Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Nano Lett ; 21(1): 833-839, 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33372510

RESUMEN

Graphene has been studied extensively for use in flexible electronics as ultrasensitive and wide-area strain sensors. Many sensors demonstrated so far rely on graphene networks, such that the spatial resolution is compromised, and they are unable to measure strain variations on a fine scale such as those resulting from substrate/interface failure. In this study, mono-/few-layer graphene are demonstrated to be good candidates for strain sensing with high spatial resolution to evaluate features <100 nm. The fundamentals of strain sensing-interaction with the target-have been discussed to shed light on the sensitivity and durability for future sensor fabrication. The proof-of-concept strain sensors have been shown to be able to monitor different states, e.g., the initiation and evolution, of crazes. The analysis also leads to the evaluation of interfacial energy and realization of high local strain in graphene that is applicable for other 2D materials for ultrasensitive strain sensing and bandgap opening applications.

2.
Nanotechnology ; 32(20): 205601, 2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-33494085

RESUMEN

The traditional freeze-casting route for processing graphene-based aerogels is generally restricted to aqueously dispersed flakes of graphene oxide (GO) and post-processing reduction treatments, which brings restrictions to the aerogels electrical properties. In this work, we report a versatile aqueous processing route that uses the ability of GO todisperse graphene nanoplatelets (GNP) to produce rGO-GNP lamellar aerogels via unidirectional freeze-casting. In order to optimise the properties of the aerogel, GO-GNP dispersions were partially reduced by L-ascorbic acid prior to freeze-casting to tune the carbon and oxygen (C/O) ratio. The aerogels were then heat treated after casting to fully reduce the GO. The chemical reduction time was found to control the microstructure of the resulting aeorgels and thus to tune their electrical and mechanical properties. An rGO-GNP lamellar aerogel with density of 20.8 ± 0.8 mg cm-3 reducing using a reduction of 60 min achieved an electrical conductivity of 42.3 S m-1. On the other hand, an optimal reduction time of 35 min led to an aerogel with compressive modulus of 0.51 ±0.06 MPa at a density of 23.2 ± 0.7 mg cm-3, revealing a compromise between the tuning of electrical and mechanical properties. We show the present processing route can also be easily applied to produce lamellar aerogels on other graphene-based materials such as electrochemically exfoliated graphene.

3.
Nano Lett ; 20(7): 5346-5352, 2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32551694

RESUMEN

Interactive clothing requires sensing and display functionalities to be embedded on textiles. Despite the significant progress of electronic textiles, the integration of optoelectronic materials on fabrics remains as an outstanding challenge. In this Letter, using the electro-optical tunability of graphene, we report adaptive optical textiles with electrically controlled reflectivity and emissivity covering the infrared and near-infrared wavelengths. We achieve electro-optical modulation by reversible intercalation of ions into graphene layers laminated on fabrics. We demonstrate a new class of infrared textile devices including display, yarn, and stretchable devices using natural and synthetic textiles. To show the promise of our approach, we fabricated an active device directly onto a t-shirt, which enables long-wavelength infrared communication via modulation of the thermal radiation from the human body. The results presented here provide complementary technologies which could leverage the ubiquitous use of functional textiles.

4.
Soft Matter ; 16(5): 1270-1278, 2020 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-31913394

RESUMEN

Morphing materials, also known as smart materials are attracting increasing attention as sensors, actuators and in soft robotic applications. In this work bilayered morphing composites were created by exploiting the thiol-ene photoclick reaction via maskless digital light processing (DLP). This technique allows for gradients and patterns of near infrared (nIR)-triggered materials to be efficiently crosslinked to substrates, with suitable interfacial adhesion to realise complex morphing. Photo-thermally responsive composites are produced by DLP patterning of reduced graphene oxide-filled chitosan-methacrylamide (rGO-chitosan-MA) on thiolated polydimethylsiloxane substrates via thiol-ene photoclick reaction. Morphing composites with parallel striped patterns and box-like hinges were printed via DLP to realise self-rolling and self-folding behaviours. Bilayered structures, with gradient rGO-chitosan-MA thicknesses (2-8 µm), were produced by controlling the light intensity from the DLP device. These gradient bilayered structures enable photothermal-triggered gradient bending and morphing exemplified here by a "walking worm" and a kirigami-inspired "opening flower". Thermo-mechanical calculations were performed to estimate bending angles, and finite element analysis applied to simulate self-folding and bending. The difference between simulation and measurements is in the range 0.4-7.6%, giving confidence to the assumptions and simplifications applied in design.

5.
Phys Chem Chem Phys ; 22(4): 2176-2180, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-31912811

RESUMEN

Thin Mo2C hexagonal defects precipitate in CVD graphene when Mo crucibles are engaged to hold the liquid copper substrate, while these defects disappear when W crucibles are present. These defects have been identified as the thin precipitates of Mo2C. The growth mechanism of the Mo2C defects is demonstrated through thermodynamic calculations. This can be beneficial in graphene defect engineering through the vapour phase transport of the volatile MoO3 phase.

6.
Soft Matter ; 14(29): 6013-6023, 2018 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-29974111

RESUMEN

The effects of surfactants of different nature (anionic, cationic and non-ionic) and chain length on the morphology, microstructure, thermal stability and electrical resistivity of liquid exfoliated graphene (G) were investigated. Microscopic (SEM and AFM) observations revealed that the thickness of G in the dispersions depended on the surfactant nature: non-ionic surfactants rendered the highest level of exfoliation, whilst dispersions in the cationic ones exhibited fully-covered thicker sheets; the flake thickness increased with increasing surfactant chain length. X-ray diffraction studies indicated an increased interlamellar G spacing with increasing surfactant content. Raman spectra showed an increase in the ID/IG ratio with decreasing G loading. Larger upshifts of the G, 2D and D + G bands were found with increasing surfactant concentration, particularly for dispersions in the cationic surfactants. For the same G/surfactant weight ratio, the electrical resistivity of the dispersions followed the order: cationic > non-ionic > anionic, consistent with the amount of surfactant adsorbed onto G calculated via TGA. It is demonstrated herein that the thermal and electrical properties of liquid exfoliated G can be tuned by varying the surfactant concentration, nature and chain length, which is of great importance for numerous applications like solar power harvesting, high-temperature devices and flexible nanoelectronics.

7.
J Am Chem Soc ; 139(48): 17446-17456, 2017 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-29090921

RESUMEN

Conventional chemical oxidation routes for the production of graphene oxide (GO), such as the Hummers' method, suffer from environmental and safety issues due to their use of hazardous and explosive chemicals. These issues are addressed by electrochemical oxidation methods, but such approaches typically have a low yield due to inhomogeneous oxidation. Herein we report a two-step electrochemical intercalation and oxidation approach to produce GO on the large laboratory scale (tens of grams) comprising (1) forming a stage 1 graphite intercalation compound (GIC) in concentrated sulfuric acid and (2) oxidizing and exfoliating the stage 1 GIC in an aqueous solution of 0.1 M ammonium sulfate. This two-step approach leads to GO with a high yield (>70 wt %), good quality (>90%, monolayer), and reasonable oxygen content (17.7 at. %). Moreover, the as-produced GO can be subsequently deeply reduced (3.2 at. % oxygen; C/O ratio 30.2) to yield highly conductive (54 600 S m-1) reduced GO. Electrochemical capacitors based on the reduced GO showed an ultrahigh rate capability of up to 10 V s-1 due to this high conductivity.

8.
Nano Lett ; 16(3): 2023-32, 2016 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-26840510

RESUMEN

Two-dimensional crystals are promising building blocks for the new generation of energy materials due to their low volume, high surface area, and high transparency. Electrochemical behavior of these crystals determines their performance in applications such as energy storage/conversion, sensing, and catalysis. Nevertheless, the electrochemistry of an isolated monolayer of molybdenum disulfide, which is one of the most promising semiconducting crystals, has not been achieved to date. We report here on photoelectrochemical properties of pristine monolayer and few-layer basal plane MoS2, namely the electron transfer kinetics and electric double-layer capacitance, supported by an extensive physical and chemical characterization. This enables a comparative qualitative correlation among the electrochemical data, MoS2 structure, and external illumination, although the absolute magnitudes of the electron transfer and capacitance are specific to the redox mediator and electrolyte used in these measurements ([Ru(NH3)6](3+/2+) and LiCl, respectively). Our work shows a strong dependence of the electrochemical properties on the number of MoS2 layers and illumination intensity and proves that an effective interlayer charge transport occurs in bulk MoS2. This highlights the exciting opportunities for tuning of the electrochemical performance of MoS2 through modification of its structure, external environment, and illumination.

9.
Langmuir ; 32(44): 11448-11455, 2016 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-27760294

RESUMEN

A study of the differences among the capacitances of freshly exfoliated highly ordered pyrolytic graphite (HOPG, sample denoted FEG), HOPG aged in air (denoted AAG), and HOPG aged in an inert atmosphere (hereafter IAG) is presented in this work. The FEG is found to be more hydrophilic than AAG and IAG because the aqueous electrolyte contact angle (CA) increases from 61.7° to 72.5° and 81.8° after aging in Ar and air, respectively. Electrochemical impedance spectroscopy shows the FEG has an intrinsic capacitance (6.0 µF cm-2 at the potential of minimum capacitance) higher than those of AAG (4.3 µF cm-2) and IAG (4.7 µF cm-2). The observed changes in the electrochemical response are correlated with spectroscopic characterization (Raman spectroscopy and X-ray photoelectron spectroscopy), which show that the surface of HOPG was doped or contaminated after exposure to air. Taken together, these changes upon atmospheric exposure are attributed to oxygen molecule, moisture, and airborne organic contaminations: high-vacuum annealing was applied for the removal of the adsorbed contaminants. It was found that annealing the aged sample at 500 °C leads to partial removal of the contaminants, as gauged by the recovery of the measured capacitance. To the best of our knowledge, this is first study of the effect of the airborne contaminants on the capacitance of carbon-based materials.

10.
Soft Matter ; 12(33): 6985-94, 2016 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-27476758

RESUMEN

Microgels (MGs) are crosslinked polymer particles that swell when the pH approaches the pKa of the constituent polymer. Our earlier work showed that concentrated MG dispersions can be covalently interlinked to form macroscopic hydrogels, which are termed doubly crosslinked microgels (DX MGs). Here, we study for the first time the effects of intra-MG crosslinking on the swelling of the MGs and the mechanical properties of the DX MGs. The MGs were synthesised by emulsion copolymerisation of ethyl acrylate (EA) or methacrylic acid (MAA) and divinylbenzene (DVB). The latter was a crosslinking monomer. For comparison, MGs were prepared where DVB was replaced by either 1,4-butanediol diacrylate (BDDA) or a 1 : 1 mixture of both DVB and BDDA. The MG swelling behaviours were studied by dynamic light scattering; whereas, the DX MG mechanical properties were studied by dynamic rheology and uniaxial compression measurements. Inclusion of DVB within the MGs resulted in both highly swelling MGs and highly ductile DX MGs. The average strain-at-break value for the DVB-containing DX MGs was 76% which represents the highest value yet reported for a DX MG prepared using commercially available monomers. It was also shown that good tuneability of the DX MG properties could be obtained simply by controlling the DVB and BDDA contents within the MG particles. Analysis of the swelling and compression data enabled relationships between the volume-swelling ratio of the MGs and either the modulus or strain-at-break values for the DX MGs. These relationships also applied to a DVB-free system prepared with a low BDDA content. An interesting conclusion from this study is that the DX MGs can be thought of mechanically as macroscopic MG particles. The results of this study provide design tools for improving DX MG ductility and hence increasing the range of potential applications for this new class of hydrogel.

11.
Soft Matter ; 12(18): 4142-53, 2016 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-27067636

RESUMEN

Conductive gel composites are attracting considerable attention because of their interesting electrical and mechanical properties. Here, we report conductive gel composites constructed using only colloidal particles as building blocks. The composites were prepared from mixed dispersions of vinyl-functionalised pH-responsive microgel particles (MGs) and multi-walled carbon nanotubes (CNTs). MGs are crosslinked pH-responsive polymer colloid particles that swell when the pH approaches the pKa of the particles. Two MG systems were used which contained ethyl acrylate (EA) or methyl acrylate (MA) and around 30 mol% of methacrylic acid (MAA). The MA-based MG is a new pH-responsive system. The mixed MG/CNT dispersions formed thixotropic physical gels. Those gels were transformed into covalent interlinked electrically conducting doubly crosslinked microgel/CNT composites (DX MG/CNT) by free-radical reaction. The MGs provided the dual roles of dispersant for the CNTs and macro-crosslinker for the composite. TEM data showed evidence for strong attraction between the MG and the CNTs which facilitated CNT dispersion. An SEM study confirmed CNT dispersion throughout the composites. The mechanical properties of the composites were studied using dynamic rheology and uniaxial compression measurements. Surprisingly, both the ductility and the modulus of the gel composites increased with increasing CNT concentration used for their preparation. Human adipose-derived mesenchymal stem cells (AD-MSCs) exposed to DX MG/CNT maintained over 99% viability with metabolic activity retained over 7 days, which indicated non-cytotoxicity. The results of this study suggest that our approach could be used to prepare other DX MG/CNT gel composites and that these materials may lead to future injectable gels for advanced soft-tissue repair.


Asunto(s)
Hidrogel de Polietilenoglicol-Dimetacrilato , Nanotubos de Carbono , Tejido Adiposo , Geles , Humanos , Concentración de Iones de Hidrógeno , Células Madre Mesenquimatosas , Polímeros
12.
Philos Trans A Math Phys Eng Sci ; 374(2071): 20150283, 2016 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-27242305

RESUMEN

Graphene oxide (GO) has become a well-established reinforcement for polymer-based nanocomposites. It provides stronger interfacial interaction with the matrix when compared with that of graphene, but its intrinsic stiffness and strength are somewhat compromised because of the presence of functional groups damaging the graphene lattice and increasing its thickness, and its tendency to adopt a crumpled structure. Although the micromechanics of graphene reinforcement in nanocomposites has been studied widely, the corresponding micromechanics investigations on GO have not been undertaken in such detail. In this work, it is shown that the deformation micromechanics of GO can be followed using Raman spectroscopy and the observed behaviour can be analysed with continuum mechanics. Furthermore, it is shown that the reinforcement efficiency of GO is independent of its number of layers and stacking configurations, indicating that it is not necessary to ensure a high degree of exfoliation of GO in the polymer matrix. It also demonstrates the possibility of increasing the concentration of GO in nanocomposites without sacrificing mechanical reinforcement efficiency. This article is part of the themed issue 'Multiscale modelling of the structural integrity of composite materials'.

13.
Phys Chem Chem Phys ; 17(27): 17844-53, 2015 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-26088339

RESUMEN

Here, we evaluate the electrochemical performance of sparsely studied natural crystals of molybdenite and graphite, which have increasingly been used for fabrication of next generation monolayer molybdenum disulphide and graphene energy storage devices. Heterogeneous electron transfer kinetics of several redox mediators, including Fe(CN)6(3-/4-), Ru(NH3)6(3+/2+) and IrCl6(2-/3-) are determined using voltammetry in a micro-droplet cell. The kinetics on both materials are studied as a function of surface defectiveness, surface ageing, applied potential and illumination. We find that the basal planes of both natural MoS2 and graphite show significant electroactivity, but a large decrease in electron transfer kinetics is observed on atmosphere-aged surfaces in comparison to in situ freshly cleaved surfaces of both materials. This is attributed to surface oxidation and adsorption of airborne contaminants at the surface exposed to an ambient environment. In contrast to semimetallic graphite, the electrode kinetics on semiconducting MoS2 are strongly dependent on the surface illumination and applied potential. Furthermore, while visibly present defects/cracks do not significantly affect the response of graphite, the kinetics on MoS2 systematically accelerate with small increase in disorder. These findings have direct implications for use of MoS2 and graphene/graphite as electrode materials in electrochemistry-related applications.

14.
Langmuir ; 30(44): 13384-93, 2014 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-25313805

RESUMEN

In this study we mixed low concentrations of graphene oxide (GO) with microgel (MG) particles and formed composite doubly cross-linked microgels (DX MG/GO) gels. The MG particles comprised poly(ethyl acrylate-co-methacrylic acid-co-1,4-butanediol diacrylate) with pendant glycidyl methacrylate units. The MG/GO mixed dispersions formed physical gels of singly cross-linked MGs (termed SX MG/GO), which were subsequently heated to produce DX MG/GO gels by free-radical reaction. The influence of the GO concentration on the mechanical properties of the SX MG/GO and DX MG/GO gels was investigated using dynamic rheology and static compression measurements. The SX MG/GO physical gels were injectable and moldable. The moduli for the DX MG/GO gels increased by a factor of 4-6 when only ca. 1.0 wt % of GO was included. The isostrain model was used to describe the variation of modulus with DX MG/GO composition. Inclusion of GO dramatically altered the stress dissipation and yielding mechanisms for the gels. GO acted as a high surface area, high modulus filler and played an increasing role in load distribution as the GO concentration increased. It is proposed that MG domains were dispersed within a percolated GO network. Comparison of the modulus data with those published for GO-free DX MGs showed that inclusion of GO provided an unprecedented rate of modulus increase with network volume fraction for this family of colloid gels. Furthermore, the DX MG/GO gels were biocompatible and the results imply that there may be future applications of these new systems as injectable load supporting gels for soft tissue repair.


Asunto(s)
Reactivos de Enlaces Cruzados/química , Geles/química , Grafito/química , Óxidos/química , Química Física , Reactivos de Enlaces Cruzados/síntesis química , Concentración de Iones de Hidrógeno , Tamaño de la Partícula , Propiedades de Superficie
15.
ACS Appl Nano Mater ; 7(11): 13142-13146, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38912122

RESUMEN

Epoxy composites with excellent thermal properties are highly promising for thermal management applications in modern electronic devices. In this work, we report the enhancement of the thermal conductivity of two different nanocomposites, using epoxy resins LY564 (epoxy 1) and LY5052 (epoxy 2), by incorporating multiwalled boron nitride nanotubes (BNNT) and boron nitride nanosheets (BNNS) as fillers. The synergistic interaction between the 1D BNNT and 2D BNNS allows for improved thermal conductivity via several different mechanisms. The highest thermal conductivity was measured at a loading of 1/30 wt % of BNNT/BNNS, resulting in values of 2.6 and 3.4 Wm-1 K-1, respectively, for each epoxy matrix. This improvement is attributed to the formation of a three-dimensional heat flow path formed through intercalation of the nanotubes between the BNNS. The thermal conductivity of the epoxy 1 and 2 nanocomposites improved by 940 and 1500%, respectively, making them suitable as thermal interface materials in electronic applications requiring electrical resistivity.

16.
ACS Appl Nano Mater ; 6(19): 18062-18070, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37854849

RESUMEN

MoS2 is a promising semiconducting material that has been widely studied for applications in catalysis and energy storage. The covalent chemical functionalization of MoS2 can be used to tune the optoelectronic and chemical properties of MoS2 for different applications. However, 2H-MoS2 is typically chemically inert and difficult to functionalize directly and thus requires pretreatments such as a phase transition to 1T-MoS2 or argon plasma bombardment to introduce reactive defects. Apart from being inefficient and inconvenient, these methods can cause degradation of the desirable properties and introduce unwanted defects. Here, we demonstrate that 2H-MoS2 can be simultaneously electrochemically exfoliated and chemically functionalized in a facile and scalable procedure to fabricate functionalized thin (∼4 nm) MoS2 layers. The aryl diazonium salts used for functionalization have not only been successfully covalently grafted onto the 2H-MoS2, as verified by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy, but also aid the exfoliation process by increasing the interlayer spacing and preventing restacking. Electrochemical energy storage is one application area to which this material is particularly suited, and characterization of supercapacitor electrodes using this exfoliated and functionalized material revealed that the specific capacitance was increased by ∼25% when functionalized. The methodology demonstrated for the simultaneous production and functionalization of two-dimensional (2D) materials is significant, as it allows for control over the flake morphology with increased repeatability. This electrochemical functionalization technique could also be extended to other types of transition-metal dichalcogenides (TMDs), which are also typically chemically inert with different functional species to adjust to specific applications.

17.
ACS Appl Eng Mater ; 1(10): 2567-2576, 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37915551

RESUMEN

Coal tar pitch (CTP) is a residue formed from the distillation of coal tar and is widely used as a carbonizable and graphitizable binder for many industrial applications. However, CTP is fossil-derived and has recently been classified as a "sunset" status material under REACH due to its toxicity, which makes finding a sustainable alternative vital. In this work, bio-oil was synthesized from the pyrolysis of fresh eucalyptus sawdust, from which wood tar biopitch (WTB) was subsequently produced by a second distillation process. Chemical characterization revealed the presence of higher amounts of aromatic compounds and PAHs in the industrially used CTP relative to the WTB. Sulfur is widely used as a graphitization promoter for CTP but has not yet been used for biopitch alternatives. Hence, graphite/WTB and graphite/CTP composites were fabricated with varying amounts of sulfur and were subsequently carbonized and graphitized at 850 and 2500 °C, respectively. The use of WTB as a binder led to less porous composites after carbonization/graphitization with higher levels of shrinkage than those based on CTP, whereas the carbon yield was very similar for both systems. The incorporation of sulfur was found to promote more compact structures with higher levels of graphitization, leading to improved electrical and mechanical properties, particularly for the composites based on CTP due to the higher levels of graphitization achieved relative to the WTB. The electrical and mechanical performance found for the WTB-based composites, combined with the much lower toxicity, evidences the promise of WTB as a sustainable alternative to traditional CTP binders.

18.
ACS Appl Mater Interfaces ; 15(10): 13097-13107, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36854123

RESUMEN

We present a novel method to significantly enhance the thermoelectric performance of ceramics in the model system SrTi0.85Nb0.15O3 through the use of the precursor ammonium tetrathiomolybdate (0.5-2% w/w additions). After sintering the precursor-infused green body at 1700 K for 24 h in 5% H2/Ar, single-crystal-like electron transport behavior developed with electrical conductivity reaching ∼3000 S/cm at ∼300 K, almost a magnitude higher than that in the control sample. During processing, the precursor transformed into MoS2, then into MoOx, and finally into Mo particles. This limited grain growth promoted secondary phase generation but importantly helped to reduce the grain boundary barriers. Samples prepared with additions of the precursor exhibited vastly increased electrical conductivity, without significant impact on Seebeck coefficients giving rise to high power factor values of 1760 µW/mK2 at ∼300 K and a maximum thermoelectric figure-of-merit zT of 0.24 at 823 K. This processing strategy provides a simple method to achieve high charge mobility in polycrystalline titanate and related materials and with the potential to create "phonon-glass-electron-crystal" oxide thermoelectric materials.

19.
ACS Omega ; 8(14): 13131-13139, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37065072

RESUMEN

There is growing interest in graphene-reinforced inorganic matrix composites, but progress in this field is far behind that of polymer matrices due to difficulties in the processing of carbon materials in aggressive sintering environments, including oxidation and solubility in the host matrix. Copper-tungsten matrices are of particular interest in the power switching field but are difficult to produce due to the mutual insolubility of metals and poor wetting. Herein, composites were produced by decorating graphene oxide flakes with 8 nm diameter CuWO4·2H2O nanoparticles and then sintering them to form the final shape. The oxide nanoparticles were found to self-assemble into platelets on the surfaces of graphene flakes. Upon sintering, the presence of graphene was found to change the grain morphology from elongated needles to a polyhedral shape. It was found that, despite the nanosize of the CuWO4·2H2O particles used, the sintering conditions did not reduce the matrix to a pure metal; the sintered composites were found to be of mixed phase with copper tungstate and copper oxide present. Raman spectroscopy indicated that the graphene oxide became hydrogenated during the sintering process as a result of the reducing hydrogen atmosphere used.

20.
ACS Appl Nano Mater ; 6(10): 8202-8213, 2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37260916

RESUMEN

The potential for the use of copper coatings on steel switching mechanisms is abundant owing to the high conductivities and corrosion resistance that they impart on the engineered assemblies. However, applications of these coatings on such moving parts are limited due to their poor tribological properties; tendencies to generate high friction and susceptibility to degradative wear. In this study, we have fabricated a fluorinated graphene oxide-copper metal matrix composite (FGO-CMMC) on an AISI 52100 bearing steel substrate by a simple electrodeposition process in water. The FGO-CMMC coatings exhibited excellent lubrication performance under pin-on-disk (PoD) tribological sliding at 1N load, which reduced CoF by 63 and 69%, compared to the GO-CMMC and pure copper coatings that were also prepared. Furthermore, FGO-CMMC achieved low friction and low wear at higher sliding loads. The lubrication enhancement of the FGO-CMMCs is attributed to the tribochemical reaction of FGO with the AISI 52100 steel counterface initiated by the sliding load. The formation of an asymmetric tribofilm structure on the sliding track is critical; the performance of the FGO/Cu tribofilm formed in the track is boosted by the continued fluorination of the counterface surface during PoD sliding, passivating the tribosystem from adhesion-driven breakdown. The FGO-CMMC and GO-CMMC coatings also provide increased corrosion protection reaching 94.2 and 91.6% compared to the bare steel substrate, allowing for the preservation of the long-term low-friction performance of the coating. Other influences include the improved interlaminar shear strength of the FGO-containing composite. The excellent lubrication performance of the copper matrix composite coatings facilitated by FGO incorporation makes it a promising solid lubricant candidate for use in mechanical engineering applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA