Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 423
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell ; 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37824826

RESUMEN

Model species continue to underpin groundbreaking plant science research. At the same time, the phylogenetic resolution of the land plant Tree of Life continues to improve. The intersection of these two research paths creates a unique opportunity to further extend the usefulness of model species across larger taxonomic groups. Here we promote the utility of the Arabidopsis thaliana model species, especially the ability to connect its genetic and functional resources, to species across the entire Brassicales order. We focus on the utility of using genomics and phylogenomics to bridge the evolution and diversification of several traits across the Brassicales to the resources in Arabidopsis, thereby extending scope from a model species by establishing a "model clade". These Brassicales-wide traits are discussed in the context of both the model species Arabidopsis thaliana and the family Brassicaceae. We promote the utility of such a "model clade" and make suggestions for building global networks to support future studies in the model order Brassicales.

2.
Plant J ; 113(2): 246-261, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36424891

RESUMEN

Sinapis alba and Sinapis arvensis are mustard crops within the Brassiceae tribe of the Brassicaceae family, and represent an important genetic resource for crop improvement. We performed the de novo assembly of Brassica nigra, S. alba, and S. arvensis, and conducted comparative genomics to investigate the pattern of genomic evolution since an ancient whole-genome triplication event. Both Sinapis species retained evidence of the Brassiceae whole-genome triplication approximately 20.5 million years ago (Mya), with subgenome dominance observed in gene density, gene expression, and selective constraint. While S. alba diverged from the ancestor of Brassica and Raphanus at approximately 12.5 Mya, the divergence time of S. arvensis and B. nigra was approximately 6.5 Mya. S. arvensis and B. nigra had greater collinearity compared with their relationship to either Brassica rapa or Brassica oleracea. Two chromosomes of S. alba (Sal03 and Sal08) were completely collinear with two ancestral chromosomes proposed in the Ancestral Crucifer Karyotype (ACK) genomic block model, the first time this has been observed in the Brassiceae. These results are consistent with S. alba representing a relatively ancient lineage of the species evolved from the common ancestor of tribe Brassiceae, and suggest that the phylogeny of the Brassica and Sinapis genera requires some revision. Our study provides new insights into the genome evolution and phylogenetic relationships of Brassiceae and provides genomic information for genetic improvement of these plants.


Asunto(s)
Brassica rapa , Sinapis , Sinapis/genética , Filogenia , Planta de la Mostaza/genética , Brassica rapa/genética , Genoma de Planta/genética
3.
J Am Chem Soc ; 146(5): 2977-2985, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38284994

RESUMEN

The recently surged halide-based solid electrolytes (SEs) are great candidates for high-performance all-solid-state batteries (ASSBs), due to their decent ionic conductivity, wide electrochemical stability window, and good compatibility with high-voltage oxide cathodes. In contrast to the crystalline phases in halide SEs, amorphous components are rarely understood but play an important role in Li-ion conduction. Here, we reveal that the presence of amorphous component is common in halide-based SEs that are prepared via mechanochemical method. The fast Li-ion migration is found to be associated with the local chemistry of the amorphous proportion. Taking Zr-based halide SEs as an example, the amorphization process can be regulated by incorporating O, resulting in the formation of corner-sharing Zr-O/Cl polyhedrons. This structural configuration has been confirmed through X-ray absorption spectroscopy, pair distribution function analyses, and Reverse Monte Carlo modeling. The unique structure significantly reduces the energy barriers for Li-ion transport. As a result, an enhanced ionic conductivity of (1.35 ± 0.07) × 10-3 S cm-1 at 25 °C can be achieved for amorphous Li3ZrCl4O1.5. In addition to the improved ionic conductivity, amorphization of Zr-based halide SEs via incorporation of O leads to good mechanical deformability and promising electrochemical performance. These findings provide deep insights into the rational design of desirable halide SEs for high-performance ASSBs.

