compared to common analysis parameters (COD, VSS). We recommend thermophilic pretreatment at 75°C for 5 hr for thickened waste activated sludge.
Asunto(s)
Reactores Biológicos , Aguas del Alcantarillado , Anaerobiosis , Análisis de la Demanda Biológica de Oxígeno , Hidrólisis , Temperatura , Volatilización , Eliminación de Residuos LíquidosRESUMEN
Anaerobic digestion (AD) is a biological treatment process to stabilize organic solids and produce biogas. If present, sulfate is reduced to sulfide by anaerobic sulfate-reducing bacteria and the sulfide can be toxic to anaerobic microorganisms. Here, the effect of high initial sulfate concentration on AD of wastewater sludge was investigated using lab-scale batch experiments. Additionally, a systematic mathematical modeling approach was applied for insight into the experimental results. Cumulative biogas and methane production decreased with increasing initial sulfate doses (0-3.300 mg S L-1 ). The correlation between the sulfate dose and methane production was consistent with theoretical predictions and model results, indicating no toxic effect of sulfide on methane production. The carbon dioxide content in the biogas decreased linearly with the increasing sulfate dose, which is consistent with the model-predicted behavior of the bicarbonate and hydrogen sulfide buffering system. The examined high sulfate concentrations resulted in no clear negative effects on the COD removal or VSS destruction of the wastewater sludge, indicating negligible inhibition by sulfide toxicity. Even considering the possibility of ferrous sulfide precipitation and the low model estimates of residual sulfide concentration the residual sulfide concentration was higher than reported concentrations that trigger process inhibition. PRACTITIONER POINTS: The effect of sulfate loading on anaerobic digestion of waste activated sludge was characterized. The stoichiometry of sulfate reduction allows accurate prediction of CH4 loss. High sulfate levels (up to 3300 mg/L as S) did not affect COD/VSS removal. Sulfide formation increases effluent COD; often misinterpreted as sulfide toxicity. Correcting COD for sulfide's contributions is crucial for results interpretation.
Asunto(s)
Aguas del Alcantarillado , Aguas Residuales , Anaerobiosis , Reactores Biológicos , Metano , Sulfatos , Eliminación de Residuos LíquidosRESUMEN
BACKGROUND: Microbial electrolysis cells (MECs) can be used for energy recovery and sludge reduction in wastewater treatment. Electric current density, which represents the rate of wastewater treatment and H2 production, is not sufficiently high for practical applications of MECs with real wastewater. Here, a sandwiched electrode-stack design was proposed and examined in a continuous-flow MEC system for more than 100 days to demonstrate enhanced electric current generation with a large number of electrode pairs. RESULTS: The current density was boosted up to 190 A/m3 or 1.4 A/m2 with 10 electrode pairs stacked in an MEC fed with primary clarifier effluent from a municipal wastewater treatment plant. High organic loading rate (OLR) resulted in high electric current density. The current density increased from 40 to 190 A/m3 when the OLR increased from 0.5-2 kg-COD/m3/day to 8-16 kg-COD/m3/day. In continuous-flow operation with two stacked MECs in series, the biochemical oxygen demand (BOD) removal was 90 ± 2% and the chemical oxygen demand (COD) removal was 75 ± 9%. In addition, the sludge production was 0.06 g-volatile suspended solids (VSS)/g-COD removed at a hydraulic retention time of only 0.63 h. The electric energy consumption was low at 0.40 kWh/kg-COD removed (0.058 kWh/m3-wastewater treated). CONCLUSIONS: The MECs with the stacked electrode design successfully enhanced the electric current generation. The high OLR is important to maintain the high electric current. The organics were removed rapidly and the total suspended solids (TSS) and VSS were reduced substantially in the continuous-flow MEC system. Therefore, the MECs with the stacked electrode design can be used for the rapid and low-sludge treatment of domestic wastewater.
RESUMEN
The utilization of propionic, n-butyric, and isobutyric acids in microbial electrolysis cells (MECs) was examined by monitoring individual short-chain fatty acid concentration and using electrochemical techniques, such as linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS). When n-butyric or isobutyric acid was provided as a single substrate, acetic acid was consistently observed in experiments, indicating that acetic acid was produced as a byproduct and utilized by exoelectrogenic bacteria as an additional substrate in MECs. When isobutyric acid was given as a sole substrate, the applied potential governed the electric current (i.e., rate of substrate utilization). In addition, the coulombic efficiency was substantially high (90%), indicating direct utilization of isobutyric acid by exoelectrogenic bacteria. However, the coulombic efficiency was relatively low (30-60%) when n-butyric acid was provided as a sole substrate. In another experiment, the magnitude of electric current was more dependent on the concentration of acetic acid than that of other short-chain fatty acids. In the EIS analysis, the exchange current was found to be a more reliable indicator of substrate favorability than the charge transfer resistance.
Asunto(s)
Técnicas Electroquímicas , Ácidos Grasos Volátiles , Ácido Acético , Bacterias , Electricidad , Electrólisis , IsobutiratosRESUMEN
BACKGROUND: Microbial electrolysis cells (MECs) use bioelectrochemical reactions to remove organic contaminants at the bioanode and produce hydrogen gas at the cathode. High local pH conditions near the cathode can also be utilized to produce struvite from nutrient-rich wastewater. This beneficial aspect was investigated using lab-scale MECs fed with dewatering centrate collected at a local wastewater treatment plant. The main objective was to improve phosphorus recovery by examining various cathode configurations and electric current conditions. RESULTS: The stainless steel mesh (SSM) cathode was relatively inefficient to achieve complete phosphorus recovery because struvite crystals were smaller (a few to tens of micrometers) than the open space between mesh wires (80 µm). As a result, the use of multiple pieces of SSM also showed a limited improvement in the phosphorus recovery up to only 68% with 5 SSM pieces. Readily available organic substrates were not sufficient in the dewatering centrate, resulting in relatively low electric current density (mostly below 0.2 A/m2). The slow electrode reaction did not provide sufficiently high pH conditions near the cathode for complete recovery of phosphorus as struvite. Based on these findings, additional experiments were conducted using stainless steel foil (SSF) as the cathode and acetate (12 mM) as an additional organic substrate for exoelectrogens at the bioanode. With the high electric current (>2 A/m2), a thick layer of struvite crystals was formed on the SSF cathode. The phosphorus recovery increased to 96% with the increasing MEC operation time from 1 to 7 days. With the high phosphorus recovery, estimated energy requirement was relatively low at 13.8 kWh (with acetate) and 0.30 kWh (without acetate) to produce 1 kg struvite from dewatering centrate. CONCLUSIONS: For efficient phosphorus recovery from real wastewater, a foil-type cathode is recommended to avoid potential losses of small struvite crystals. Also, presence of readily available organic substrates is important to maintain high electric current and establish high local pH conditions near the cathode. Struvite precipitation was relatively slow, requiring 7 days for nearly complete removal (92%) and recovery (96%). Future studies need to focus on shortening the time requirement.
RESUMEN
Cadmium is a toxic heavy metal, causing serious environmental and human health problems. Conventional methods for removing cadmium from wastewater are expensive and inefficient for low concentrations. Microbial electrolysis cells (MECs) can simultaneously treat wastewater, produce hydrogen gas, and remove heavy metals with low energy requirements. Lab-scale MECs were operated to remove cadmium under various electric conditions: applied voltages of 0.4, 0.6, 0.8, and 1.0 V; and a fixed cathode potential of -1.0 V vs. Ag/AgCl. Regardless of the electric condition, rapid removal of cadmium was demonstrated (50-67% in 24 h); however, cadmium concentration in solution increased after the electric current dropped with depleted organic substrate under applied voltage conditions. For the fixed cathode potential, the electric current was maintained even after substrate depletion and thus cadmium concentration did not increase. These results can be explained by three different removal mechanisms: cathodic reduction; Cd(OH)2 precipitation; and CdCO3 precipitation. When the current decreased with depleted substrates, local pH at the cathode was no longer high due to slowed hydrogen evolution reaction (2H(+)+2e(-)âH2); thus, the precipitated Cd(OH)2 and CdCO3 started dissolving. To prevent their dissolution, sufficient organic substrates should be provided when MECs are used for cadmium removal.
Asunto(s)
Fuentes de Energía Bioeléctrica , Cadmio/química , Contaminantes Químicos del Agua/química , Precipitación Química , Electrodos , Electrólisis , Concentración de Iones de Hidrógeno , Oxidación-Reducción , Eliminación de Residuos Líquidos/métodosRESUMEN
In conventional wastewater treatment, waste sludge management and disposal contribute the major cost for wastewater treatment. Bioelectrochemical systems, as a potential alternative for future wastewater treatment and resources recovery, are expected to produce small amounts of waste sludge because exoelectrogenic bacteria grow on anaerobic respiration and form highly populated biofilms on bioanode surfaces. While waste sludge production is governed by the yield and decay coefficient, none of previous studies have quantified these kinetic constants for exoelectrogenic bacteria. For yield coefficient estimation, we modified McCarty's free energy-based model by using the bioanode potential for the free energy of the electron acceptor reaction. The estimated true yield coefficient ranged 0.1 to 0.3 g-VSS (volatile suspended solids) g-COD(-1) (chemical oxygen demand), which is similar to that of most anaerobic microorganisms. The yield coefficient was sensitively affected by the bioanode potential and pH while the substrate and bicarbonate concentrations had relatively minor effects on the yield coefficient. In lab-scale experiments using microbial electrolysis cells, the observed yield coefficient (including the effect of cell decay) was found to be 0.020 ± 0.008 g-VSS g-COD(-1), which is an order of magnitude smaller than the theoretical estimation. Based on the difference between the theoretical and experimental results, the decay coefficient was approximated to be 0.013 ± 0.002 d(-1). These findings indicate that bioelectrochemical systems have potential for future wastewater treatment with reduced waste sludge as well as for resources recovery. Also, the found kinetic information will allow accurate estimation of wastewater treatment performance in bioelectrochemical systems.
Asunto(s)
Bacterias/metabolismo , Fuentes de Energía Bioeléctrica , Modelos Teóricos , Aguas del Alcantarillado/química , Aguas Residuales/química , Análisis de la Demanda Biológica de Oxígeno , Reactores Biológicos , Electrodos , Concentración de Iones de Hidrógeno , Cinética , Eliminación de Residuos Líquidos/métodosRESUMEN
This study examined the effects of the microbial electrolysis cell (MEC) reactions on anaerobic digestion of waste activated sludge from municipal wastewater treatment under ambient temperature conditions (22-23 °C). Two lab-scale digesters, a control anaerobic digester and an electrically-assisted digester (EAD - equipped with a MEC bioanode and cathode) were operated under three solids retention times (SRT = 7, 10 and 14 days) at 22.5 ± 0.5 °C. A numerical model was also built by including the MEC electrode reactions in Anaerobic Digestion Model No.1. In experiments, the EAD showed reduced concentration of acetic acid, propionic acid, n-butyric acid and iso-butyric acid. This improved performance of the EAD is thought to be achieved by direct oxidation of the short-chain fatty acids at the bioanode as well as indirect contribution of low acetic acid concentration to enhancing beta-oxidation. The VSS and COD removal was consistently higher in the EAD by 5-10% compared to the control digester for all SRT conditions at 22.5 ± 0.5 °C. When compared to mathematical model results, this additional COD removal in the EAD was equivalent to that which would be achieved with conventional digesters at mesophilic temperatures. The magnitude of electric current in the EAD was governed by the organic loading rate while conductivity and acetic acid concentration showed negligible effects on current generation. Very high methane content (â¼95%) in the biogas from both the EAD and control digester implies that the waste activated sludge contained large amounts of lipids and other complex polymeric substances compared to primary sludge.
Asunto(s)
Bacterias/metabolismo , Reactores Biológicos/microbiología , Aguas del Alcantarillado/análisis , Temperatura , Eliminación de Residuos Líquidos/métodos , Biocombustibles/análisis , Electrólisis , Metano/análisis , Modelos TeóricosRESUMEN
Nutrients can be recovered from source separated human urine; however, nutrient reconcentration (i.e., volume reduction of collected urine) requires energy-intensive treatment processes, making it practically difficult to utilize human urine. In this study, energy-efficient nutrient reconcentration was demonstrated using ion exchange membranes (IEMs) in a microbial electrolysis cell (MEC) where substrate oxidation at the MEC anode provides energy for the separation of nutrient ions (e.g., NH4(+), HPO4(2-)). The rate of nutrient separation was magnified with increasing number of IEM pairs and electric voltage application (Eap). Ammonia and phosphate were reconcentrated from diluted human urine by a factor of up to 4.5 and 3.0, respectively (Eap = 1.2 V; 3-IEM pairs). The concentrating factor increased with increasing degrees of volume reduction, but it remained stationary when the volume ratio between the diluate (urine solution that is diluted in the IEM stack) and concentrate (urine solution that is reconcentrated) was 6 or greater. The energy requirement normalized by the mass of nutrient reconcentrated was 6.48 MJ/kg-N (1.80 kWh/kg-N) and 117.6 MJ/kg-P (32.7 kWh/kg-P). In addition to nutrient separation, the examined MEC reactor with three IEM pairs showed 54% removal of COD (chemical oxygen demand) in 47-hr batch operation. The high sulfate concentration in human urine resulted in substantial growth of both of acetate-oxidizing and H2-oxidizing sulfate reducing bacteria, greatly diminishing the energy recovery and Coulombic efficiency. However, the high microbial activity of sulfate reducing bacteria hardly affected the rate of nutrient reconcentration. With the capability to reconcentrate nutrients at a minimal energy consumption and simultaneous COD removal, the examined bioelectrochemical treatment method with an IEM application has a potential for practical nutrient recovery and sustainable treatment of source-separated human urine.