4.
Nucleic Acids Res ; 50(D1): D1432-D1441, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34755871

RESUMEN

The Brassicaceae Database (BRAD version 3.0, BRAD V3.0; http://brassicadb.cn) has evolved from the former Brassica Database (BRAD V2.0), and represents an important community portal hosting genome information for multiple Brassica and related Brassicaceae plant species. Since the last update in 2015, the complex genomes of numerous Brassicaceae species have been decoded, accompanied by many omics datasets. To provide an up-to-date service, we report here a major upgrade of the portal. The Model-View-ViewModel (MVVM) framework of BRAD has been re-engineered to enable easy and sustainable maintenance of the database. The collection of genomes has been increased to 26 species, along with optimization of the user interface. Features of the previous version have been retained, with additional new tools for exploring syntenic genes, gene expression and variation data. In the 'Syntenic Gene @ Subgenome' module, we added features to view the sequence alignment and phylogenetic relationships of syntenic genes. New modules include 'MicroSynteny' for viewing synteny of selected fragment pairs, and 'Polymorph' for retrieval of variation data. The updated BRAD provides a substantial expansion of genomic data and a comprehensive improvement of the service available to the Brassicaceae research community.


Asunto(s)
Brassicaceae/clasificación , Bases de Datos Genéticas , Genómica , Brassicaceae/genética , Genoma de Planta/genética , Filogenia , Sintenía/genética
5.
Artículo en Inglés | MEDLINE | ID: mdl-38642878

RESUMEN

BACKGROUND: Managing persistent elbow instability and chronic dislocations presents challenges despite traditional treatments. Supplementary methods like immobilization and various fixations, though common, can carry high complication rates. This study assesses the efficacy of bridge plating in treating complex elbow instability through a retrospective review of patients. Data on characteristics, treatment duration, range of motion, complications, and evaluation scores were analyzed, providing insights into outcomes complications associated with bridge plating. RESULTS: Eleven patients were reviewed at an average follow-up of 80 ± 68 weeks. postoperatively. The average age was 53±14 years and there were 5 females and 6 males. The average BMI was 38. Bridge plating was used for a spectrum of complex elbow injuries. The average time from injury to bridge plating in acute cases was 29±19 days and 344±381 days in chronic cases. The average duration of bridge plating was 121 ± 72 days. At the time of plate removal, mean intraoperative elbow motion was extension 58±12°, flexion 107±14°, supination 66±23° and pronation 60±26°. At the latest follow-up visit, average elbow motion was extension 37±22°, Flexion 127± 17°, supination 72±15° and pronation 63±18°. There were 6 complications (55%); heterotopic ossification, ulnar neuropathy, wound failure over the plate in a thin patient, an ulnar shaft peri-prosthetic fracture due to a seizure induced fall, and elbow subluxation despite bridge plate fixation. One patient sustained a fracture of a 3.5mm locking bridge plate. One patient required a contracture release for persistent stiffness. Four of these complications can be directly attributed to the use of the bridge plate (36%). At final follow-up, the average patient rated elbow evaluation score was 34, with 0 indicating no pain and disability. The average single assessment numeric evaluation score was 66% for the 8 patients who had this available, with 100% being the best possible attainable score. CONCLUSION: Bridge plating effectively maintains joint reduction in selected complex elbow instability cases. However, patients with bridge plates often require a second surgery for removal and experience high rates of general complications due to the complexity of their condition.

6.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38542283

RESUMEN

The global expansion of rapeseed seed quality has been focused on maintaining glucosinolate (GSL) and erucic acid (EA) contents. However, the influence of seed GSL and EA contents on the germination process under drought stress remains poorly understood. Herein, 114 rapeseed accessions were divided into four groups based on GSL and EA contents to investigate their performance during seed imbibition under drought stress. Our results revealed significant variations in seed germination-related traits, particularly with higher GSL and EA, which exhibited higher germination % (G%) and lower mean germination time (MGT) under drought stress conditions. Moreover, osmoregulation, enzymatic system and hormonal regulation were improved in high GSL and high EA (HGHE) versus low GSL and low EA (LGLE) seeds, indicating the essential protective role of GSL and EA during the germination process in response to drought stress. The transcriptional regulation mechanism for coordinating GSL-EA-related pathways in response to drought stress during seed imbibition was found to involve the differential expression of sugar metabolism-, antioxidant-, and hormone-related genes with higher enrichment in HGHE compared to LGLE seeds. GO enrichment analysis showed higher variations in transcription regulator activity and DNA-binding transcription factors, as well as ATP and microtubule motor activity in GSL-EA-related pathways. Furthermore, KEGG analysis identified cellular processes, environmental information processing, and metabolism categories, with varied gene participation between GSL, EA and GSL-EA-related pathways. For further clarification, QY7 (LGLE) seeds were primed with different concentrations of GSL and EA under drought stress conditions. The results showed that 200 µmol/L of GSL and 400 µmol/L of EA significantly improved G%, MGT, and seedling fresh weight, besides regulating stress and fatty acid responsive genes during the seed germination process under drought stress conditions. Conclusively, exogenous application of GSL and EA is considered a promising method for enhancing the drought tolerance of LGLE seeds. Furthermore, the current investigation could provide a theoretical basis of GSL and EA roles and their underlying mechanisms in stress tolerance during the germination process.


Asunto(s)
Brassica napus , Brassica rapa , Ácidos Erucicos , Germinación/genética , Brassica napus/genética , Glucosinolatos/metabolismo , Sequías , Semillas/genética , Semillas/metabolismo , Brassica rapa/genética , Perfilación de la Expresión Génica
7.
Neuroimage ; 265: 119808, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36513291

RESUMEN

Individuals differ in their functional connectome, which can be demonstrated using a "fingerprinting" analysis in which the connectome from an individual in one dataset is used to identify the same person from an independent dataset. Recently, the origin of these fingerprints has been studied by examining if they are present in infants. The results have varied considerably, with identification rates from 10 to 90%. When fingerprinting has been performed by splitting a single imaging session into two split-sessions (within session), identification rates were higher than when two full-sessions (between sessions) were compared. This study examined whether a methodological difference could account for this variation. It was hypothesized that the infant's exact head position in the head coil may affect the measured connectome, due to the gradual inhomogeneity of signal-to-noise in phased-array coils and the breadth of possible positions for a small infant head in a head coil. This study examined the impact of this using resting state functional MRI data from the Developing Human Connectome Project second release. Using functional timeseries, fingerprinting identification was high (84-91%) within a session while between sessions it was low (7%).Using N = 416 infants' head positions, a map of the average signal-to-noise across the physical volume of the head coil was calculated and was used (independent group of 44 infants with two scan sessions) to demonstrate a significant relationship between head position in the head coil and functional connectivity. Using only the head positions (signal-to-noise values extrapolated from the group average map) of the independent group of 44 infants, high identification success was achieved across split-sessions (within session) but not full-sessions (between sessions). Using a model examining factors influencing the stability of the functional connectome, head position was seen as the strongest of the explanatory variables. We conclude within-session fingerprinting is affected by head position and future infant functional fingerprint analyses must use a different strategy or account for this impact.


Asunto(s)
Conectoma , Humanos , Lactante , Conectoma/métodos , Encéfalo , Imagen por Resonancia Magnética/métodos
8.
J Am Chem Soc ; 145(37): 20248-20260, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37680056

RESUMEN

As one of the promising sustainable energy storage systems, academic research on rechargeable Zn-air batteries has recently been rejuvenated following development of various 3d-metal electrocatalysts and identification of their dynamic reconstruction toward (oxy)hydroxide, but performance disparity among catalysts remains unexplained. Here, this uncertainty is addressed through investigating the anionic contribution to regulate dynamic reconstruction and battery behavior of 3d-metal selenides. Comparing with the alloy counterpart, anionic chemistry is identified as a performance promoter and further exploited to empower Zn-air batteries. Based on theoretical modeling, Se-resolved operando spectroscopy, and advanced electron microscopy, a three-step Se evolution is established, consisting of oxidation, leaching, and recoordination. The process generates an amorphous (oxy)hydroxide with O-sharing bonded Se motifs that triggers charge redistribution at metal sites and lowers the energetic barrier of their current-driven redox. A pervasive concept of Se back-feeding is then proposed to describe the underlying chemistry for 3d-metal selenides with diversity in crystals or compositions, and the feasibility to fine-tune their behavior is also presented.

9.
J Am Chem Soc ; 145(4): 2183-2194, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36583711

RESUMEN

The revival of ternary halides Li-M-X (M = Y, In, Zr, etc.; X = F, Cl, Br) as solid-state electrolytes (SSEs) shows promise in realizing practical solid-state batteries due to their direct compatibility toward high-voltage cathodes and favorable room-temperature ionic conductivities. Most of the reported superionic halide SSEs have a structural pattern of [MCl6]x- octahedra and generate a tetrahedron-assisted Li+ ion diffusion pathway. Here, we report a new class of zeolite-like halide frameworks, SmCl3, for example, in which 1-dimensional channels are enclosed by [SmCl9]6- tricapped trigonal prisms to provide a short jumping distance of 2.08 Å between two octahedra for Li+ ion hopping. The fast Li+ diffusion along the channels is verified through ab initio molecular dynamics simulations. Similar to zeolites, the SmCl3 framework can be grafted with halide species to obtain mobile ions without altering the base structure, achieving an ionic conductivity over 10-4 S cm-1 at 30 °C with LiCl as the adsorbent. Moreover, the universality of the interface-bonding behavior and ionic diffusion in a class of framework materials is demonstrated. It is suggested that the ionic conductivity of the MCl3/halide composite (M = La-Gd) is likely in correlation with the ionic conductivity of the grafted halide species, interfacial bonding, and framework composition/dimensions. This work reveals a potential class of halide structures for superionic conductors and opens up a new frontier for constructing zeolite-like frameworks in halide-based materials, which will promote the innovation of superionic conductor design and contribute to a broader selection of halide SSEs.

10.
Ann Bot ; 131(4): 569-583, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-36181516

RESUMEN

BACKGROUND AND AIMS: Brassica napus is one of the most important oilseed crops worldwide. Seed yield of B. napus significantly correlates with the primary root length (PRL). The aims of this study were to identify quantitative trait loci (QTLs) for PRL in B. napus. METHODS: QTL-seq and conventional QTL mapping were jointly used to detect QTLs associated with PRL in a B. napus double haploid (DH) population derived from a cross between 'Tapidor' and 'Ningyou 7'. The identified major locus was confirmed and resolved by an association panel of B. napus and an advanced backcross population. RNA-seq analysis of two long-PRL lines (Tapidor and TN20) and two short-PRL lines (Ningyou 7 and TN77) was performed to identify differentially expressed genes in the primary root underlying the target QTLs. KEY RESULTS: A total of 20 QTLs impacting PRL in B. napus grown at a low phosphorus (P) supply were found by QTL-seq. Eight out of ten QTLs affecting PRL at a low P supply discovered by conventional QTL mapping could be detected by QTL-seq. The locus qPRL-C06 identified by QTL-seq was repeatedly detected at both an optimal P supply and a low P supply by conventional QTL mapping. This major constitutive QTL was further confirmed by regional association mapping. qPRL-C06 was delimited to a 0.77 Mb genomic region on chromosome C06 using an advanced backcross population. A total of 36 candidate genes within qPRL-C06 were identified that showed variations in coding sequences and/or exhibited significant differences in mRNA abundances in primary root between the long-PRL and short-PRL lines, including five genes involved in phytohormone biosynthesis and signaling. CONCLUSIONS: These results both demonstrate the power of the QTL-seq in rapid QTL detection for root traits and will contribute to marker-assisted selective breeding of B. napus cultivars with increased PRL.


Asunto(s)
Brassica napus , Sitios de Carácter Cuantitativo , Sitios de Carácter Cuantitativo/genética , Brassica napus/genética , Mapeo Cromosómico , Fenotipo , Cromosomas , Semillas/genética
11.
Inorg Chem ; 62(38): 15651-15663, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37698893

RESUMEN

In an experiment combining various approaches, a precise examination of a portion of the phase diagram of a CsF-Al2O3 system was carried out up to 40 mol% Al2O3. CsF-Al2O3 solidified mixtures have been investigated using high-field solid-state NMR (133Cs, 27Al, and 19F) spectroscopy and X-ray powder diffraction over a broad range of compositions with synchrotron powder diffraction and Rietveld analysis. A new cesium oxo-fluoro-aluminate, Cs2Al2O3F2, was discovered, prepared, and structurally analyzed by synchrotron diffraction analysis. In addition to Cs2Al2O3F2, we have synthesized the following pure compounds in order to aid in the interpretation of NMR spectra of the solidified samples: CsAlF4, Cs3AlF6, and CsAlO2.

12.
Proc Natl Acad Sci U S A ; 117(26): 15305-15315, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32541052

RESUMEN

Small RNAs are abundant in plant reproductive tissues, especially 24-nucleotide (nt) small interfering RNAs (siRNAs). Most 24-nt siRNAs are dependent on RNA Pol IV and RNA-DEPENDENT RNA POLYMERASE 2 (RDR2) and establish DNA methylation at thousands of genomic loci in a process called RNA-directed DNA methylation (RdDM). In Brassica rapa, RdDM is required in the maternal sporophyte for successful seed development. Here, we demonstrate that a small number of siRNA loci account for over 90% of siRNA expression during B. rapa seed development. These loci exhibit unique characteristics with regard to their copy number and association with genomic features, but they resemble canonical 24-nt siRNA loci in their dependence on RNA Pol IV/RDR2 and role in RdDM. These loci are expressed in ovules before fertilization and in the seed coat, embryo, and endosperm following fertilization. We observed a similar pattern of 24-nt siRNA expression in diverse angiosperms despite rapid sequence evolution at siren loci. In the endosperm, siren siRNAs show a marked maternal bias, and siren expression in maternal sporophytic tissues is required for siren siRNA accumulation. Together, these results demonstrate that seed development occurs under the influence of abundant maternal siRNAs that might be transported to, and function in, filial tissues.


Asunto(s)
Brassica rapa/embriología , Regulación del Desarrollo de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , ARN de Planta , Semillas/crecimiento & desarrollo , Alelos , Arabidopsis/metabolismo , Brassica rapa/genética , Brassica rapa/crecimiento & desarrollo , Brassica rapa/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ARN Interferente Pequeño , Semillas/genética , Semillas/metabolismo
13.
J Shoulder Elbow Surg ; 32(6): 1242-1248, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36907317

RESUMEN

BACKGROUND: Heterotopic ossification is a frequent complication following surgical treatment of elbow trauma. The use of indomethacin to prevent heterotopic ossification is reported in the literature; however, its effectiveness is controversial. The purpose of this randomized, double-blind, placebo-controlled study was to determine whether indomethacin is effective in reducing the incidence and severity of heterotopic ossification after surgical management of elbow trauma. METHODS: Between February 2013 and April 2018, 164 eligible patients were randomized to receive postoperative indomethacin or placebo medication. The primary outcome was the incidence of heterotopic ossification on elbow radiographs at 1-year follow-up. Secondary outcomes included the Patient Rated Elbow Evaluation score, Mayo Elbow Performance Index score, and Disabilities of the Arm, Shoulder and Hand score. Range of motion, complications, and nonunion rates were also obtained. RESULTS: At 1-year follow-up, there was no significant difference in the incidence of heterotopic ossification between the indomethacin group (49%) and the control group (55%) (relative risk, 0.89; P = .52). There were no significant differences in postoperative Patient Rated Elbow Evaluation, Mayo Elbow Performance Index, and Disabilities of the Arm, Shoulder and Hand scores or range of motion (P = .16). The complication rate was 17% in both the treatment and control groups (P > .99). There were no nonunions in either group. CONCLUSION: This Level I study demonstrated that indomethacin prophylaxis against heterotopic ossification in the setting of surgically treated elbow trauma was not significantly different from placebo.


Asunto(s)
Traumatismos del Brazo , Articulación del Codo , Indometacina , Osificación Heterotópica , Humanos , Traumatismos del Brazo/complicaciones , Codo/cirugía , Articulación del Codo/cirugía , Indometacina/administración & dosificación , Indometacina/uso terapéutico , Osificación Heterotópica/prevención & control , Osificación Heterotópica/complicaciones , Rango del Movimiento Articular , Complicaciones Posoperatorias
14.
J Am Chem Soc ; 144(11): 4783-4791, 2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35192369

RESUMEN

Metal-organic frameworks with tailorable coordination chemistry are propitious for regulating catalytic performance and deciphering genuine mechanisms. Herein, a linker compensation strategy is proposed to alter the intermediate adsorption free energy on the Co-Fe zeolitic imidazolate framework (CFZ). This grants zinc-air battery superior high current density capability with a small discharge-charge voltage gap of 0.88 V at 35 mA cm-2 and an hourly fading rate of less than 0.01% for over 500 h. Systematic characterization and theoretical modeling reveal that the performance elevation is closely correlated with the compensation of CFZ unsaturated metal nodes by S-bridging heterogeneous linkers, which exhibit electron-withdrawing characteristic that drives the delocalization of d-orbital electrons. These rearrangements of electronic structures establish a favorable adsorption/desorption pathway for key intermediates (OH*) and a stable coordination environment in bifunctional oxygen electrocatalysis.

15.
Plant Biotechnol J ; 20(7): 1298-1310, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35278263

RESUMEN

Transposable element (TE) is prevalent in plant genomes. However, studies on their impact on phenotypic evolution in crop plants are relatively rare, because systematically identifying TE insertions within a species has been a challenge. Here, we present a novel approach for uncovering TE insertion polymorphisms (TIPs) using pan-genome analysis combined with population-scale resequencing, and we adopt this pipeline to retrieve TIPs in a Brassica rapa germplasm collection. We found that 23% of genes within the reference Chiifu-401-42 genome harbored TIPs. TIPs tended to have large transcriptional effects, including modifying gene expression levels and altering gene structure by introducing new introns. Among 524 diverse accessions, TIPs broadly influenced genes related to traits and acted a crucial role in the domestication of B. rapa morphotypes. As examples, four specific TIP-containing genes were found to be candidates that potentially involved in various climatic conditions, promoting the formation of diverse vegetable crops in B. rapa. Our work reveals the hitherto hidden TIPs implicated in agronomic traits and highlights their widespread utility in studies of crop domestication.


Asunto(s)
Brassica rapa , Variación Biológica Poblacional , Brassica rapa/genética , Elementos Transponibles de ADN/genética , Genoma de Planta/genética , Análisis de Secuencia de ADN
16.
Plant Physiol ; 186(3): 1616-1631, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-33831190

RESUMEN

Magnesium (Mg) and calcium (Ca) are essential mineral nutrients poorly supplied in many human food systems. In grazing livestock, Mg and Ca deficiencies are costly welfare issues. Here, we report a Brassica rapa loss-of-function schengen3 (sgn3) mutant, braA.sgn3.a-1, which accumulates twice as much Mg and a third more Ca in its leaves. We mapped braA.sgn3.a to a single recessive locus using a forward ionomic screen of chemically mutagenized lines with subsequent backcrossing and linked-read sequencing of second back-crossed, second filial generation (BC2F2) segregants. Confocal imaging revealed a disrupted root endodermal diffusion barrier, consistent with SGN3 encoding a receptor-like kinase required for normal formation of Casparian strips, as reported in thale cress (Arabidopsis thaliana). Analysis of the spatial distribution of elements showed elevated extracellular Mg concentrations in leaves of braA.sgn3.a-1, hypothesized to result from preferential export of excessive Mg from cells to ensure suitable cellular concentrations. This work confirms a conserved role of SGN3 in controlling nutrient homeostasis in B. rapa, and reveals mechanisms by which plants are able to deal with perturbed shoot element concentrations resulting from a "leaky" root endodermal barrier. Characterization of variation in leaf Mg and Ca accumulation across a mutagenized population of B. rapa shows promise for using such populations in breeding programs to increase edible concentrations of essential human and animal nutrients.


Asunto(s)
Brassica rapa/genética , Brassica rapa/metabolismo , Calcio/análisis , Calcio/metabolismo , Genes Recesivos , Magnesio/análisis , Magnesio/metabolismo , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo , Mutación , Hojas de la Planta/genética , Hojas de la Planta/metabolismo
17.
Theor Appl Genet ; 135(10): 3469-3483, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35997786

RESUMEN

KEY MESSAGE: We identified two new transposon insertions within the promoter of BnaFT.A2 in addition to an existing 288 bp MITE within the second intron. Each insertion event corresponds to a distinct BnaFT.A2 haplotype and is closely associated with established crop seasonal ecotypes. Florigen, encoded by FLOWERING LOCUS T (FT), plays key roles not only as a flowering hormone, but also a universal growth factor affecting several aspects of plant architecture. In rapeseed, BnaFT.A2 has been revealed as one of the major loci associated with flowering time and different ecotypes. However, it is unclear how allelic variations of BnaFT.A2 affect its function in flowering time regulation and beyond. In this study, we confirmed an existing 288 bp miniature inverted-repeat transposable element (MITE) insertion within the second intron and identified two new insertions within the promoter of BnaFT.A2-a 3971 bp CACTA and a 1079 bp Helitron. Each insertion event corresponds to a distinct BnaFT.A2 haplotype and is closely associated with established crop seasonal ecotypes. These alleles have similar tissue-specific expression patterns but discrete transcriptional patterns tightly associated with rapeseed flowering time and ecotype. RNAi lines and mutants of BnaFT.A2 flowered significantly later than controls. Differentially expressed genes (DEGs), identified in transcriptomic profiling of seedling leaves from two loss-of-function mutants (Bnaft.a2-L1 and Bnaft.a2-L2) compared with controls, indicated significant enrichment for hormone metabolic genes and roles related to plant cell wall synthesis and photosynthesis. Plants with loss-of-function BnaFT.A2 had smaller leaves and lower net photosynthetic rate compared to controls. These findings not only further clarify the genetic basis of flowering time variation and ecotype formation in B. napus, but also provide an additional toolbox for genetic improvement of seasonal adaptation and production.


Asunto(s)
Brassica napus , Brassica rapa , Alelos , Brassica rapa/genética , Elementos Transponibles de ADN , Florigena , Flores/genética , Regulación de la Expresión Génica de las Plantas , Hormonas , Sitios de Carácter Cuantitativo , Estaciones del Año
18.
Inorg Chem ; 61(18): 7017-7025, 2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35467857

RESUMEN

The crystallization in glasses is a paradoxical phenomenon and scarcely investigated. This work explores the non-isothermal crystallization of a multicomponent alumino-borosilicate glass via in situ high-energy synchrotron X-ray diffraction, atomic pair distribution function, and Raman spectroscopy. Results depict the crystallization sequence as Ca3Al2O6 and CaSiO4 followed by LiAlO2 with the final compound formation of Ca3B2O6. These precipitations occur in a narrow temperature range and overlap, resulting in a single exothermic peak in the differential scanning calorimetry thermogram. The concurrent nucleation of Ca3Al2O6 and CaSiO4 is intermediated by their corresponding hydrates, which have dominantly short-range order. Moreover, the crystallization of LiAlO2 and Ca3B2O6 is strongly linked with the changes of structural units during the incubation stage in non-isothermal heating. These findings clarify the crystallization of multicomponent glass, which have been inferred from ex situ reports but never evidenced via in situ studies.

19.
Phys Chem Chem Phys ; 24(40): 24834-24844, 2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36196754

RESUMEN

Synchrotron X-ray total scattering measurements and accompanying pair distribution function (PDF) analyses are an excellent characterization technique to complement both transmission electron microscopy (TEM) and extended X-ray absorption fine structure (EXAFS) spectroscopy methods for detailed structural studies of atom-precise metal clusters. Herein, we study the thermal activation of Au25(SR)18- and Ag25(SR)18- clusters on alumina supports via in situ differential PDF (dPDF) analyses to compare structural changes in the metal clusters upon thermal activation in air. The metal-metal interatomic distances in Au25(SR)18- and Ag25(SR)18- clusters as measured by the dPDF method are comparable with those measured via single-crystal crystallographic and EXAFS methods. Compared to EXAFS analysis, in situ dPDF data can also provide high-temperature, non-element specific, longer range structural information with excellent temporal resolution. TEM and dPDF results show that Ag25(SR)18 systems behave significantly differently than analogous Au25(SR)18 systems upon thermal activation. Atom-precise Au clusters on alumina supports show continuous growth in particle size with increasing activation temperature due to particle coalescence upon thermal deprotection, and grow to an average size of 11.2 ± 2.1 nm for samples thermally activated at 650 °C. Conversely, analogous Ag clusters on alumina supports show particle size growth to mid-sized particles (3.2 ± 0.4 nm) at activation temperatures of 450 °C, beyond which the Ag particles then undergo thermal degradation to give smaller Ag clusters with an average size of 1.4 ± 0.2 nm for samples thermally activated at 650 °C. The significant difference in the behaviours of atom-precise, thiolate-protected Au and Ag clusters upon thermal activation emphasizes the development of distinct activation protocols for different metal cluster systems.

20.
J Hand Surg Am ; 2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36566104

RESUMEN

PURPOSE: Radial head arthroplasty (RHA) is commonly performed to manage comminuted unreconstructible radial head fractures. Although the outcomes of RHA are often satisfactory, revisions are usually considered when pain intensity is higher than expected. Therefore, it is important to investigate the recovery trajectories of patients following RHA over an extended period and the characteristics that may lead to unfavorable outcomes. METHODS: The Patient-Rated Elbow Evaluation (PREE) was used to assess recovery in 94 patients at baseline (within 2-7 days after surgery); 3 and 6 months; and 1, 2, 3, 4, 5, and 8 years after RHA. Lower PREE values indicate lower pain and disability. Latent growth curve analysis was used to determine classes of recovery. The characteristics of the participants in the identified recovery trajectory classes were then compared. RESULTS: Two distinct recovery trajectories were identified: optimal and suboptimal recoveries. Most patients (84%) belonged to the optimal recovery class, which exhibited significantly lower baseline PREE scores, a consistent pattern of recovery, and a relatively high rate of change. Patients in the suboptimal recovery class (16%) had significantly higher baseline PREE scores and continued to experience relatively higher levels of pain and disability for the duration of the study; their rate of recovery was much slower. Patients belonging to the 2 recovery trajectories did not differ based on age or sex. Although we had low power in other variables, a qualitative exploration showed that the number of current or previous smokers was higher in the suboptimal recovery trajectory class. CONCLUSIONS: In this longitudinal cohort study, we show that high postsurgical pain and disability, and potentially smoking, may adversely affect the recovery trajectory following RHA. Clinicians are recommended to assess these potential factors while considering revision surgeries. TYPE OF STUDY/LEVEL OF EVIDENCE: Prognostic IV.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA